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Uniqueness of Mass Formulas in Static Strong-Coupling Theory
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The question of the general mass operator satisfying the unitarity equation in the static strong-coupling
theory is examined. For the symmetric scalar-meson theory, the only mass operator allowed by the unitarity
equation is proportional to I . For the case of symmetric pseudoscalar-meson theory, the question is re-
stricted to the two physically interesting representations only —the nucleon and the hyperon isobar series.
The result in both these cases is that only the mass operator proportional to aI2+bJ' is consistent with
the unitarity equation.

Ag=Q A;pAs, , (1.2a)

A,;=LA, ,LSR,A;jj. (1.2b)

I. INTRODUCTION

ECENTLY Cook, Goebel, and Sakita' derived the
Lie group structure of the static strong-coupling

theory for the meson-baryon scattering. The basic
equations of the strong-coupling theory are given by

[A,,A, j=0;

the unitarity condition is the one proportional to 12

alone. This result is obtained for all the representations
of the group G. In Sec. IV we study the problem for the
pseudoscalar-meson theory. Here we restrict ourselves
to the two physically interesting representations only:
the nucleon isobar series which is characterized in terms
of its isospin-spin content by I=J=—'„—,',
(part A) and the hyperon isobar series' characterized by
I=I+-',= —,', —,', -'„,~ (part E). In both these cases
we find that the most general mass operator is
BR=uIs+b I'.

These are abstract operator equations and operate on
the baryon isobar states. Here 2; is the Hermitian
current operator of meson i. 5R is a diagonal operator
which is proportional to the isobar mass differences:
) '5K~M —Mo, where M is the isobar mass operator,
Mo is the degenerate baryon mass, and P is the coupling
parameter. A, , is proportional to the scattering ampli-
tude. Equation (1.2a) is the unitarity equation. Im-
plications of Eqs. (1.2) are twofold. For an allowed
mass operator they restrict the representations of the
group, whereas for a given representation of the group
they limit the form of the mass operator. CGS have
investigated the first aspect of the problem. In the
present paper we investigate the second implication;
we begin with a representation' and investigate the most
general mass operator, considered as an arbitrary func-
tion of the Casimir operators of the invariance group K,
that satisfies the unitarity equation.

In Sec. II, we first obtain the "reduced unitarity
equation" for the group G=SU(2) &&rT osf charge-
symmetric scalar-meson theory. From the property of
the unitarity equation (1.2a), we then obtain a neces-
sary condition on the mass operator. This is a difference
equation which can be solved for 5K for a given repre-
sentation. We generalize the reduced unitarity equation
and the necessary condition on the mass operator for
the group g= ( SU(2) SrSU(2)~)&& Tasppropriate for
the pseudoscalar symmetric meson theory.

In Sec. III, we show that for the charge-symmetric
scalar-meson theory the only mass operator allowed by

' T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
33 (1965);hereafter referred to as CGS.

'Subsequently whenever the word representation occurs it
should be taken to mean unitary irreducible representation only.

)I 1 I
&I',r'

f
A

f I,r) =CI
Er n r'J

where

(2 1)

are the SU(2) Clebsch —Gordan (CG) coefficients and
the A ~ I's are the reduced matrix elements. The
unitarity of the representation demands that

f 2I+1 '"
Ar ' ——(—)' '~

~

Ar".
i2I'+1&

(2 2)

We call this property the vertex-symmetry relation. 3

We next turn to the unitarity equation itself.

' V. Singh and B. M. Udgaonkar, Phys. Rev. 149, 1164 (1966).
4 The author is much indebted to Professor V. Singh for pointing

out the possibility of obtaining the "reduced unitarity equation"
and also for the help in deriving it.

II. REDUCED UNITARITY EQUATION AND A
NECESSARY CONDITION ON THE

MASS OPERATOR

We first obtain the reduced unitarity equation and a
necessary condition on the mass operator for the group
G and then generalize it to the group g.'

Let the baryon state be denoted by
~
I,r), where I is

the isospin and 7 the third component of the isospin.
From the commutation relation for the group 6 ' we
see that the A 's (n=+1,0,—1) transform as vector
operators with respect to the isospin group. Using the
Wigner —Eckart theorem, we may then write
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Unitarity equation (1.2a) in the spherical basis readss

+1r.p= g (—) r.„r „,, (2 3)

where 1' p= pA „!BR,A plj. Operating with I'
p on

l I,T) and using Eq. (2.1), we obtain

z+1 zl+1 (I 1 Il ( Il 1 Isr.p!I, )= g Z Az, 'Az," CI Cl L
—QR(I2) —m(I)+DR(I1)]

zl=z—1 zs zl 1 kt p T+p (T+p n T+p+n

(I 1 Il ) Il 1 I2
+c! l~(I1) !I2,T+p+n) (2.4)

iT n T+n) T+n p T+p+n)

Note that the order in which the indices n and p occur in the second term in Eq. (2.4) is opposite to that in the
first term. YVe re-express the product of the CG coefficients in the second term so as to bring it into the form of
the erst term. For this purpose we use the following relation':

(jl j2 j12 ) ( j12

kml ms ml+m ) (ml+m, m —m, —m, m)

23

jl js j12 (js j3 j23 (jl=g (—)"+"+"+'L(2j»+1)(2j23+1)Jts Cl
j23 js j j23 ~m2 m ml m2 m ml kml m ml m)

$28

where { }is the standard 6-j symbol. From the above equation one obtains, after using some standard symmetry
properties of the CG coef6cients, the equation

C
I 1 Il ) ( Il 1 Is

!cl
T n T+n) (T+n P T+P+n)

zeal 1 I Il (I 1 I' x I' 1 I2= Z (—)" '"'L(2I.+1)(2I'+1)l'" (2 5)
zI-z 1 — 1 Is I' 4 p T+p) (T+p n T+p+n)

U'sing Eqs. (2.4) and (2.5), we get

1'+1

(I",T+p+nl1'. plI,.)= Z A.,'A' "

(I 1 Il y (Il 1 I" l+1
X C! !!—5K(I")—OR(I)+On(I1) j + Q Az, 'Az-'1

r r T n v' le~I—1

z+1 1 I Il (I 1 I' ( I' 1 I"
&&

i Q (—)
—zl—z'L(2I1+1) (2I'+1)Q' !OrC(I,),

iz' z 1 -— 1 I" I' ET p T+p ET+p n T+p+n)

where in the second term we have rewritten the phase factor by noting that 2I—Il+I'+Il+I'= even number.
Next, changing the summation variable in the f1rst term from Il to I', using the vertex symmetry relation (2.2),
and carrying out the changes in the notation, namely, Il ~ I2, I' ~ Il, I"—& I' (in this order), we ftnally obtain

z+1 (I 1 Il ( Il 1 I
&I',T+p+nlr. plI, T)= 2 CI CI iz(I,I';I ),zl-z 1 t r p T+p t T+p —n T+p+n)

(2.6)

5 Note that in the spherical basis
h,p=pA J',$9R,Aping= (—) LA, LSR,Aping= (—)«r

A. R. Kdlnonds, Assgltar Momeatam iN Qaaltam Meohanios (Princeton University Press, Princeton, Jew Jersey, f9''7), p. 9$
Eq. (6.2.6).
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where
I+1(II.It) A, zA, P 5K(I) 5K(I)+5K(I,)]+ P ( ) s;AzzAzz-

I I2
X (2Is+1) I' I1

(2Ir+ 1)'t'
5K(I ) (—)"-'I

(2I'+1j
z+r (2It+1~'ts

Az zAz z
L 5K(I ) 5K(I)+5K(It)g+ P Azs Az z 'Cz, z zz'5K(Is) ( )z— (2.7)

Here C '—=C$1I is the u-channel —to—s-channel crossing matrix and CIyIR
'

gives the contribution of an ex-
changed. baryon Is in the N channel to the baryon It in the s channel in the scattering process (baryon I)+ (iso-
vector meson) ~ (baryon I')+ (isovector meson). In writing the second equation in (2.7), we have made use of
the fact that a crossing matrix is essentially a 6-j symbol (or equivalently a Racah coeKcient), ' and the relationship
between the two in the present case is'

I 1 I2
Cz,z,zz' = e (2Is+1) I' 1 I1

(2.8)

where e= (—)'z+'= (—)'z'+'. Using the property that a 6-j symbol is left invariant under any permutation of its
columns and the fact that 2(It—I) is an even number, the second line in Eq. (2.2) follows. Note that Czz'=Cz'z

for the crossing matrices under consideration.
Up to this point there is no simplification introduced by the above procedure. However, simpliication enters

when we write down the unitarity condition (2.3) with the matrix elements of 1'
p given by Eqs. (2.6) and (2.7).

Taking the matrix elements of Eq. (23) and transferring the CG coefilcients occurring on the left side on to the
right side, we obtain

+ zr+r
t I, 1 I'

~ tr I 1 I& ~R(I,I";It)4' = 2 (—)" 2 CI lcl lR(I'&I"; Ir')R(I,I') It) .
1 P zl 1 4+P —tt T+P ttj iT+P tt tt T+Pj

Using the appropriate syrrunetry properties of the CG coefficients in the above equation, we may carry out the
summation over p to obtain

z&+r (2I'+1~'t'
R(I I" Ir) = Q (—)z' z'l —

l
R(I',I" It)R(I I' It)

z zr i -(2I,+1j
If, now, we deine

then the unitarity equation reads

where

Ij.+1
$(I,I")It) = Q S(I,I'; It)$(I',I";It),

I' Ii—1
(2 9)

$(I~I i I,) Az zAzt [—5K(I') —5K(I)+5K(Ir)]+ 2 Az zAz z Cztzs 5K(Is) ~

IR I—1
(2.10)

We shall call Eq. (2 9) the "reduced unitarity equa-
tion. " Note that S(I,I'; It) is meaningful only when
A(I1Ir) and A(Ir1I') pertain. Further, note that in the
Present case Sa(I,I'; Iz) = S (I',I;Ir); this follows from
the fact, noticed earlier, that C '= C 'I for the crossing
matrices occurring in the problem. Equation (2.9) is a
much more manageable form of the unitarity equation.

We next obtain a necessary condition on the mass
r See, for instance, J. de Swart, Nuovo Cimento 31, 420 (1964).
s V. Singh and B.M. Udgaonkar (Ref. 3).Also see C. J. Goebel,

Proceediwgs of the 12th Awrtsta/ Iwterwatiortal Comferertce ott High
Ertergy Physics, Dttbrta, &64 (Atomisdat, Moscow, 1965) Vol. 1,
p. 255.

operator. The unitarity equation (2.3) can be rewritten
as

A p=Q A. „A„p, (2.11)

where & p=LA t, (5K,Apjj. The unitarity condition is
a nonlinear equation in the unknown function 5K and
is consequently dificult to handle. To obtain a linear
equation in 5K we notice that Eq. (2.11) is an idempo-
tency equation for A p. Its eigenvalues are, therefore,
0 or 1 only. Since each index tr and P takes only three
values (in the scalar theory), the sum of the "eigen-
values" can only be k=o, 1, 2, or 3. Here k gives the
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(I 1 I& ~

7 6 7 6
(2It+1)'/' ( Ir 1 I)

!)«+zr zl
—

I
C

5 2I+11 Er—n n rl

(2.12)QA =kl, k=0, 1, 2, 3.

number of times the eigenvalue 1 is repeated. Hence, if Eq. (2.1), the symmetry property
we construct the "trace" P /l, then it can only be k
times a unit operator:

This "trace" in the meson indices is still an operator
in the baryon representation space. Here 1 is the
(infinite-dimensional) unit matrix in the isobar space.
Let us assume that the mass operator has the form

mt = f(I)/2A'

where f(I) is an arbitrary function of Is and
(—)«A A is the Casimir operator of the

group G which can be normalized to unity. Then
Eq. (2.12) becomes

A A
Z (-) f(I) f(I)=»-,

(A2)1/2 (A2)1/s

k=0, 1, 2, 3. (2.13)

This is a linear difference equation in f(I) (i.e., in BR).
It is a necessary condition on f(I) in order to satisfy
the unitarity equation. Since Eq. (2.13) incorporates
only a part of the information contained in Eq. (2.11),
it yields spurious solutions which may be eliminated by
using the unitarity condition. The solution correspond-
ing to 4=0 gives a vanishing scattering amplitude and
we shall not be interested in this case in the following.

Taking the matrix elements of Eq. (2.13) and using

and the orthogonality relations of CG coeKcients,
Eq. (2.13) can be reduced to

z+t 2I &+ L~'/s
Z ( )" '—f(Ir-)A"Az'

I

—f(I)=k
IL=I—1 2I+ 1//

k=1, 2, 3.
Using the vertex symmetry relation (2.2), the above
equation can be written as

I+1
f(It)!Az"!'—f(I) =k, k=1, 2, 3. (2.14)

Equations (2.9), (2.10), and (2.14) can be immedi-
ately generalized to the group g=LSU(2)zSU(2)zj
)&T9. The commutation relations for this group are
given by CGS.' Let the isobar state be denoted by
!I,J; r, r/s), where I and J are the isospin and spin of
the isobar, and 7 and m are the corresponding third
components. This labeling is complete for the repre-
sentations of g under consideration. The meson current
operators A„now carry two indices: the Latin index r
and the Greek index n representing the spin index and
the isospin index, respectively. Since the A„stransform
as vector operators with respect to each of the two
SU(2) groups, we have by the Wigner —Eckart theorem

(I 1 I') (J 1 J
(I',J'; r', m'! A„, !I,J; r,r/r)=C! !C! !Az g

n r'I &/I r r/r')
(2.LS)

where C's are the SU(2) CG coefficients and Az z.z~ are the reduced matrix elements. As before, the unitarity of
the representations gives the following vertex-symmetry relation'

(2I+1)(2J+1)IJ—f XI+J—I'—J' A Ir Jz) AIJ
(2I'+ 1)(2J'+ 1)

The unitarity equation for the present case reads

(2.16)

(2.17)

and the reduced unitarity equation is
IL+1 JL+1

S(I)J; I",I":Ir,Jr) = Q Q S(I,J; I',J': Ir,Jr)S(I',J'; I",J":Ig,Jr),I'~IL—1 J'~JL—1

where

S(I)J;I',I', It,Jr) =Az, z, ' Az, z,
' 'L—SR(I',J')—ll'(I J)+alii;(Ir, Jr)]

(2.18)

I+1 J+1
+ g Q Az, z Az, z,

' 'Cz, z 'Cz, z, 'K(Is,Js), (2.19)
I2=I—1 Jp=J—1

and CII', CJJ' are the same crossing matrices that occurred in the scalar theory.
For the commutation relations in the spherical basis see V. Singh, Phys. Rev. 144, 12'/5 (1966).
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The necessary condition (2.14) generalized to the group g reads

?+1 J+1
f(I')J')(Arg' ')' f(—I,J)=k, k=1, 2, , 9,

I'=I—1 J'=J—1
(2.20)

where, again, k denotes the number of times the eigenvalue 1 is repeated. In writing down Eq. (2.20) we have
assumed

m= f (I,J)/2o»,

where f(I,J) is an arbitrary function of the Casimir operators Is and J' and (Ps ——P„, (—)"+~A„A „, is a Casimir
operator of the group g which we have normalized to unity.

III. CHARGE-SYMMETRIC SCALAR-MESON THEORY

In this section we discuss the s-wave scattering of an isovector scalar meson by a baryon isobar. The relevant
group is G=SU(2)rX I' p. The representations of G are specified by two parameters, Ip and c. However, only the
dependence on the parameter Io is essential. All the representations of G are infinite dimensional, and each repre-
sentation contains an infinite number of irreducible representations of the subgroup SU(2)r of G ":

I=Ip, Ip+1, ~ . . ~.
The reduced matrix elements for the representations of G, specified by Io and c, are given by"

-2(Is—I ')-i&s
'=c—

I(2I—1)

t)2[(I+1) —Ips])l 'ls
A '=iI c A '=c

(I(I+1) k (I+1)(2I+3) j (3.1)

Vertex-symmetry relation demands c to be pure imaginary and normalization of A' to unity requires
~
c ~'=-, .

Substituting for Ar ' in Eq. (2.14) from Eq. (3.1), we obtain the following difference equation for the function
f(I):

(I'—Io') [I( + )—o'] L( + )'—Ip']
F(I—1)— F(I)+ F(I+1)=1,I(2I+1) I(I+1) (I+1)(2I+1)

(3.2)

where F(I)=f(I)/k. The solution of this difference equation is (see Appendix A, part I)

f(I) =k(Cs+ ,'I(I+1)+', (I-p' Ci) [4'(I-+1+—Ip)+4'(I+1 Ip)]) k)= 1—, 2, 3,

where Ci and Cs are constants of integration and %(x) is given by

(3 3)

(3.4)

where y= Euler's constant=0. 5722 . The eigenvalues of the mass operator are then

BR(I) =-',f(I) =-',k{Cs+-',I(I+1)+-,'(Ip' —Ci)[%(I+1+Ip)+4'(I+1—Ip)]), k=1, 2, 3. (3.5)

In passing, one may notice that CGS expression for the mass operation 5K=Is/2A' corresponds to Ci——Ip' and
k=2 in Eq. (3.5).

In Eq. (3.5) we have arrived at an explicit form of the mass operator, using the necessary condition. As remarked
earlier, this condition is likely to give rise to spurious solutions which may not satisfy the unitarity condition. In
other words, we have to obtain the restrictions on the constants appearing in the mass formula (3.5) such that
the resultant mass formula satisfies the unitarity condition.

We substitute (3.5) into the reduced unitarity equation (2.9). In order to evaluate the S functions in (2.9), one
needs the crossing matrices occurring in the problem. These may be evaluated using Eq. (2.8). We have listed
them in the Appendix B.Using the relevant crossing matrix elements, reduced matrix elements given in (3.1), and
the mass formula in Eq. (3.5), we can now evaluate the various S functions. For convenience, we let I"=It I. ——
Then

S(I)I";Ii) =S(I)I;I)=St(I)I ) I)+Ss(I)I;I),
"See Ref. 1. See also S. Bose, Phys. Rev. 145, 1247 (1966).
"See the paper by S. Bose (Ref. 10).
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where

and

S;(I,I;I)=—Ip'&.(I) (I+1)'—IpPI2 I2
OK;(I—1)+ mr;(I+1), i=1, 2

P(I+1)' P(2I+1) (I+1)'(2I+1)

ORE(I) = ikI(I+1)/2, ORp(I) = haik(IpP —Ci)[+(I+1+Ip)+%(I+1 Ip)] i

the constant term Cp in (3.5) giving a vanishing contribution to S(I,I;I). Substituting for SKi(I), we get

I
S,(I,I;I)=-;ki 1.—

I(I+1)j
Further, the contribution to Sp(I,I;I) from the term

1
-v+ Z

B=p 1+S]
in %(x) vanishes. Hence, the only relevant term in @(x) is

1—Zl
8-p Ex+S&

This gives
(Ip' —Cg)

Sp(I,I;I)=-', k

where

Ip' 2 (I+1)
P(I+1)' (I+1)'—Ip'

j2 I2 2I 2(I+1)
P(2I+1) P—Ip' (I+1)'—Ip'

(I+1)'—Ip'
X

(I+1)'(2I+1)

1 1~=K
I +

p&IyIp+=S I—Ip+Sj

Collecting the terms in X, we And that its coeS.cient vanishes. On simpli6cation one 6nds

Sp(I,I; I)=-',k(Ip' —Cg)
I(I+1)

Similarly, one obtains

S(I,I; I)=-;ki 1—
I(I+1)j (3.6)

jI( P—IP
S(I,I 1;I)=—

i

—
i

[5K(I—1)—DR(I)7= S(I 1,I;I)——
P k(2I+1) (I+1))

and

iIpk (I+1)'—Cz

2 (I+1) (I(2I+ 1)[(I/1)'—Ip'g)'"

2I [(2I+1)(I+1)(P—Ip')g'iP

iIp (I+1)'—Ip' '"
S(I,I+1;I)= [m(I)—m(I+1)g= —S(I+1,I;I)

(I+1)' I(2I+1)

(3.7)

(3 g)

Substituting (3.6)-(3.8) into (2.9) we obtain the condition

P(I,Ip, k,Cg) =0,
where

kI pP (I'—Ci)' [I(I+1)—Cig' Ip'k [(I+1) Cg-
P(I,Ip, k,Cy) =— +pk I(I+1)+Cg. —

2I (2I+1)(I'—Ip') I(I+1) 2(I+1) (2I+1)[(I+1)'—I 'g
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Making the substitution D&= C&—Iem in the above equation, we 6nd.

where

r
P(I,Ie,k,Di)—=r(-', k—1)+Dr(1—k)+ Drm=0, k=1, 2, 3,

I02

r=r(I—,Ie) =I(I+1)—Ie2.

(3.9)

We wish to lnd all the roots of this quadratic equation in D& which are independent of I. Solving (3.9) for Dt~
one obtains

2r'(k —2)-'I'
Dr = k—1& (k—1)'+

r' I '—
From the above equation it is clear that D& is a constant
only when 0= 2 and its value then is zero. This implies
Cr=Ie', which reduces the mass formula (3.5) to

JK(I)=Ce+-',I(I+1), (3.10)

which is, as noted previously, the one employed by
CGS. We have shown, therefore, that the most general
mass operator as a function of the Casimir operator 12

of the subgroup SU(2) of G which satis6es the unitarity
equation is the one given in Eq. (3.10).We would like
to emphasize that the mass operator in Eq. (3.10) gives
all the representations of G, and conversely the only
mass operator allowed by the unitarity condition for
the group G is 5R~I2.

IV. CHARGE-SYMMETRIC PSEUDOSCALAR-
MRSON THEORY

We consider the p-wave scattering of a pseudoscalar
pion by an isobar. The appropriate group for this case
is g=—I SU(2)rSSU(2)gjXTe. ' Even though several
unitary irreducible representations of this group are
known, " there are only the following two irreducible
representations which are physically interesting: one
relating to the nucleon isobar series, "and the other to
the hyperon isobar series. ' Both these representations
are in6nite dimensional; the isospin-spin content of the
nucleon isobar series representation is (2,—',), ($,$),
that is I=J=-'„~, , , whereas that of the hyperon
isobar series is (0,-,'), (1,-,'), (1,—,'), ~, which can be
characterized by J=I+-', =—,', —'„~,~ .In what follows
we shall restrict ourselves to these representations only.

A. The Nucleon Isobar Series

Since every isobar state in this representation has
I=J, only one label is sufEcient and the isobar state
may be represented by I J; r,m) Therefore, .Eqs. (2.18),
(2.19), and. (2.20) involve only one summation. The

"C. J. Goebel, in Eon-Compact Groups ie Particle Physics,
edited by Y. Chow, (W. A. Benjamin, Inc. , New York, 1966};
T. Cook and B. Sakita, Argonne National Laboratory Report
(unpublished). See also for an alternative treatment P. Babu,
A. Rangwala, and V. Singh, Tata Institute of Fundamental Re-
search Report (unpublished).

- "See Refs. 1 and 12. See also V. Singh, Phys. Rev. 144, 1275
(1966).

reduced matrix elements A J are given by"

/2J+1)'"
&z r'=Gol

2J—1i

A J Go)

2J+1~'I'
!~ J+1 GO

2J+3&
(4.1)

The vertex-symmetry relation (2.16) (i.e., unitary of
the representation) demands that Ge be real and the
normalization of 6'2 to unity yields Go'= —,. Substituting
the reduced matrix elements from Eq. (4.1) into
Eq. (2.20), we obtain the following difference equation:

Jr2J—1i i2J+3~
~(J—1)l I

—2~(J)+~(J+1)I I=1, (4.2)
&2J+1) (2J+1l

where F(J)=f(J)/3k, k=1, 2, ~ ~, 9. Following the
procedure used to solve the difference equation in the
last section, we obtain the solution

f(J)= k —',J(J+1)+ +Cm
2J+1

k=1, 2, ~ ",9. (4.3)

As before, we have to obtain the restrictions on the
constants k, C&, Cm in Eq. (4.4) so as to satisfy the
reduced unitarity equation (2.18).Restricting ourselves
again to J"=J=Jr in Eq. (2.18), we obtain the
following condition on C~.

4k (J'+J+6)Crm —2 (k+3)Cr

X[J(J+1)(2J—1)(2J+1)(2J+3)j+ (k —3)J'
X (J+1)2(2J—1)(2J+1)e(2J+3)=0, (4.5)

The corresponding mass formula is

Ci
BK(J)=-,'k iJ(J+1)+ — +Ca

2J+1
k=1, 2, ~ ~, 9. (4.4)
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where J=-'„2, ~, ~. The dependence of 9R(J) on Cm

is trivial; the contribution of the C2 term to the matrix
elements S(J,J', J&) vanishes identically. To obtain
the solutions C& of the above quadratic equation which
are independent of J, we note that since Eq. (4.5) is to
hold for arbitrary value of J the coeKcient of each
power of J must vanish separately. Equating to zero
the coeKcient 16(k—3) of the highest power J', yields
k=3. For k=3, Eq. (4.5) reduces to

CgL(J'+ I+6)Cg—J(J+1)(2J—1)(2J+1)(2J+3))=0,
which has C~——0 as the solution independent of J.Thus
for k=3 only does there exist a constant root C& of
Eq. (4.5), its value being zero.

The mass formula (4 4) then becomes

BR(J)=~3J(J+1)+C (k=3). (4.6)

For the nucleon isobar series the only nontrivial mass
formula which satisfies the unitarity condition is that
given by Eq. (4.6). Mass formula (4.6) is the same as
that given by CGS, namely,

mt = LaI2+ (1—a)I') (3/46'2),

where a is an arbitrary constant and which in the
present case (I=J) reduces to 5K=3J'/4(P2.

B. Hyperon Isobar Series

For this representation both I and J labels are
necessary. Since we restrict ourselves to J=I&-,', there
are only five independent final states that are connected
to a given initial state, (I=n,J=n+2) say, via the
meson-current operators. The reduced matrix elements
are'.

Gp
A„,„~n ~ n1Q

1

[n(2n+1) )'"
pn+1~'"

~--~,--:""+'=
I

k n

Gp

)2n+1q
'~'

&2n —1i

n(2n+3) ~'" ( n
~-,-+;"""=

I
Go ~+1, +,

E(n+1) (2n+1)i &n+1i
(4.7)

Gp
n f +1

L(n+1) (2n+3)]'"

2n+1~
'"

~ +i, +-.-n "+'=
2n+3i

Gp
n, n—~

(n(2n —1))'"

f(n+1) (2n —1)i'"
n(2n+1) i

where the first and the second columns give, respectively, the reduced matrix elements when the initial states are
(I=n, J=n+-,') and (I=n, J=n —~~). Unitarity demands that Go be real and the normalization of (P2 to unity
fixes it to Gp' ——3.

The reduced matrix elements (4.7) can be substituted into (2.20) to obtain the necessary condition on f(I,J).
However, in this particular case we obtain two independent difference equations depending upon whether we
choose I=n, J=n+ —', or I=n, J=n —-', for the initial state. The difference equations obtained are

t2n —1 1 4n'+6n+3
f(n —1,n ——',)+ f(n, n —-,')— f(n, n+-', )

E2n+1 (n+1) (2n+1) (n+1) (2n+1)

and

1 n+2
f(n+1,n+~~)+ f(n+1,n+~3) =3k (4.8a)

(n+1) (2n+1) n+1

n —1~ 1
~
f(n —1,n —-', )+ f(n —1,n ——,')—

n i n(2n+1)

4n2+ 2n+ 1
f(n, n ——,')

n(2n+1)

1 2n+3
+ f(n, n+-,')+ f(n+ 1,n+ ;)=3k (4.8b)-.

n(2n+1) 2n+1
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These difference equations can be solved (see Appendix A part II). The solution is

l'2

f(n, nj-;)= + japan(nj1) jt4(n+1) jL~;
n+1 2n+1

l 1 l2f(, ', )—= +— jl. ( +1)-r ji,
n 2n+1

(4.9)

which can be combined into one single equation as

where

i'2

f(I,J)= + jt 3'I(Ij1)jl4'J(J+1)jl~'
2J+1 2I+1

03'=Ps t4,—l4'=f4) ts'=404 jts&

(4.10)

and 1 q, ~, fr, are the constants of integration. Substituting (4.9) into (4.8), one obtains the condition 2f,=k
Having obtained the expression for OR(I,J) (=f(I,J)/2), one may now substitute this into the reduced unitarity

equation (2.18). We take I=I"=I& nand J——=J"=J&=nj~. After a straightforward but long and tedious

calculation, one can simplify the unitarity equation to obtain

(n+1) (2n+3)'(n+2) L(2n —1)i,j(nj1)i 2
—n(n+1) (2n+ 1)(2n —1)f~)'

+ (2n —1)(2n+3)'(n+2) I (2n' jn 3)i'~—j(n'+2n+3)i'~ —n(n+1) (2n+1) (n —1)(2n+3)i 3)'

+9n(2n —1)(2n+3) (n+2) t (2n —1)t ij(n+2)i 2jn (n+1) (2n+1) (2n+3)t'aj'
+n2(2n —1)(n j2)L(4n' j4n j9)i qj(2n' j5n)l'q n(n—+1)(2n+1) (2n+3) (2n+5)i aj'
+4n'(2n+1) (2n —1)L(2n —1)i ~j(nj2)t'~ —(n+1) (n+2) (2n+1) (2n+3)t 3)'

—9n'(n+1)'(2n+1)'(2n —1)(2n j3)'(n j2)L(2n —1)t',j(n j2)i 2jn(n j1)(2n j1)(2n+3)l'3j= 0 —(4.1.1)

This is a fourteenth-degree polynomial in e, the coefh-

cients of whose terms are polynomials quadratic in

l 3, Note that l 4 and l & do not occur in Fq. (4.11)~

Hence the unitarity equation does not place any
restriction on t4 and is We h.ave to determine all

possible sets of values of i~, tm, t ~ such that (4.11)
holds for arbitrary non-negative integral values of e.
This implies that the coefficient of each power of e must
vanish separately. From these sets of equations we can
obtain the desired sets of values of f~, i 2, l 3. One such
set of minimum number of equations is obtained by
equating separately to zero the coefFicients of e'4, n",
and e" terms. These yield the following sets of three
equations:

r3(3 —2i 3) =0;
2 (4i 3+3) (2f'gjt 2) —981t 3(2t 3

—3)=0;
—8f'g(86t 3+63)—2i 2(216t 8j171)

+92791 3 (2/3 —3)=0. (4.12)

Two sets of values of i ~, f2, l'3 obtained from (4.12) are

(t ~,i'~f3) = (0,0,0) and (t ~,f'~, 13)= (0,0,2). One checks
that both these solutions satisfy Eq. (4.11) identically
for all m. Hence, these are the only two possible sets of
values of t q, fq, fq

For t q t ~ fa——0,——the ——mass formula becomes

5K(I,J)=-,'f(I,J)=-', i'3'I(Ij1)j-,'t'4'J(J j1)j-', l 5'

= 2l'3'P (I+1) J(J+—1)j+2l 5' ~

In this case k=2l3 ——0. This mass operator, therefore,
gives a vanishing scattering amplitude and hence is
trivial. However, the solution t ~——f 2

——0, $3= 2 gives a
nontrivial scattering amplitude, the mass formula in
this case being

9R(I,J)=43[aI(Ij1)jbJ(Jj1-)j+C, (4.13)

where a=a3i'3', b=2, $4' and ajb=3(t~'jf4')=1. Here
C=-', l~'. The value of k is 3. Hence the most general
mass operator, for the hyperon isobar series, as a func-
tion of Casimir operator is the one given in Eq. (4.13).
This mass operator is identical to the one obtained for
the nucleon isobar series.
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The difference equation (3.2) is

A. RAN GWALA

APPENDIX A

I. Solution of the Difference Equation (3.2)

(Is—Ip') LI (I+1)—Ip'g L (I+1)'—Ip'j
F(I 1)—— F(I)+ F(I+1)=1.

I(2I+1) I(I+1) (I+1)(2I+1)
(A1)

then Eq. (A1) reduces to

Therefore, we have

I2—I02
H(I) = 'LF(I-1)-F(I)3;I

H (I+1) H(I) =——2I—1.

H(I) =Cr Is, —

where C~ is a constant of integration. Hence

F(I+1) F(I)= (I—+1)+sr (Ip' —Cg) I+1+Ip I+1 Ip—
Let AF(I) =F(I+1)—F (—I).Then operating on both sides of the above equation by 6 ', we get

i 1
F(I)=g ~ (I+ 1)+—(Ip Cr) I+1+Ip I+1 Ip—

where C2 is another constant of integration. ' Now we have

6 '(I+1)=-,'I(I+1)
and"

1
Q

—1
I

=q (I+1+Is),
I+1&I pl

where%'(x) is the logarithmic derivative of the gamma function:

Explicit expression for %'(x) is given by

i
q (x) = —I (x).

I'(x) dx

( 1 1
q'(*) = —v—Z I—

s=o kx+S 1+Sj
where y= Euler's constant=0. 5772 .Hence, the complete solution of the difference equation (A1) is

F(I)=~s+sI(I+I)+s(Io' ~r)L+(I+1+Is)++(I+1 Io)j—(A2)

II. Solution of the Difference Equations (4.8)

We have the difference equations (4.8):
t'2n —ii 1

If(n —1,e—-', )+ f(n, n ',)—-f(n, n+ ',)-
(2n+1j (n+1) (2n+1) (e+1)(2e+1)

4e'+6n+3

1 n+2
f(n+1,n+ ',)+ f(e+1,e+-,') =3k (A3)-

(e+1)(2e+1) n+1
"For the dei'mitions of a and a ' operators see C. H. Richardson, Aa Imtrodgctiom to the Calcmttts of Finite DQfcrences (D. Van

Nostrand and Company, Inc. , New York, 1954);or L. M. Milne-Thomson, The Cotcmtms of Fiwite Differences (MacMillan and Company
Ltd. , London, 1933).

"See, for instance, L. M. Milne-Thomson, Ref. 14, Chap. VIII.
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le—1~ 1 4e'+2n+1
if(e—1,e—-', )+ f(n —1,n—-',)— f(e,n ',—)—

e j e(2e+1) e(2n+1)
1 2n+3

f(n,n+'2)+ f(e+1,e+-', )=3k, (A4)
e(2n+1) 2e+1

where e is a non-negative integer.
Let e=m —

2 in Eq. (A3) and n=m+-', in Eq. (A4), where m is a positive half odd integer. We then obtain

m —1 1 4m2+2m+1
f(m ——',,m —1)+ f(m —-'„m—1)— m m

m m(2m+1) m(2m+1)

and

1 2m+ 3
+ f(m+ 2,m)+ f(m+~~,m+ 1)=3k (AS)

m(2m+1) 2m+1

2m —1 4m2+ 6m+3
f(m —-'„m—1)+ f(m —-'„m)— f(m+ ', ,m)-

2m+1 (m+1) (2m+1) (m+1) (2m+1)

1 m+2
f(m+ 22,m+1)+ f(m+22, m+ 1)=3k. (A6)

(m+ 1)(2m+ 1) m+ 1

Subtracting Eq. (A4) from Eq. (A3) and Eq. (AS) from Kq. (A6), we obtain

s—1
Lf(e—1,n —-,')—f(n —1,n —2)]—

and

2n2+2e+1
%7@ Q S7%

e(n+1)
n+2

+ $f(n+l, n+2) —f(n+1,n+22)]=0 (A7)I 1

m —1
[f(m ——',,m

—1)—f(m ——,',m —1)]—
2m'+2m+ 1

m 27m m 27m
m(m+1)

m+2
+ i f(m+22, m+1) —f(m+22, m+1)]=0. (AS)

m

Equation (A7) is a difference equation for F(I)=f(I,J) f(I,J 1), wh—ereas E—q. (AS) is in G(J)=f(I,J)
f(I 1,J).The—coeffi—cients of G(I) in Eq. (A8) are same as those for F(I) in (A7). It is, therefore, necessary to

solve only one of them. Let F(n)=—f(n, n+-,') —f(n, n —-', ) =Fi(e)H(e), where Fi(e) is a particular solution of

Eq. (A7). One can check that Fi(e) =2e+1 satisfies the Eq. (A7). To reduce the order of the Eq. (A7), define

D(e) —=AH (n) =—H(n+1) —H(n);
then Eq. (A7) becomes

e(e+2) (2e+3)D(e) —(e—1)(e+1)(2e—1)D(e—1)=0.

Multiply through by (2n+1) to obtain
R(e) —R(n —1)=0,

where R(e) =n(e+2) (2e+1)(2e+3)D(n). Solution of the above difference equation is

R(n) =Ei——constant.
Hence

D(n) = H(n+1) —H(n) =Ki/e(n+2) (2e+1)(2e+3) .
The solution of this equation is

Hence
H(n) = —6&1)e(n+I) (2n+ I)] '+&2.

F(e)=f(e,e+-,') —f(e,n ——',)=Fi(e)H (e) = LCi/n(n+1)]+C2(2n+ I), (A9)
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where C&———6E&, C2 ——E'2. Exactly in the same way, we have from Eq. (AS)

f(m+-', ,m) —f(m ——,',m) = Ly~'/m(m+1))+y~'(2m+1).

Let m=n ——', in Eq. (A10); then

f(n,n —2) —f(n —1,n ——',)= $yq/(2n —1)(2n+1)j+yun

Adding Eqs. (A9) and (A11), we get
C1 +1

f(n, +-', ) f(—n i,—n ——',) = + + (y2+2C2)n+C2.
n(n+1) (2n —1)(2n+1)

The solution ot (A12) is

(A10)

(A11)

(A12)

where

f(n, n+-', )= + yt. ,n(ny 1)yi-, (ny 1)yg, ,
n+1 2n+1

(A13)

fl Cli i 2 g|'1 y t 3 2 (72+2C2) 1 f4 C2 ~

From Eqs. (A13) and (A9), we obtain

f(n, n ,') =—-+ — +l.,n(nyi) t. n+—i.&.
n 2n+1

APPENDIX B
We list here the relevant crossing rn.atrices:

I2= I—1

(A14)

CI—1,I—CI,I—1—
2I 1(I+1)—(I—1) -'"
I, (2I+1)(2I—1)

2I+ 1 (I+1)(I—1)

I (2I+1)(2I—1)
Ii ——I—1

CI,I—

I2——I—1

I(2I+1)
2I 1 I2+I 1——

I2 ——I+1

2I+3

2I+1

2I+3

Ii= I—1

I(2I+1) I(I+1) (2I+1)(I+1)
2I—1

2I+ 1 I+1 (2I+1)(I+1)
Ii ——I+1

gI+i, I C I,I+1

2I+1 I(I+2)
I+ 1 (2I+1)(2I+3)

—l. /2

I2= I+1

2I+3 I(I+2)
I+1 (2I+1)(2I+3)

I+1

&l /2

Ii ——I+1

anQ

CI—2I QI I—2 —C I I—2 —]

CI+2,I—CI, I+2 —C I,I+2


