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Virtual transitions of the type mÃ; -+ pS,', where Ã; represents an arbitrary nucleon isobar, are considered
as the driving force for Regge recurrences of inelastic resonances. We consider only the s-wave pS,'. con-
Gguration. Since most of the low-lying isobars have even parity, we are therefore concerned mainly with
odd-parity resonances. Regge trajectories of the latter are a consequence of Regge recurrences of the even-
parity states. An important example is given by taking'Zf; to be the sequence: nucleon —,+ and its recurrence

(quantum numbers P~r and t&s in conventional notation). Isospin and centrifugal-barrier considerations
lead directly to the existence of the D&g-G&7 sequence. In this paper the general formalism is set up. Numerical
results are given separately. First, however, a simpler derivation is given of the elastic forces due to isobar ex-
change in the quasistatic approximation. Previous work has shown the relation of these forces to the existence
of even-parity Regge trajectories. Then the unitarity relations are set up for helicity amplitudes describing
the reactions Ã,m' ~ N m', E m ~E,p, and X p —+ E,p. Next a general explicit expression is given for the one-
pion-exchange (OPE) approximation for jV,m ~ Ã,p. Expressions are given for the above amplitudes in
several models, in which only the OPE coupling is considered. The pole approximation is used to solve the
many-channel N/D equations. Techniques for handling the general isospin problem are developed and their
relevance to the present problem discussed.

I. INTRODUCTION
'

q
&PERfMENTS have revealed a fascinating wealth

-~ of structure in the spectrum of the excited states
of baryons. ' While no simple dynamical structure yet
exists which describes the whole spectrum in a simple
unified manner, much insight can be gained from a
systematic study of dynamical models. There are many
ways in which groups of these particles can be organized.
Here we emphasize the systematic features of dynamics
leading to Regge recurrences. s (Actually, the tool of
complex angular momentum has so far proved un-
necessary in our program. ) In previous work we have
analyzed in detail the elastic forces in meson-baryon
scattering. ' There it was shown that the elastic forces
in ~X scattering all collaborate in such a way as to
favor the generation of even-parity Regge recurrences,
one series of isospin s (originating in the nucleon) having
spin parity J of &+, —,'+, ~+, . and the second of
isospin &» with J equal to ~+, 2+ ~+, . Except
for the significant role played by vector-meson ex-
change, the dynamical framework is a generalization of
Chew's reciprocal bootstrap model4 for the nucleon and
its first excited state, the 3-3 isobar. It was also found
that the elastic forces in the odd-parity states are
relatively small or repulsive, so that other forces must
be responsible for the odd-parity resonances. '

~ Research supported in part by the OQice of Naval Research
and the U. S. Atomic Energy Commission.

'A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L.
Bastien, J.Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1962); R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962).

'P. Carruthers, Phys. Rev. Letters 10, 540 (1963); 12, 259
(1964); Phys. Rev. 133, 8497 (1964); Leclttres iN Theoretical
I'hysics (University of Colorado Press, Boulder, Colorado, 1965),
Vol. VIIb, p. 83.

4 G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
~ An exception is the case of the s waves, which requires special
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The main purpose of this paper is to describe likely
dynamical mechanisms for inelastic resonances', Regge
recurrences arise as naturally for such resonances as in
the elastic force case. VVe shall mainly discuss the x2V

system, since the extension to strange meson-baryon
scattering is easily done by invoking SV(3) sym-
metry. ' ~ Fortunately, there is to some extent little
overlap between channels dominated by interchannel
coupling and those with strong attractive elastic forces.
Therefore, we investigate the idealized case in which
only inter channel coupling exists. Calculations in-

cluding both elastic and inelastic forces are underway.
The characteristic feature of the high-mass resonances

is the large number of significantly coupled channels.
As a first step towards isolating the portions of these
many-particle configurations significant for resonance
formation, we make a number of drastic simplifying
assumptions. For a first try we isolate the most peri-
pheral inelastic mechanism, namely one-pion-exchange
forces. Moreover, the multiparticle configuration—
nucleon plus any number of pions —is taken to be
represented by either one pion plus a nucleon isobar
or one rho meson plus a nucleon isobar. (Here any
excited state of the nucleon, including the nucleon
itself, is called an isobar. )

Thus we consider the role of the peripheral reactions

where the X~ are various nucleon isobars, for inelastic
resonance formation. The attractive force due to the
coupling of xX; to the virtual pS, s-wave configuration

attention. We only discuss —, states which arise in coupled inelastic
channels involving a centrifugal barrier.' By inelastic resonance, we mean a resonance caused by cou-
pling between unlike channels.

7 E. Golowich, Phys. Rev. 139, B1297 (1965).
Nand Lal (private communication).
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is used to generate resonances. In the particular case
N;=Ã, =E, one recovers the model for the "second"
aE resonance D»(1512) investigated by many authors. '
Our work generalizes the general pattern developed in
papers by Cook and I.ee" and Auvil and Brehm. "

In Sec. II a new, simpler, derivation is'given of the
elastic forces due to isobar exchange. The angular
momentum crossing matrix in the quasistatic approxi-
mation of Ref. 3 is rederived in a much improved
fashion. In Sec. III the helicity formalism is used to
formulate the requisite coupled-channel unitarity
relations connecting the reactions E,x q

—+ E,xg, X m y
—+

E&pd, and E pd ~E,pp. In Sec. IV explicit expressions
are given for the threshold amplitudes for reaction
(1.1).For this purpose it is necessary to use expressions
for the general pion-baryon-baryon vertex given in
Ref. 12. Threshold factors are enforced as in Ref. 10
and expressions for the pole approximation to the left-
hand discontinuities are given. Expressions are also
given for the near-threshold s-wave p production cross
sections in a channel of given 1~ and isospin. Section V
contains resonance conditions in the pole approximation
for various two- and three-channel models. In the three-
channel problem, a criterion is given to determine
whether the elastic phase shift goes through 0' or
90' at resonance. Section VI is given to a discussion of
general features leading to Regge behavior. Numerical
results and further discussion are given in another
paper. "

The Regge recurrences of the oMd-parity resonances
can be considered to be a consequence of even-parity
Regge recurrences. Thus if the coupling to a closed
channel (pXg+)z, =s gives a resonance (1+1), the
replacement of XJ + by its recurrence E(J+&)+,

LplViq+s&+jr, =s leads to the dominant configuration
(7+3) . (The largest orbital momentum dominates
because of the centrifugal barrier effect. ) These ideas
are considered in more detail in Ref. 13,but one example
will show what is involved. The pÃ configuration
(s-wave) couples to the s.X St/& and D3/s channels. Only
the D wave has a centrifugal barrier. Next consider
the recurrence configuration pF~5. Of the ~, ~, &

channels, -', involves the maximum a.X orbital angular
momentum. Of course, other channels have to be con-
sidered, in particular m.F~5. Here 3=2 for both 2 and

~, but the vertex factor suppresses ~ . The isospin
factors are trivial, and one is automatically led to
expect a D», G» pair as a consequence of the (X,F»)
pair (given the existence of the vr and p mesons. )

' Our notation is standard; I.2&, &~ denotes the following quantum
numbers: I, is the orbital angular momentum, T the isospin, andJ the total angular momentum.' L. F. Cook, Jr., and B. W. Lee, Phys. Rev. 127, 283 (1962);
127, 297 (1962)."P. Auvii and J. J. Brehtn, Phys. Rev. 140, 3135 (1965);
145, 1243 (1966).

's P. Carruthers, Phys. Rev. 152, 1345 (1966). This paper is
referred to as I in the present series.

'3 P. Carruthers and M. M. Nieto, Phys. Rev. Letters 18, 297
(1967).

II. ELASTIC FORCES IN PION-NUCLEON
SCATTERING

In previous papers' we have discussed the systematic
features of elastic forces due to exchange of various
mesons and nucleon isobars which are favorable to the
generation of even-parity Regge recurrences originating
in the nucleon (T,J~)=(—', ra+), (sr, ss+), . and the
3-3 resonance (ss, as+), (ss, s+), . While the majority
of the even-parity resonances seem to be accounted for
by this scheme, the elastic forces are much smaller (or
quite repulsive) in the odd-parity states. Hence other
channels must be involved in these odd-parity states.
To be sure, the inelastic channels are not negligible for
the even-parity states, but the elastic forces themselves
are adequate to produce resonances in these states,
except perhaps for very high energies and spin values.
Actually the successes of SU(6) suggest that to some
extent the distinction between elastic and inelastic is
artificial and that a simple description obtains only
when all particles in the SU(6) 56- and 35-dimensional
multiplets are treated on an equivalent footing. For the
time being, however, we retain the more traditional
detailed attack, assuming at most SU(3) symmetry.

The main purpose of this paper is to supplement the
previous analysis by an exploration of inelastic
dynamical mechanisms and their Regge systematics.
However, we want to report here a much simpler
derivation of the structure of the angular momentum
s-I channel crossing matrix than was previously given.
The approximations involved in this procedure become
progressively worse for higher energies and higher mass
and spin of the exchanged particles. Beginning with a
fixed-energy dispersion relation, the absorptive part is
replaced by the imaginary part of the amplitude which
in turn is approximated by a truncated partial-wave
expansion. Since this expansion formally diverges, one
has to appeal to the Regge-pole hypothesis to justify
the procedure. But thus far no one really knows at what
point the suppression of high spin states sets in. Roughly
speaking, we are treating the exchanged particles as
elementary. (Even in this context, there are well-

known ambiguities in the field-theoretic description of
high-spin-exchange forces. )

Despite all these difhculties, the pattern of forces
revealed by our admittedly inaccurate crossing matrix
exhibits a simple pattern in remarkable qualitative
correspondence with the experimental situation. In the
previous work, we studied the fixed-momentum-transfer
dispersion relations. We show here that in the qgesi-
static approxir/satior/, the results thereby obtained are
the same in the more simple fixed-energy dispersion
relations. We also are able to give a simple explicit
formula. The structure is different when the orbital
angular momentum l' of the exchanged baryon state is
less than or greater than that of the partial wave of
interest.
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For /'&/, we previously gave' the following expres-
sion for the Born term in partial wave h, ~(w)=e"
sinb/k"+' due. to exchange of a baryon state with orbital
and total angular momentum /' and j'.

h&P(W)=~W, &„X&& t~ k 'Q~& p ~(y), (2 1)

where y„=I'„/k„"+' is the reduced width, Xn"" the
crossing matrix in question, and Q the Legendre func-
tion of the second kind. y is defined as 1+(M„'—No)/2k',
where M„ is the mass of the exchanged particle, k the
c.m. momentum, and No

——(M' —p')'/4s. Finally M and
p are the nucleon and pion masses and s=t/t?' is the
squared total c.m. energy. Note that h~ approaches a
constant as W approaches the threshold M+@. The
essential approximation involved in deriving (2.1) is
the neglect of the pion energy with respect to 2M. The
main advantage of the approximate form is the trans-
parent exposure of systematic features of the exchange
forces leading to Regge trajectories.

From the fixed-energy dispersion relations, we can
compute the Born amplitude h&~ in (j=/&2) due to
exchange of a baryon isobar with j'=/'&'2(see, for
example, Golowichr)

I'„M„(—1)'+'
(LD»(W, M,)I"p„(x.)

2k„k"+'

D12(W,M,)P'p (x ))XQ&(y)
—$D2g(W, M,)P'p~g(x )

—D22(W, M„)P'p(x )jQ&g&(y)}. (2.2)

In Eq. (2.2) the plus and minus signs need to be
explained. Every & symbol except that in Q&~& refers
to whether j'=/'&-', for the exchanged particle. (Q&+&

goes with h~+ and Q~ ~ with h~ .) The "angle" x„, the
crossed cosine, is given by x =1+t„(s)/2k/, where
t, (s) = 2 (M. '+p') —s—M„', and k„ is the c.m. momentum
for s =3E„'.The elements of the matrix D are given by

E+M t E+M
(2M+ W' —W)

i
(2M —W' —W)

E'+M kE' M—
D(W, W') =

2S' E—M tE—M
(2Myw'+ w)

~

(w' —w —2M)
E'+M kE' —M

(2 3)

where E is the nucleon energy, E= (W'+M' p,')/2W. —
The passage to the quasistatic limit is simple but

somewhat delicate. First replace the nucleon kinetic
energy by its nonrelativistic value E=M+k'/2M. Then
write W=M+co, where ao is the pion energy. Neglecting
co with respect to 2M, Eq. (2.3) then reduces to

Pg ()22m

Q-(y)-,y "Qo(y)
(2m+1)!

(2 7)

Qo(y) is equal to —', ln/(y —1)/(y+1) j. Straightforward
manipulation then leads to the following expressions:

—k'/2M

In this same limit x„ is

—2M (co+(o')/(k')'-

—km/(k')'

1—2M(o)+co,)/2k„'= —M ((o+(o„)/k„'

(2.4)

1
h/+~=A iX

2~f

j'= 1'+-',

(—1)'I',M, (2/')!
Ai=— (x„)'Q((y),

2k„k"+' 2"(1'!)'
(2 g)

and y is
2M (a&+(u,)/2k' —1=M ((u+ o),)/k'.

A)
h) ~=—X

2/1'+1+1', j'=1'+-,'

(2.9)

1 —2(y
(2.5)

Hence x„ is equal to —$y, where $—=k'/k„'. We then
further write (2.4) in the form For /'&l these expressions can be conveniently reduced

to the form (2.1) with the quasistatic crossing matrix
given by the expression

1'/1 (211'+1+1')/—1
xi (2.10)

& 2/' 1

0 1 ' 2/+1~-'
X p

——(—1)'—'
For these approximations to be reliable, the energy W /' 21' )
and resonance energy M„have to be such that

~
x„(s)

~

and y are substantially greater than unity. (Roughly
speaking k„must be rather less than M=6.72 p.) In
this domain we can use the asymptotic formulas

(2~)!I'.(x) x",
2a(N t)2

(g
For /&/', the expressions

~ &
are usual combina-

(2.6)
torial factors, More generally, if POl we mean the
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following:

(E')!(Ii—E'I)!

(21+1' (21+1)!

i 2t' & (2l')!(2IJ—i'I+1)!
(2.11)

(2.12)

The rows and columns are in increasing order j=l—~~,

j=l+sr and j'=l' —rs, j'=2+i„resPectively. ExPlicit
numerical values of the crossing matrix were given in
Refs. 3 and 4. For l') J the matrix structure of (2.10)
is the same but the over-all factor is a little diRerent
from that given in Eq. (2.1).

The crossing matrix (2.10) is to be multiplied by the
factor

I M(~+co„)j'&" 'l for l') l. This factor is typically
large but is compensated for by three factors: (a) the
mass M„ in the Q function is heavier (the larger /'

the larger M„) leading to a greater centrifugal barrier;
(b) the quasistatic approximation tends to be worse for
l'&l than for l&l' because in the former case 0„' is
large and &u small in comparison to the latter case; (c)
Regge behavior tends to damp the eRect of high-spin
exchanges.

Equation (2.10) has to be supplemented by the
isospin crossing matrix connecting the s and I channels:

result is that p exchange gives a large attraction in
T=-,', J=l——', . A slight attraction occurs for T=—,',
J=l+rs, and a slight rePulsion in T=~ J=/+&, .
Repulsion occurs in T= ~, J=l—~. Thus in the even-
parity states, p exchange adds attractive forces to the
baryon exchange forces, while it mainly cancels out
repulsive or small attractive forces because of baryon
exchange in the odd-parity states.

Thus far, no attempt has been made to convert the
"forces" just discussed into actual amplitudes to be
confronted with experiment. (See, however, the success-
ful but more conservative program of Ref. 14.) The
reason for this neglect is the absence of any reliable,
unambiguous, method for this. The usual 1V/D methods
involve many notorious difhculties, " the latter becom-
ing more unruly as energy and spin increase. However,
the author has checked that these elastic forces are
quite strong enough to produce the desired resonances
when conventional threshold factors and cutouts are
used.

In the rest of the paper, we actually construct unitary
amplitudes for given inelastic forces. These numerical
results naturally suGer from at least as many ambigui-
ties as those for the elastic problem. However, only
numerical results can give a feeling for the nature of the
mechanisms and sensitivity to various parameters.
No great faith should be put in the precise numbers
obtained.

This is a special case of (2.10), with J= /'= 1. The same
ordering conventions are used.

It will be noticed that the s-I channel crossing
matrices are mainly oR diagonal. This circumstance
has a simple physical origin. The physical (s) channel
and the crossed (u) channel are connected by turning
the pions into antiparticles. Thus the pion isospin
(orbital-angular-momentum) points in the "opposite"
direction relative to the nucleon isospin (spin) when
viewed from the crossed channel. The more classical
the situation, the more nearly perfect the rule becomes

I
note that when / and l' are large and of the same order

of magnitude, the diagonal elements of (2.10) are of
order 1// relative to the off-diagonal elements).

These results can be summarized in the following
simple rule: The force due to the exchange of an isobar
with T=s(~) and j'=l'&-', is by far the strongest in
states of T= ss (s) and j=/&s. For l J'=0, 2, 4—,
this strongest force is attractive and for l—l'=1, 3, 5,
~ ~ it is repulsive. The consequences of this rule for
Regge recurrences have been thoroughly discussed in
Ref. 3.

The meson exchange forces (especially p-meson
exchange) are also significant elastic forces. The qualita-
tive eRect of these forces has been discussed by the
author and by Hamilton and collaborators. ' '4 The

' A. Donnachie, J. Hamilton, and A. T. Lea, Phys. Rev. 135,
3515 (1964).

obeys the unitarity condition" '~

L(cdIMIah)j=g spy, (s) dQ'
ef

X P (cdlMI ef)(abIMI ef)*, (3.2)

where the invariant phase space is given by

2M, p, s(s)
p. (s) = &(s—(M.+)s )')

4(2s-)s s'"
"L.M. Simmons, Jr., Phys. Rev. 144, 1157 (1966).

J. D. Bjorken, Phys. Rev. Letters 4, 474 (1960)."R.Blanirenbecler, Phys. Rev. 122, 983 (1961).

(3.3)

III. UNITARITY CONDITION FOR THE
MULTICHANNEL N, ~,Ngy SYSTEM

Consider the reaction, baryon a+ meson b ~ baryon
c+ meson d. The actual particles of interest will often
be unstable and possess high spin. The spins and helic-
ities of the particles will be denoted by (s,s&,s„sz) and
(X„Xs,X„)q). The invariant amplitude (cdlMlab) de-
fined in terms of the S matrix by

(cd
I
8

I ab) =5„5sg—(2 )'sb(sp.+p, p, pd—)—
( Mpe,

Xl
'

I
(cdlMlab) (3.1)

(4EsE (0sMs
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M.~,.f=—Z(2J+1)d~) '(0)
JM

X(),)~g~Mg~)i, )~f)dbf),"f(0')e '&~ "")i'
(3.5)

1
Q (2J+1)d „J(0~)si(M i")g'—

4~ J
x().) b(M, (),) f)*.

Inserting these expressions into Eq. (3.2), we find

[(x,xz
~
Mz

~

)i~)i b) 7 =p 7rp gf (x,h „~MJ [ x g)if)

X().),b~M, ~).) f)*. (3.6)

The amplitude (P„4~Mf j 4)ib) is calculated from the
invariant amplitude by means of the formula

()i.) q
~
Mf

~
X,X b) = 2ir d cos8

(3.7)

where A. =P,—xb, V=A, —xq, and the reaction ab —+ cd
is oriented to be in the x-s plane.

For practical purposes it is useful to re-express (3.6)
in terms of amplitudes of definite parity. Recall that
for xN elastic scattering, 3Ig is a 2&(2 matrix with two
independent components Mf++(=Mf ) and Mf+
(=M&~). The unitarity condition is "diagonalized"
by introducing the parity amplitudes

M(i+i) =Mf+P+Mf+, I'= (—1)f '"; (3.8)

Mi+ =My++ Mf+, I'= (—1)f—+'",

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

3E is the fermion mass and pb the boson mass. The
baryon energies are E, E, and the meson energies
o)b, co~. The c.m. momentum p, b(s) depends on the
square of the c.m. energy s as follows:

p.bs= [s—(M.+)Mb)'7[s —(M.—pb)')/4s. (3.4)

In Eq. (3.2), the angular integration goes over the
direction P, of the baryon e in the c.m. system. The
symbol F means the energy discontinuity [Ii(s+is)

F—(s is—))/2i F.or problems involving fermions, we
shall often use 8'=s'" as the appropriate variable. Ke
shall apply these equations in an approximate way to
describe unstable particles. The degree to which this
is appropriate can be surmised from a comparison with
the work of Cook and Lee."In this regard it should be
mentioned that when energy variables other than s
occur the general unitarity condition is expressed as a
discontinuity in s, the other energy variables remaining
fixed.

The unitarity condition takes on a simpler form for
amplitudes of definite angular momentum J. The
geometry is described in Fig. 1. The over-all scattering
occurs in the x-s plane, with scattering angle 0. Saryons
u, c, and e have momenta p, p', and p". From the work
of Jacob and Wick, "we have the expansions

I'IG. 1. The geometry of the
scattering process N,~q ~ N, pg
is shown. The s axis dehnes the
initial direction. The scattering
plane is the x-s plane.

I

w I

8 =e"".l+
2Ãzp

(3 9)

%e now wish to extend our considerations to include
the reactions

N, mb ~ N,mg,

N,~b ~N,pg,

N pb —+N,pg,

(3.10)

(3.11)

(3.12)

where N; is an arbitrary nucleon isobar regarded as a
stable particle. According to Jacob and Wick, the
parity operation has the following effect on the two-
particle state:

J
~
JM) .) b) =~.»(—1) ---

~
JM —).—) b). (3.13)

Here q' denotes the intrinsic parity of particle i. The
X,ir states with parity (—1)f+"' are accordingly

[[Jmh, )&i),( 1)e&—inl Jm —g, ))/2in (3 14)

For illustration, note that g is 1 when N is the nucleon

(s, —,'+) or the 3-3 isobar (s,-', +) and —1 when X, is the
1512-MeV resonance (is, ss ). There are (2s,+1)/2
independent functions of type (3.14).

Using reAection invariance we find the J~ amplitude
f' or iV. , Ã, s[I'= (—1)'+'"):
(Jm), ~M~ Jm)~, )a)),(—1)" '"

X (Jm —&.
~
M

~
Jm&.). (3.15)

Next consider the fl),pb state with parity (—1)f 'f'.

[[J )m)bi)+ii), ( 1)" ' '—
[ Jm —X,—) b))/2' '. (3.16)

All the independent functions of type (3.16) can be
obtained by keeping ),&0 and letting P b run over its
three values. We obtain 3 (2s,+1)/2 independent
states. (Note that for the pX system i) = —1.)

The transition amplitude for parity (—1)f~'f' in

N, orb —+ J)f,pq is now computed from Eqs. (3.14) and

(3.16) to be

X &Jm —&.—4~ M
~
Jm&.), (3.17)

where l =J&-,' for Mgp gives the "orbital" angular
momentum. The J~ ~N amplitudes M~+ are then given
by the standard relations

2i5l +
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FIG. 2. Graphical representation of the unitarity conditions.
Solid lines denote nucleon isobars, wiggly lines p mesons, and
dashed lines m mesons.

while the transition amplitude for parity (—1) '" in
the reaction E,p~ —+ E,pq is

For given J and P there are respectively, (s,+-', )-
(s,+~~), 3(s,+x~)(s,+~), ' and 9(s,+~)(s,+2) inde-
pendent transition amplitudes for the reactions
N, +7rg —+ N, +~d, N, +7rt, ~N, +pd, and N +pg —+

N, +pq. All these amplitudes will be coupled to each
other by the unitarity condition, as indicated in Fig. 2.

From Eq. (3.6) for the unitarity condition we can
derive a very similar unitarity condition connecting
the independent J~ amplitudes enumerated above. The
demonstration is elementary but rather lengthy. To
show what is involved we sketch the procedure for
N,m.

& ~ N, mz LFig. 2(a)7. Clearly all independent
amplitudes, which can be labeled by a variable f'=1,
2, , (s.+-', )(s,+-', ), are obtained if we restrict X,
and X, in Eq. (3.15) to positive values. We restrict
attention to intermediate states of the type allowed by
reactions (3.10)—(3.12). First consider the N, m~ inter-
mediate states. Let f =X, for positive X, $|,——X~ for
positive Xb. The amplitude (3.15) can be briefly denoted
by (X&13IIIX,&. According to Eq. (3.6), the discontinuity
due to N,7' intermediate states is for P= (—1) +'"

The sum on ), is now split into separate parts according
to positive or negative values of ),:

I:&hl ~l k.&~ 7=~~ xZ{L&0 l~l 8.&&41~18.&*+a.(—1)*-'"&—bl~l 8.&&41~1t.)*7
$g

+L&S. I
~

I

—I.& &41~1—I.&*+a.(—1)" '"&—41~1—&.&&&. I
~

I

—k.&*7}

='Irp j 2{&S. l
~

I q.&+m, (—1)"-'&'&—P. l
~

I g.&}X{&P. I
~

I g.&+~.(—1)"-~1'

C&e.13' l e.&"7=~P f 2&a.I~I c.&"&4 l~l s.&~
*

&& &
—41~18.&}*; (3 20)

(3.21)

To obtain the pdS. intermediate-state contribution, 6rst note that the independent E,p~ ~E ~~ amplitudes
can be chosen to be

&&. I ~I k ~d&~~ (—1)" '"&k~l ~l —4—l ~&—=&41 ~l 4l ~&~ (3.22)

for parity (—1)~+'", where the &; are all non-negative.
A calculation similar to that of Eq. (3.20) gives for the P= (—1)~+'" contribution to the discontinuity

~p f 2 {&0 1~18.4&~n. (—1)'-'"&k.
l
~

I

—4—&~)}{&41~18.4&~n. (—1)" '"&41~1—( —4&}* (3 23)
$g&y

In this expression the phase space is of course different from that in Eq. (3.21). We therefore find the unitarity
condition

1
—

I:&& I~I & &~ 7=& ~ x(~N )&0 I~IS &"&41~10.&~ *+2 ~ r4» )&$1~14.&x&~ &41~1&&x&"*
)gXJ

(3.24)

Here the sum on index e is supposed to run over all nucleon isobars X,.
The unitarity relations corresponding to Figs. 2(b) and 2(c) are quite similar. It is necessary to note that all

the independent I amplitudes of Eq. (3.18) (&P,X&1 Ml ),Xd)z~) are obtained by keeping the isobar helicities
positive in the 6rst amplitude while the p helicities run over all possible valves. Then the discontinuity of the
Em —+ Ep J~ amplitude is

-L&k l .1~14&~ 7= & u(~N. )&6.l .I
~

I k.&~ &41~1(.&~ *+2 u bN. )&0.l .1~18.4&~ (41~16.4&~ *
$g&f

(3.25)

Finally, we write down the discontinuity for the N p& ~X,pp amplitudes,

1
-[&g.x. I

m
I gJ,&7=+ &(~N.)&P.x.

I
m

I q.&,.(P.x, I
m

I g.)~ *++ &(] N.) &P.a~
I
u

I g.x,&, &q.x, IM I g.x,&, .*.(3.26)
$e&f
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The extension to completely general spins of the
colliding particles should now present no problem to
the reader.

In order to utilize the unitarity condition, one has to
know something about the analyticity of the various
amplitudes. What little is known of the analytic
properties of production amplitudes, which our quasi-
two-body amplitudes are supposed to approximate, is
quite discouraging. However, the great success of SU(3)
seems to indicate that the stability of a particle is
perhaps of little relevance. We shall assume that such
questions can be answered by analytic continuation in
the masses from a domain in which no complex singu-
larities or anomalous thresholds occur. In such a region
it is quite plausible that the helicity amplitudes obey
a Mandelstam representation once the kinematical
singularities have been removed. ' " At present all
questions of construction of singularity free amplitudes,
threshold subtractions, and asymptotic behavior should
be examined in this domain. It should be stressed that
in actual applications we shall be concerned with
specific models which may have a significance inde-
pendently of the questions of the existence of the full
analytic structure presumed in a double-dispersion
approach. In any event we cannot wait for a satis-
factory solution of the many-body problem in strong
interactions. A successful exploratory study may in fact
aid in the construction of such a theory.

IV. ONE-PION-EXCHANGE (OPE) CONTRI-
BUTION TO N ~y~ N,pg

We now wish to consider a specific set of "forces"
(left-hand singularities of the partial-wave amplitudes)
due to the virtual transition iV,m s -+ E,pq (Fig. 3). The
multichannel 1V/D method used to satisfy the unitarity
condition of Sec. II, given a definite set of forces, is
discussed at the end of Sec. IV. In this section we con-
sider the general structure of the OPE amplitude of
Fig. 3. The main work is involved in the analysis of the
general pion-baryon-baryon vertex (Fig. 4), which was
reported in I." Although there are s+-', independent
on-mass-shell mB B~ vertex functions" where s is the
lesser spin of B,and B&, we keep only that vertex struc-
ture associated with the lowest multipole in the Breit
frame. The additional vertices involve the transfer of
at least two more units of angular momentum and will

be ignored here. We describe the kinematical behavior
of high-spin baryons by Rarita-Schwinger wave func-
tions. ~ 3 EGects due to the instability of the actual
particles of interest are not considered. The structure of
the vertex was found to depend on the relative y

'~ Y. Hara, Phys. Rev. 136, 8507 (1964).
2' L-L. C. Wang, Phys. Rev. 142, 1187 (1966)."L.Durand, III, P. C. DeCelles, and R. B. Marr, Phys. Rev.

126, 1882 (1962).
~ W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
23 H. Umezawa, Quantum Field Theory (North-Holland Publish-

ing Company, Amsterdam, 1955).

Fio. 3. Peripheral (OPE) production
of rho mesons is shown. u and b label
the initial and 6nal nucleon isobars,
respectively.

The p, are four-vector indices for the Rarita-Schwinger
field operators. p, is the pion mass and gI, 'I, is a dimen-
sionless coupling constant. When the relative p parity
pic =yy' is +1 the Dirac matrix I' is its ,'if ya ———1, then
I' is the unit matrix. LEquation (4.1) has been written
in a form appropriate to the case ss')~si. ] The rec-
tangular vector matrix T converts the bilinear form in
the baryon fields to an isovector as discussed in I. In
the spherical basis, the elements of the three matrices
T(», p=~1, 0, are defined by

T&„„=(2T'+1)'i'C(T'1T; vs) . (4.2)

The isospin of the "initial" baryon (spin s&) is called T;
that of the "final" baryon (spin ss ) is called T'. When
T= T', the matrices T; are proportional to the ordinary
isospin matrices I;.

As explained in Refs. 10 and ii it is appropriate and
convenient to study the threshold production amplitude.
This kinematical position dominates the virtual pro-
duction process (as shown in Paper IV) and also makes
the calculation of helicity and J~ amplitudes elemen-
tary, provided one uses the results of I."There it was
found that when pic ——+1, the invariant pion vertex
between baryons of spin s and s+I (neglecting the
isospin factor Tr) is given by

I'+(r+rl, ,s; Ps')i'P)~) = (—iP)"i sinh-', io(—1)"'+raise, i+

n

Xd ~
*+"(8)g C(s+0—1, 1, s+k; )~0) (4.3)

k I

when the final baryon (spin s+n) is at rest. p is the
three-momentum of the initial baryon (spin s) and co

is given by p=M, sinh ro where M, is the mass of the
baryon having spin s. X and )' are the initial and final
helicities. The C factors are Clebsch-Gordan coeKcients,

Fro. 4. The general pion-baryon-baryon
vertex is shown.

parity of the two baryons. When a baryon of angular
momentum J decays into a pion of orbital momentum
l, we find that p is given by (—1) +' '~'. If the initial
baryon has spin sz ——4+sr, p-parity y and the final
baryon spin s&'=k'+sr, 7-parity p', the effective inter-
action Hamiltonian density has the form

5e(x) =l &-&'g,'p'rg»"' "(x)rT&„,„,...„,(x)
Xci„„, .r)„,,es(x)+H. c.. (4.1)
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in the convention of Rose.'4Thed functions are stand- The angular momentum amplitudes defined by Eq.
ard rotation matrices. '4 (3.'7) involve the integrals

For odd relative p parity, the vertex is

I' (s+e, s; po'X'pX)= (—ip)" coshi2a& (—1)"' "e,&,

m

Xd ~
'+"(8)g C(s+k —1, 1, s+0; XO). (4.4)

1=1

The angle 0 is that between the s axis (initial baryon
direction p) and that of the final baryon (in the x-s
plane, the latter then taken to zero momentum (see
Fig. 1).

The e, i,
+ are polynomials in the variable c=E/M, .

Quoting from I, we find

&1/2, 1/2 ~ )

63/2, 3/2 &1 )

e3/2, i/2+ ——w3 (1W2c),

&5/2, 5/2 = 1 )

e5/2, 3/2+ ——5 (1W4c) )

es/2, i/2+ ———,
' (1W2c+2c'),

~z/2, z/2

e7/2, 5/2 —a—', (1%6c)
&

e7/2, g/2+ ——&7 (1%2c+4c'),
e7/2, 3/2+ =& (1/35) (3+12c+12c'+Bc') .

(4.5)

To compute the amplitude of Fig. 3 we now need to
define the pzt-x coupling

Kp~~ fep jap/ 3 /Bp7I i' (4.6)

where e is the polarization four-vector of the outgoing
p meson.

In order to investigate the role of this mechanism in
resonance formation, we examine the J content of
(4.7) at the threshold for pN, formation. The computa-
tion of the partial-wave projections is especially simple
at this point because (1) the propagator is independent
of cos8 at threshold, and (2) the remaining factors are
simply proportional to the Jacobi polynomials.

For brevity we write Eqs. (4.3)—(4.4) in the form

I' (s's; p, 'li'ply) = (—1)"'+'"E;,+d i,"(0) (4 8)
I' (s's; P VPX) = (—1)"' "E, ,i, dy i,"(0).

24 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley Bz Sons, inc. , New York, 1957).

If the final p has isospin index ns and the initial pion
isospin index n, the invariant OPE amplitude is

(p.z.p,),.m~M~ pJ.pqe)=1' (s,.s~, p,l,p.).)
2L etstl[T[fgjp /I, pQ

' e (pd&Xe)
X (4 7)

p

d cos8 di.i, i„'(&)dx,i."(&)doi„'(&)

=-', (—1)"'C(Js'1;X —X )C(Js'1; X.—Xg, —),)
—= (—1)"I(Js' ) .Xeh.) . (4.9)

Mo ———4vripe„„i(Ti fg/, 'p'&/(to —e')) (4.11)

when to is the value of t at threshold.
The function of the common factor 1&g,'(—1)s+'/2

is to enforce the obvious consequences of conservation
of parity and angular momentum. At threshold the
pN, orbital angular momentum is zero, and so J=s,+1,
s„s,—1 (except when s,= ~~). If q, '=+1 these states
have negative parity. If p, '= —1, the nonvanishing
amplitudes have positive parity. The factor in question
equals 2 in the allowed configurations and zero
otherwise.

It will be noticed that the dependence of the ampli-
tudes on the helicity quantum numbers factors into
parts separately dependent on the initial and the final
sets of helicities necessary to specify these states. This
factorization of the amplitude is crucial for solution of
the N/D equations. The factorization is exhibited by

M,gs ——-', MOL1+r/. (—1)s+'/2]

XL(—1)"'+'"'C(Js.1; X, Xi, —X.)]—
E„,.i+C(Js,1; X.—X.), 7B +1

X (4.12)
(—1)"+'"E „&, C(Js,1; X,—X,), ya ———1.

The isospin content can be made explicit by use of
the projection operators I'T for E,zt. ~

—+ S,pd.

&&mniTi P cT(J T)mn ~

T
(4.13)

Using well-known symmetry properties of the Clebsch-
Gordan coefficients, one sees that the dependence of the
threshold amplitudes on the helicities can be specified
by giving the values of the independent J~ state
labels l, f'.

In order to enforce the threshold behavior in the
solutions to the N/D equations, we multiply by the
threshold factors gi for a m.N state t' containing mini-
rnum orbital angular momentum l, and Gl, for the pX

The J amplitudes for parity (—1) '2 are found
from Eq. (3.17) to be

M~s =MOE, ...),.+( 1)"'+—'"I(Js, ; X,),eX,)
X(1~~.(—1)'+'"), (4.1O)

M s=MpE, ...i, ( 1)"' ~I—(Js, ;'A.XgX,)
x (1+~,(—1)'+'/'),

with X'=X,'+Xq', X=X,. The subscripts denote the
relative p parity, and ufo is
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state of minimum orbital momentum L,. Thus the
amplitude F&I,~~, hopefully devoid of kinematical
singularities, is given by"

(F/~») r, r g/r—»Mr, r»Gr»' (4.14)

The resonance conditions and cross-section expressions
involve the quantities

(4.22)

The sum on i may be explicitly performed for n,
noting that

The nonuniqueness of the threshold factors and the
attendant ambiguities have been mentioned earlier.
We add nothing to the problem here. For purposes of
comparison to previous work we have mainly used the
factors of Cook and Lee:

Zr ~2K,
c

128~' pW, —W&~
'

n'=
~ ~

cr'f'(g/, ./,

'
)'p'g/(Wg) . (4.23)

3 k /, —//,
'/2M. iF.+M.i"

g/=
Z.+M. l p., ) '

P'=+LE„„&PC(Js,1; X—X))'.2M, F.,+M.q"
Z,+M. p,. i

(4.24)

In the especially interesting case where s=2, there is
only one value of i andAs discussed in the Introduction, we restrict our

attention in this paper to virtual excitation of the
E,p~ configuration. Thus only L=O will enter our
considerations.

We now must subject our amplitudes to the brutal
approximations required to obtain manageable equa-
tions. The discontinuity F~ t- is approximated by a
single pole at t/t/'~.

'I F- .r/2+
I

-'= 'P '" 'L(s-+-') /(2s)!]
X t sinh'(2co0) or cosh'(-,'co0) j,

where co0 is the value of F/M for the initial baryon at
the final state threshold.

It is also simple to obtain a general formula for the
QPE cross section near threshold, by using the real
phase space and the threshold value of the transition
amplitude. One obtains thereby the usual s-wave rise,
with a. proportional to the p~N, momentum.

Denoting the maximum inelastic cross section
2~(J+-,')/p' by o.J~,„, we have for the transition t'i'

I:Fr rj= r '&r~(W W»—
where Wr is chosen at or near the threshold M +p/, .
Since the actual singularity is not a simple pole, the
residue in

Note that GD(W2) is unity. P' has to be dealt with case
(4.15) by case:

8'g —8' (417)

ar.*Pr —(W2 ——Wx)Fr r(—W2) . (4.18)

Comparison with Eqs. (4.12) and (4.14) indicates that
nr, and pr can be chosen as follows:

4M0~
(W W ) (g G )i/2( 1)v+1/2

3

XC(zs.1 ~ —X&,—Z.), (4.»)
E„,.g+C(Js,1; X—X), VB=1

(4.20)
(—1)"+'/'E, , z C(Js,1;X—X), yz= —1,

M0 = 4mcrPfga a~ "/(/0 —
// ) ~ (4.21)

which presumably represents F~ ~ below threshold,
cannot be computed from Fr.r'(W&). A ver—y con-
venient procedure is to match (4.17) with the OPE
amplitude, assumed to be the dominant force, at the
production threshold W2 M, +pe. Th——e decisive virtue
of this choice is the simplicity of the evaluation of the
OPE diagram at threshold. In addition, it is even
sensible because the threshold kinematical conditions
are in the range of momenta expected to be most

important. We therefore obtain

0 J'Prlr p~'bpgeMgMg
~r r

=—=, , IMr r"I' (4.25)
max (8& W)

For each J we have to sum over the iridependent final
i' amplitudes and average over the initial t' variables.
The calculation is similar to those leading Eqs. (4.23)
and (4.24), and yields

4 p, /, p, e M.M, (Mar)'
0.

3 2s.+ 1 (8''W)'

P ~
&„,.x+ ~'XC'(».1; X.—X.). (4.26)

Note that when s= ~, the Anal sum can be performed
with the result that 0.~~ is independent of J. Thus for
w/~ pS near threshold, a is the same for the D3/2
and S~/2 amplitudes. Of course, the total cross sections
are weighted by the factor (2J'+1).

V. RESONANCE CONDITIONS FOR "PUREL&
INELASTIC" MODELS

At present, it is clearly out of the question to take
explicit account of the enormous number of coupled
channels. However, one may hope to isolate the most
signi6cant factors, even at the present primitive stage
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N Nc

(0) {b)

FIG. 5. The direct coupling
of the ~$ channel to the S,p
con6guration is shown in (a).
In lb) the important inelastic
amplitude X,m ~ 1V',p is shown.

of dynamical theory. For the present, we are concerned
with effects noticeable in experiments in which pions
hit nucleons. This criterion excludes many resonances
that might occur in many-particle systems (repre-
sented here as X,a.b, X,pq, etc.) which are for various
reasons weakly coupled to the xE system. Those
channels coupled to the mE system may be further
classified according to the character of the elastic, or
potential, forces in the relevant channel. According to
the analysis of Sec. II, substantial cancellation of
elastic forces occurs in the odd-parity states (D, G,
~ waves) so that coupling to other channels is ex-
pected to be of decisive importance here. For the even-
parity recurrences of the nucleon and its first excited
state, the situation is more complicated owing to the
presence of strong attractive "elastic" forces. However,
in this case the "peripheral inelastic" mechanisms are
mostly suppressed by parity-angular momentum con-
siderations, since the s-wave (plV, ) configuration has odd
parity when E, has even parity.

For clarity, we mention briefly a few examples. In
Dl3 the elastic forces are rather small, so that coupling
to pX (virtual) and sX* (real) are most important. The
(virtual) pE channel is assumed to be most important
for resonance formation, although the state decays
largely through the mS channel. In D» the situation is
similar except that the isospin factors are such as to
make the OPE p production smaller, and comparable to
the nucleon pole terms in the ~E —+ pX amplitude. In
Dl5 there is a residual weak long-range attraction due to
nucleon exchange. One expects this attraction to lower
somewhat the energy of the resonance found by Auvil
and Brehm to occur in the channel xE*~pE*. In
D3~ there is similarly a long-range weak repulsion. In the
F states, the situation is rather diferent. In Fls and
F» a resonance is already in the making because of the
strong elastic forces. (The partial waves Fr 7 and Fsb have
insignificant elastic forces, leaving them open to
domination by inelasticity. ) It is of some interest, how-
ever, to investigate in detail the inhuence of the chan-
nels pX and pÃ*, whose thresholds lie at the energies of
the F» and F» resonances, respectively.

In this paper we consider those channels in which
the elastic forces are not large. That is, we avoid the
recurrence states of the nucleon and X*(1238).

In accordance with the preceding discussion we con-
sider three diferent "purely inelastic" models: In
model A there are two channels, E~ and E,p, coupled
by OPK [Fig. 5 (a)]; in model 3 there are two channels
lV,x and E,p, where the dominant process is OPE in
an "inelastic" channel E,m —bE,p [Fig. 5(b)]; and
model C in which all three channels, Xs., E,p, and 1V,s,

are coupled by both of the processes shown in Fig. 5.
Of course model C includes A and 3 as special cases,
but it.is often revealing and always simpler to solve a
two-channel problem.

Auvil and Brehm" have given explicit solutions to a
three-channel problem slightly more general than model
C in that off-diagonal transitions of the type Em ~X,~
were allowed. However, it is useful to give the solutions
separately. For model A, denoting the Ex channel by
subscript 1 and the X,p channel by 2, the P/D solu-
tion in the pole approximatiom of Sec. V is

n'ds(W)
Fll

(W—Wt) [1—oPdr(W) ds(W)]
(5.1)

F2lf-
(W—Wr) [1—n'dt(W) ds(W)]

nr *nrdt(W)

(W—Wr) [1—n'dt(W) ds(W)]

(5.2)

(5.3)

dt(W) = (W—Wr)

ds(W) = (W—Wt)

pt'(W')dW'

s, (W' —W)(W' —Wt)'

Pt'= P.b/gb, (5 4)

ps'(W')dW'

s, (W' —W) (W' —Wt)s

ps'= p.s/Go (5 5)
The resonance condition is

1=n' Re[dr(W, )ds(W, )7. (5 6)

This result satisfies the various physical and mathe-
matical assumptions only when 8'„lies between 8'& and
Ws. In this case, only dr is complex. The results (5.1)-
(5.6) can be regarded as special cases of the solutions
given by Cook and Lee, who allowed the p to have a
finite width. The e6ect of the zero-width approximation
can be seen clearly in the work of Goldberg and
Lomon. '6 They show that when the width is decreased
to zero, the D» resonance width narrows slightly and
the resonance position increases about 30 MeV. Such
small refinements are not pertinent to the present
panoramic survey, and hence will be neglected.

For model 3, the solution for the discontinuity of
Eq. (3.14) is given by

nr *nrp'ds(W)
Flit'L'= (5.7)

(W—Wr) [1—n'P'dt(W) ds(W)]

nr *p»
F~lf'0= (5.8)

(W—Wt) [1—nsPsdt(W) ds (W)7
25 P. Auvil and J.J.Brehm, Ann. Phys. (N. Y.) 34, 505 (1965).s' H. Goldberg and E.L. Lomon, Phys. Rev. 134, 8659 (1964).
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p» 'P»+&i(W)
(5.9)

(W—Wi) Ll —n'p'di(W) dz(w)]

1=n'p' ReLdi(w, )dz(w„)]. (5.10)

The integrals 8& and 82 are formally the same as pre-
viously except that W&=M, +zz& and Wz Me+zzd
subscripts 1 refer to the E,x~ channel and 2 to the E,pq
channel.

The resonance condition for model 8 is

channel 1 are —
P» *P»n'8z (W)

(W,—W)L1—n'p's, s,—~ q y,y,]
1

Fzi»'» =
)

Wi —W 1—nzPzdid2 —nzyzdzd.

v» *p»
P3~t'0=

Wi —W 1—a'p'y&g, —~'q'y, y,

(5.12)

Next, consider model C. The discontinuities are
(the X,z» channel is called channel 3)

pF„»'»] =z»~»Pp»b(w —Wi), (5.11)

PFzz»'»] = z»n» *y»5 (W Wi) . —
The singularities of both amplitudes have been located
at the same energy for computational convenience. The
solution to the X/D equations for model C involving

53 is defined in analogy to 8& and 82, with the lower
limit of integration being the mE, threshold. The
resonance condition is a simple generalization of that
found for models A and B:
1=n'p' Res'i(w„) sz(w„)+n'y' Resz(w, )dz(w, ) . (5.13)

Defining a function F by the right-hand side of
Eq. (5.13), one finds the width I' to be given by

-,'r = Im(W„)/P ReF (W„)/dW„];

2z»pi'(W„)8 (W„—Wi)+pz'(W„)ll (W„—W,)]y,(W,)r—
(W,—W,)(d ReL~zp&e, y,+&z&zg g,]/dw„)

(5.14)

(5.15)

where the step functions involve the thresholds
Wi ——M+zz and Wz ——M,+zz. (We have assumed dz

real, i.e., W„&Wz=M, +p.)
It should be realized that these expressions cannot be

expected to give an accurate value for the width.
Experience shows that the widths are typically too
narrow. One reason for this is the neglect of other
coupled channels; while a given mechanism such as that
under study may be mainly responsible for the existence
of a resonance the actual decay may occur via other
modes which broaden the "natural" width. Another
reason, sometimes more significant than the former, is
that the real situation to which we must compare our
results involves unstable particles. The validity of
describing resonances by unstable particles has not been
established. It would seem that the actual width would
be at least as great as that of the constituent particles
(in open channels) making up the resonance. For
instance, in model 8 of Fig. 5(b), we expect the total
width to exceed that of unstable baryon S,. In model C,
where the resonance is shared among the Ex and lV,+
channels we expect a smaller width depending on the
fraction of the time the resonance belongs to the S.x
channel.

%e now discuss model C, which is more realistic than
its specializations A and 8 except when both baryons
are nucleons. The relative importance of the Em and
E,x channels determines whether the elastic phase
shift passes through 0' or 90' at resonance. Employing
the usual phase shift and absorption parameter g, we
write the J~ ~E amplitude in question as

Fii——(ge"'—1)/2z»zpi'. (5.16)

If b=0 at resonance,

2zrpi' ImFii(W, )=1—q&1 (5.17)

while if 8= zr/2 at resonance,

2zrpg' ImFii(W, )=1+z,)~1. (5.1s)

2P'pi'(W„)
2zrpi' ImFii(W, ) = . (5.19)

p"'(W,)+v"z'(W.)

Thus we find the criteria

P'pi'(W, ) &y'p8'(W, ), 5(w,)=0
P'pi'(W, ))y'pz'(W, ), b(W, ) = zr/2.

(5.20)

In each case the absorption parameter is

P'ai'(W. ) v'Iiz'(W.)—
P'~i'(W. )+v'z z'(W. )

(5.21)

The physics behind the criterion of Eq. (5.20) is fairly
clear; the measure of the relative importance of the two
channels is the product of the strength parameter
squared (e.g., 8') and the reduced phase space available.

Thus we can tell whether 8(w,) is 0 or zr/2 by seeing
whether 2zrpi' ImFii(W, ) is less than or greater than
unity.

We can calculate 2z»pi' ImFii from Eq. (5.12) with
p independent of f for nucleons (thus 8'= p»z). We find
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I' IG. 6. The annihilation
amplitude Nf,N, ~ 7f-;p is shown
in (a). The squared amplitude
(bl gives the isospin- one

7l-p ~ mp amplitude; this con-
dition is used to determine a
normalization constant.

s and t being the isospin in the s and t channels, re-
spectively. Explicit crossing matrices (X )„have been
tabulated in Ref. 27 for many isospin values of interest.
Ke have finally

(2(2T,+1)(2Tky1) '/'
—ie,; T =Pl (X ')1.((P.)'.

s ( (6.7)

VI. GENERAL FEATURES GF THE MODEL For the trivial case T,=Tk ———,', T=(32)'/sg and (6.7)
give the well-known result,

Consider first the isospin content of the graph of
Fig. 3. The matrix amplitude is proportional toity-I, TI„
where TI, is the transition isospin matrix leading from
T, to Tk Lcf. Eq. (4.1)) according to the coupling

11ir,Tpr, 22+H.c. This matrix can be resolved into
isospin projection operators by using crossing sym-
metry. Note that this matrix represents pure isospin
1 in the crossed channel ¹X,—+ m;p; l Fig. 6(a)]. We
choose the constant C such that Ci~;;~Tg, =—(P' is the
properly normalized projection operator. The magnitude
of C is found by satisfying the identity

+ij 23eijkrk ((Pl/2) aj 2 ((Ps/2)ij ~ (6.8)

This expression shows the dominance of isospin —, over
~ by 4:1 in squared amplitude.

For T =Tg ——-', we have

seijkTk 4(5/3) ( 2(P1/2 s(P3/2+13(P3/2)ij ~ (6.9)

In terms of the usual isospin-2 matrix I= (15)'"T/4, we
(6.1) have

where

Tz(F=l )
(6.2) zeijkIk= ( 2(P1/2 (P3/2+ 2(P5/2) ij & (6.10)

is the usual projection operator, and 6',' is the isospin-1

projection operator for m,p; ~ m. I,p~.'

which shows clearly the dominance of isospin —,'.
Fol Tr = 2, Ty= 2 we find

((Pap )kk/j 2 emklemij 2 (4i~lj 41~ii) (6 3)

on using the trace properties explained in Ref. 12.
Hence we can write the projection operator for

Egg ~m;p;

( 3 ) 1/2

(P =
l l

—ie;,kTk. (6.5)
I 2(2T.+1)(2Tk+1)i

Now we can use the general isospin crossin ~ matrices
to express (6.5) in terms of s-channel projection opera-
tors. Using the notations of Ref. 27, we find

(P,=P (X-')„(P„ (6 6)

~'P. Carruthers and J. P. Krisch, Ann. Phys. (N. Y.) 33, 1
(1965). In Table I of this reference the matrices X&, and X ',

&

for the processes Nm —+Nx and $$—+~+ should be multiplied
by —1.

We thus require ((P'),,=Cie„kTk and ftnd

Tr((P')' ((P'+)ki= lcl"-ike-~'»T T +

2(2T.+1)(2Th+1)
l
Cl'((P., )»„;(6.4)

10'»2
seijkTk ( (lP)/2+ijl ((P3/2)ij.3) (6.11)

Thus when the isospin Aips, T=~ is favored by ~ in
squared amplitude.

The ratios of various isospin amplitudes in general
are easily found by reading down the isospin-1 column
of the crossing matrix (X ')„. (When the baryon
isospin does not change, the lowest isospin dominates. )

%hen the standard matrices T~ are used, the largest
coeKcients lCrl' of Sec. IV are, for (T„Tk)=(-'„2),
(2,2), and (2,2), respectively, 8/3, 20/3, and 10/9.

In paper IV of this series" we study the actual
numerical value of various parameters which determine
the size of the various transition amplitudes. The im-
portant point to be made here is that isospin —', is
favored when the isobar isospin does riot change, and
that when it does change, isospin ~3 is favored when the
isospin changes from 2 to ~.

Although a full discussion is best given with the
detailed numerical computations, " a few remarks are
in order about spin and parity. In analyzing a given
problem, 6rst focus on the final pÃ, s-wave configura-
tion. The relevant spin-parity values are (sj&1),
s, for s,& g. Next consider the various xE, configura-
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tions (of lesser mass then pN;) which connect signifi-
cantly to the pN; configuration in question. (Here recall
the isospin factors discussed above. ) For a given transi-
tion mN, .~ pN, that one with the greatest l(srN, ) will
dominate because of the centrifugal barrier. (Mathe-
matically this is enforced by the threshold division
discussed in Sec. IV.) Generally the highest spin
(s;+1) goes with the greatest l. It is this feature which
accounts for the simple recurrence of resonances as

s, is increased by two units. An example was given in
the Introduction.
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Dynamical Theory of Strong Interactions*
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The many-body quantum mechanics of a set of (self-consistent) composite particles is developed for use
as the basis for a theory of strong interactions. The theory deals only with physical particles which may in
general have an extended spatial structure. It is a bootstrap theory in which physical particles are examined
in terms of superpositions of the physical multiparticle states of the theory; no auxiliary quantities such as
bare particles or fundamental local fields are introduced and no question of renormalization is encountered.
Many-particle states are constructed which are (many-) three-momentum eigenstates and whose spatial
integrity is assured via cluster-decomposition properties. The present theory is a dynamical theory in the
sense that there is a Hamiltonian that respects the extended and composite structure of the particles and
which, unlike 5-matrix theory, allows a system to be studied during the course of its interactions. A drawback
of the theory is that it is not manifestly Lorentz-covariant. The present paper deals with the theory in a
simplified form in which heavy baryoas interact with structureless mesons in the static limit of no baryon
recoil. The self-consistent bootstrap dynamics is examined in the lowest order approximation, including some
three-body effects. The conventional Born approximation to the scattering amplitude is recovered. The
relation between the existence of particles and signs of forces is obtained. In particular the Cutkosky con-
nection between attractive forces and group-theoretic structure is derived.

I. INTRODUCTION
' 'T is possible that the particles of the strong inter-
' ~ actions are all composite, each formed from com-
binations of similar particles. The phenomenological
evidence for this is the correlation which exists between
the existence of a given particle and the attraction
between particles whose total quantum numbers are
the same as those of the single particle. This correlation
was erst pointed out by Chew' in his classic work on
the structure of the pion-nucleon system. Chew showed
that the existence of the nucleon and 3-3 resonance
might be accounted for by a self-consistent mechanism
in which the exchange of a nucleon would provide the
force to cause the resonance and vice versa.

Later papers by Caruthers' extended this idea so
that not only were the nucleon and 3-3 resonance
spanned by the mechanism, but the entire system of
baryon octet, baryon decuplet and many of the excited
states of these objects could be understood. This and

*Supported in part by U. S. Air Force Once of Scientific
Research Grant No. 508-66 and AF 816-65.' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).

s P. Carruthers, Phys. Rev. Letters 12, 259 (1964).

other work, especially by Cutkosky, ' demonstrated a
remarkable interplay between the group-theoretic
structure of the strong interactions and the dynamical
forces. The group-theoretic structure of the particle
couplings seems to guarantee the attractive forces
wherever they are needed to bind the particles. 4'

The S-matrix methods' 7 which have been put
forward to deal with this system seem to the author
to not be ideally suited to formulating the necessary
concepts of composite structure. Because the S matrix
describes only the asymptotic states of a scattering
system, ignoring the internal structure of the particles,
the definition of a composite system is very indirect
and far removed from physical intuition. One is forced
to examine the effects of bound states on the analyticity
of the S matrix in the oversimplified two-particle
potential-scattering theory'' and to extrapolate these

3 R. K. Cutkosky, Phys. Rev. 131, 1888 (1963).
4 R. H. Capps, Phys. Rev. 132, 2749 (1963).
~ F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
6 S. Mandelstam, Phys. Rev. 112, 1344 (1958).' G. F. Chew, S Matrix Theory of S-trong Interactions (W. A.

Benjamin, Inc. , New York, 1961).
'R. Omnes and M. Froissart, 3fuedelstam Theory used Regge

I'oles (W. A. Benjamin, Inc. , New York, 1963).
e T. Regge, Nuovo Cimento 14, 951 (1959).


