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The question of the general mass operator satisfying the unitarity equation in the static strong-coupling
theory is examined. For the symmetric scalar-meson theory, the only mass operator allowed by the unitarity
equation is proportional to I%. For the case of symmetric pseudoscalar-meson theory, the question is re-
stricted to the two physically interesting representations only—the nucleon and the hyperon isobar series.
The result in both these cases is that only the mass operator proportional to al?+4bJ? is consistent with

the unitarity equation.

I. INTRODUCTION

ECENTLY Cook, Goebel, and Sakita! derived the

Lie group structure of the static strong-coupling

theory for the meson-baryon scattering. The basic
equations of the strong-coupling theory are given by

[4:,4;]1=0; (1.1)
A= Aihis; (1.2a)
Aij=[A,[M,4,7]. (1.2b)

These are abstract operator equations and operate on
the baryon isobar states. Here A4; is the Hermitian
current operator of meson ¢. 91 is a diagonal operator
which is proportional to the isobar mass differences:
N2 o« M — Mo, where M is the isobar mass operator,
M is the degenerate baryon mass, and X is the coupling
parameter. A;; is proportional to the scattering ampli-
tude. Equation (1.2a) is the unitarity equation. Im-
plications of Egs. (1.2) are twofold. For an allowed
mass operator they restrict the representations of the
group, whereas for a given representation of the group
they limit the form of the mass operator. CGS have
investigated the first aspect of the problem. In the
present paper we investigate the second implication;
we begin with a representation? and investigate the most
general mass operator, considered as an arbitrary func-
tion of the Casimir operators of the invariance group K,
that satisfies the unitarity equation.

In Sec. II, we first obtain the “reduced unitarity
equation” for the group G=SU(2);XT;s of charge-
symmetric scalar-meson theory. From the property of
the unitarity equation (1.2a), we then obtain a neces-
sary condition on the mass operator. This is a difference
equation which can be solved for 91 for a given repre-
sentation. We generalize the reduced unitarity equation
and the necessary condition on the mass operator for
the group §=[SU(2)1®SU(2),]X Ty appropriate for
the pseudoscalar symmetric meson theory.

In Sec. III, we show that for the charge-symmetric
scalar-meson theory the only mass operator allowed by

1T, Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965) ; hereafter referred to as CGS.

2 Subsequently whenever the word representation occurs it
should be taken to mean unitary irreducible representation only.
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the unitarity condition is the one proportional to I?
alone. This result is obtained for all the representations
of the group G. In Sec. IV we study the problem for the
pseudoscalar-meson theory. Here we restrict ourselves
to the two physically interesting representations only:
the nucleon isobar series which is characterized in terms
of its isospin-spin content by I=J=3%,% --.
(part A) and the hyperon isobar series? characterized by
J=I+%=% 3% --- o (part B). In both these cases
we find that the most general mass operator is
M=al?>+bJ2.

II. REDUCED UNITARITY EQUATION AND A
NECESSARY CONDITION ON THE
MASS OPERATOR

We first obtain the reduced unitarity equation and a
necessary condition on-the mass operator for the group
G and then generalize it to the group G4

Let the baryon state be denoted by |I,7), where I is
the isospin and 7 the third component of the isospin.
From the commutation relation for the group G! we
see that the A,’s (a=41,0,—1) transform as vector
operators with respect to the isospin group. Using the
Wigner-Eckart theorem, we may then write

7

o _ It .
<I T [AGII7T> C Ar ’
T a 7

I 17T
{ o)
T a T
are the SU(2) Clebsch-Gordan (CG) coefficients and

the ApP”s are the reduced matrix elements. The
unitarity of the representation demands that

2TH1\112
) yED
2’1

(2.1)

where

Awt= =y (22)

We call this property the vertex-symmetry relation.?
We next turn to the unitarity equation itself.

3V. Singh and B. M. Udgaonkar, Phys. Rev. 149, 1164 (1966).

4 The author is much indebted to Professor V. Singh for pointing
out the possibility of obtaining the “reduced unitarity equation”
and also for the help in deriving it.
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Unitarity equation (1.2a) in the spherical basis reads®

+1
Paﬂ= Zl(—)nrcmr——n,ﬁ, (2.3)

—_
where I'ag=[4,[91,45]]. Operating with I'sg on |I,7) and using Eq. (2.1), we obtain

rull)= 3 3 An'd n{c(’ bon C( B N sy
15T —_11=1—1 In=I1—1 an T B T+ﬁ> 8 « T-I-,3+a> : 0]

I 1 I I; 1 I,
+c( )c( )fm(lx)} |Tort6+a). (24)
T a Tta Ha B 7B+

Note that the order in which the indices a and B occur in the second term in Eq. (2.4) is opposite to that in the
first term. We re-express the product of the CG coefficients in the second term so as to bring it into the form of
the first term. For this purpose we use the following relation®:

J1 Ja J1 Jiz 73 J
( ) )
my Mo Mit+me mitme m—mi—my m

=3 (—)irkirkisHil (251541) (2j23+1)]1’2<l].1 ].z ]12} C(]z Js3 J23 )C(]l J2s J ),

j23 J3 7 jza Mo M—m1— Mgy M— M1 my m—my m

where { } is the standard 6-7 symbol. From the above equation one obtains, after using some standard symmetry
properties of the CG coefficients, the equation

I 1 I1 11 1 I2
o, w pa )
T a Tta 7ta B 748+
I+1 1 I I I 1 I I 1 I,
-3 <—>ﬂ~h+f'[<zzl+1><zr'+1>31/2{ Ie( )c( ). s
I'=I-1 1L, I') \r B 748/ \t4+B a 7+B+a
Using Egs. (24) and (2.5), we get
I+1

(I",T‘I'ﬁ'l'alraﬂlI,T):I Z AIxIAl"'Il

1=I-1

x{c(I bon )e( not ) -smronl}+ 3 aniarn

T B B/ \t+B a 7+B+a 1=I-1
I+1 1 I I I 1 I I 1 I

X{ S (—)"11'1'[(2I1+1)(2['-{—1)]”2{ }C( )C( )3]'6([1)} ,
I'=I1-1 1 1" 'l \r+ B8 748/ \++8 o ++B+a

where in the second term we have rewritten the phase factor by noting that 27—1;-41'4+I,+1I’=even number.
Next, changing the summation variable in the first term from I; to I’, using the vertex symmetry relation (2.2),
and carrying out the changes in the notation, namely, I3 — Is, I’ — I, I'' — I’ (in this order), we finally obtain

I+1 g | II I1 1 I'
(I r4+-B+a|Tu|L)= 3 c( )c( )R(I,I’;Il), 2.6)
I=I-1 \r B 14+8/ \t+B a 7+B+e

5 Note that in the spherical basis
Aap=[A4al,[M,451]= (=) [A-e,[IM,4p]]= (=) T—ss.

SA. R. )Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957), p. 95,
Eq. (6.2.6). , . :
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where
I+1
R(I,I';mE[A,,'Anf'*[—sma')—sm(z)+sm<zl>1+r > (-rmALA
9=I—1
1 I, 213+ 1\1/2
><<212+1>[ ]sm(u)](—)h—"( )
1 I 2I'+1
I+1 21+ 1\1/2
= [.4 A" [—mI")—mI)+mI )]+ X An'4 ,,f'*cm,”'sm(zz)](—)h-"( ) . @
Ip=I-1 2I'+1

Here CI'=C},}, is the u-channel-to-s-channel crossing matrix and Cr,,’* gives the contribution of an ex-
changed baryon I, in the # channel to the baryon I in the s channel in the scattering process (baryon I)+- (iso-
vector meson) — (baryon I’)+ (isovector meson). In writing the second equation in (2.7), we have made use of
the fact that a crossing matrix is essentially a 6-5 symbol (or equivalently a Racah coefficient),” and the relationship

between the two in the present case is®

Crn,1'' = e(21y4+-1) rth
112 2 I' 1 ’

I (2.8)

where e= (—)2+2= (—)2I't2, Using the property that a 6-j symbol is left invariant under any permutation of its
columns and the fact that 2(I;—1) is an even number, the second line in Eq. (2.7) follows. Note that CII'=CI'!

for the crossing matrices under consideration.

Up to this point there is no simplification introduced by the above procedure. However, simplification enters
when we write down the unitarity condition (2.3) with the matrix elements of I'sg given by Egs. (2.6) and (2.7).
Taking the matrix elements of Eq. (2.3) and transferring the CG coefficients occurring on the left side on to the

right side, we obtain

" +1 In+1 1
RUILI"; I)opvn= 2 (=) 2 C
p=1 r=n-1 \r}B

—u T+B—wu

r 1 Iy
)C( )R(I',I”;I{)R(I,I';Il).
™+B—n » T8

Using the appropriate symmetry properties of the CG coefficients in the above equation, we may carry out the

summation over u to obtain
I+1

R(ILI";Iy=_ 3

If, now, we define

s ry= =y

then the unitarity equation reads

I+1
SI"; )= % STI'I)SII"; 1),

I’'=I1—1
where

I+1
S(ILI';1)=An"A n"*f—?m(l')—im(l)+fm(11)]+1 > AntAR"Crn " M(I).

We shall call Eq. (29) the “reduced unitarity equa-
tion.” Note that S(Z,I’;I,) is meaningful only when
A(I1I,) and A(Z,11I") pertain. Further, note that in the
present case S*(I,I'; I,)=S(I',I; I,) ; this follows from
the fact, noticed earlier, that CII'=C?'I for the crossing
matrices occurring in the problem. Equation (2.9) is a
much more manageable form of the unitarity equation.

We next obtain a necessary condition on the mass

7 See, for instance, J. de Swart, Nuovo Cimento 31, 420 (1964).

8V. Singh and B. M.. Udgaonkar (Ref. 3). Alsosee C. J. Goebel,
Proceedings of the 12th Annual International Conference on High-
Enéeg%y Physics, Dubna, 1964 (Atomizdat, Moscow, 1965) Vol. 1,
p- 255.

(__ )I'—Il(
ey 21, +1

2I+1

1/2
) RI'I";I)RII';1,).
’ 1/2
) R(I:I,;Il):

(2.9)

(2.10)

9=I—1

operator. The unitarity equation (2.3) can be rewritten

as
Aws=3 Auhys, (2.11)
»n

where Aag=[4a!,[91,45]]. The unitarity condition is
a nonlinear equation in the unknown function 91 and
is consequently difficult to handle. To obtain a linear
equation in 91T we notice that Eq. (2.11) is an idempo-
tency equation for A.g. Its eigenvalues are, therefore,
0 or 1 only. Since each index & and B takes only three
values (in the scalar theory), the sum of the “eigen-
values” can only be £=0, 1, 2, or 3. Here % gives the



1390

number of times the eigenvalue 1 is repeated. Hence, if
we construct the “trace” 3o Aqq, then it can only be £
times a unit operator:

2 Awa=El, £=0,1,2,3. (2.12)

This “trace” in the meson indices is still an operator
in the baryon representation space. Here 1 is the
(infinite-dimensional) unit matrix in the isobar space.
Let us assume that the mass operator has the form

M= f(1)/24%,

where f(I) is an arbifrary function of I? and
A?=3"4 (—)24 44— is the Casimir operator of the
group G which can be normalized to unity. Then
Eq. (2.12) becomes

Ao o Ao
(A2)1/2f /(A2)ll2

f)=kr1,
k=0,1,2, 3.

2 (=)=
(2.13)

This is a linear difference equation in f(I) (i.e., in 9N).
It is a necessary condition on f(Z) in order to satisfy
the unitarity equation. Since Eq. (2.13) incorporates
only a part of the information contained in Eq. (2.11),
it yields spurious solutions which may be eliminated by
using the unitarity condition. The solution correspond-
ing to £=0 gives a vanishing scattering amplitude and
we shall not be interested in this case in the following.

Taking the matrix elements of Eq. (2.13) and using

I
<I,’J/; T,ymIIAT.aIIr]; T7m>=C(

A. RANGWALA
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Eq. (2.1), the symmetry property
I 1 I
o )
T - T—CQ
201N\ I, 1 T
) A )
2741 T—a a T

= (_ )a+[ 1—1 (
and the orthogonality relations of CG coefficients,
Eq. (2.13) can be reduced to

i1 210112
5 (—)frff(Il)AzhAnI( ) D)=t
I1=I-1 +1

k=1,2,3.

Using the vertex symmetry relation (2.2), the above
equation can be written as
I+1

2 fA)[AMP—=fD)=Fk, k=1,2,3.
Ij=I—1

Equations (2.9), (2.10), and (2.14) can be immedi-
ately generalized to the group g=[SU(2):®SU(2),]
XTy. The commutation relations for this group are
given by CGS.® Let the isobar state be denoted by
|1,7; 7,m), where I and J are the isospin and spin of
the isobar, and 7 and m are the corresponding third
components. This labeling is complete for the repre-
sentations of G under consideration. The meson current
operators 4., now carry two indices: the Latin index »
and the Greek index o representing the spin index and
the isospin index, respectively. Since the 4,’s transform
as vector operators with respect to each of the two
SU(2) groups, we have by the Wigner-Eckart theorem

1 r J 1 J
)C< >AI’JIIJ,
a 7 m r wm

(2.14)

(2.15)

where C’s are the SU(2) CG coefficients and 47517 are the reduced matrix elements. As before, the unitarity of
the representations gives the following vertex-symmetry relation?

Ap = (— )I+J—I'-—J’[

The unitarity equation for the present case reads

and the reduced unitarity equation is
In41

Q2I4+1)(27+1) 712
——————] AU, (2.16)
@r+1)(2J'+1)
Pr.a;s,ﬂ=z (_)H”Fr.a;t.nr'——t.—ms.ﬂ; (2-17)
tu
Ji+1
(2.18)

STI;I"T":Id)=Y Y ST Iy J)SE T I I ILT,

I'=I1—1 J'=J1—1
where

S(I;J’ I,y]l: I1>J1) =A1'1JIIJA IlJll’J’[_m(I,’]’)_m(I,J)_I_M(Ilijl)]

I+1

J+1

+ Z Z AIszIJAIszI,JICIlIzII'C-I'lJzJJ’STZ (127-]2) ) (219)

Ip=I—1 J2=J—1

and C?¥', C77" are the same crossing matrices that occurred in the scalar theory.

® For the commutation relations in the spherical basis see V. Singh, Phys. Rev. 144, 1275 (1966).
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The necessary condition (2.14) generalized to the group G reads

I+1 J+1

Z Z f(II)]l)(AIJI’J’)z—'f(I)J):kr k=1:2:"',9’ (2'20)

I'=I-1 J'=J—-1

where, again,  denotes the number of times the eigenvalue 1 is repeated. In writing down Eq. (2.20) we have
assumed
m=f(1:])/20)21

where f(Z,J) is an arbitrary function of the Casimir operators I2 and J2and ®s=3_, o (—)+24, 04—« is a Casimir
operator of the group G which we have normalized to unity.

III. CHARGE-SYMMETRIC SCALAR-MESON THEORY

In this section we discuss the s-wave scattering of an isovector scalar meson by a baryon isobar. The relevant
group is G=SU (2)rX T’s. The representations of G are specified by two parameters, I, and ¢c. However, only the
dependence on the parameter [, is essential. All the representations of G are infinite dimensional, and each repre-
sentation contains an infinite number of irreducible representations of the subgroup SU(2); of G *°:

I=Io,Io+1,"'°°.
The reduced matrix elements for the representations of G, specified by o and ¢, are given by!!
2(]2__[ 2) 1/2 1/2 2[(I+1)2_I 2] 1/2
P ) P SN LR 2
I(2I—1) (I+1)(2I+3)

Vertex-symmetry relation demands ¢ to be pure imaginary and normalization of A2 to unity requires |¢|2=3%.
Substituting for 477t in Eq. (2.14) from Eq. (3.1), we obtain the following difference equation for the function

f(@):

%y (3.1)

r—1g T(I+1)—1¢ I41)2—1I¢
(——QF(I—Q—[ aHD-1él, +[( ) °]F(I+1)=1, (3.2)
I(2I+1) I(I+1) (I+1)(2I+1)
where F(I)= f(I)/k. The solution of this difference equation is (see Appendix A, part I)
FD)=k{Cot3 I+ 1) +3 [ —CH¥ (I +1+1)+¥(I+1-10) ]}, k=1,2,3, (3.3)
where C; and C; are constants of integration and ¥ (x) is given by
w 1 1
¥=—1— £ (=), (3.4)
S0 \e+S 1+S

where y=Euler’s constant=0.5722- - -. The eigenvalues of the mass operator are then
M(D)=3f(I)=3k{Cot+-3I I+ 1)+3(T2—C)[¥ I +1+1o)+¥(I+1-10)]}, k=1,2,3. 3.5)

In passing, one may notice that CGS expression for the mass operation 9 =12/242 corresponds to Cy=1¢* and
k=2 in Eq. (3.5).

In Eq. (3.5) we have arrived at an explicit form of the mass operator, using the necessary condition. As remarked
earlier, this condition is likely to give rise to spurious solutions which may not satisfy the unitarity condition. In
other words, we have to obtain the restrictions on the constants appearing in the mass formula (3.5) such that
the resultant mass formula satisfies the unitarity condition.

We substitute (3.5) into the reduced unitarity equation (2.9). In order to evaluate the S functions in (2.9), one
needs the crossing matrices occurring in the problem. These may be evaluated using Eq. (2.8). We have listed
them in the Appendix B. Using the relevant crossing matrix elements, reduced matrix elements given in (3.1), and
the mass formula in Eq. (3.5), we can now evaluate the various S functions. For convenience, we let I""'=1,=1.
Then

S I)=S(I; )=S1(I,I; 1)+S:(I,I;1I),

10 See Ref. 1. See also S. Bose, Phys. Rev. 145, 1247 (1966).
11 See the paper by S. Bose (Ref. 10).
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where
I2(I) IP—I¢ I+12—1I¢
S:(II;[)=— (I —1)+——m;(I+1), i=1,2
PI+12 IQI+1) (I+1)2(20+1)

My (1) =1kI(I+1)/2, Me(l)=3k(I2—COYU+1+T)+¥(I+1—I0)];
the constant term C; in (3.5) giving a vanishing contribution to S(Z,7; I). Substituting for 9;(I), we get

and

I¢
Sl(I,I;I)=%k<1— )
I(I+1)
Further, the contribution to S2(Z,I; I) from the term

© 1
)
Y SZ=O 14-S.

in ¥(x) vanishes. Hence, the only relevant term in ¥(x) is

£
(102;01) { _p(ﬁnﬁ[_ (Ii(i;:)zoz X]

This gives
So(I,I; I) =%k

P—I¢ r 21 2(I+1) X:I (I+1)2—I¢ X}

T peI+ol p—1¢ q1r—12 4 a+1e@i+1)
where

® 1 1
> ( . )
s=2 \I+I+S I—Iy+S.

Collecting the terms in X, we find that its coefficient vanishes. On simplification one finds

Sa(I,I; I)=3k(I¢—Cy)

I+1)°

Hence,

sar:n=tp(1—— 2 3.6
I >—§<—M+I)). (3.6)

Similarly, one obtains

S(II—-1;1) —”—(’(——p——h’?—y[ﬁna— =) ]=—ST—1,1; 1)
T P\ ) I+ - i
ilok rP-C
S 3.7)
21 [QI+DI+D) (E-1HT"
and 'I /(I+1)2 I 2y 1/2
(24} — 40
S D= ) DD 01= =S4T D)
il (I+1p—Cs
= 3-8)

2(I4+1) (TQIH DL A+ —ITpe
Substituting (3.6)-(3.8) into (2.9) we obtain the condition
¢(I:IO:k;C1) =0 )

LIokC )__ho2 (I2—Cy)? 1 ;LEI(I+1)_C1]2 1 Ik [(+17—CiT
oL, 1ok, C1)= 21 (2[+1)(F—Io2)T2" I(14+1) r2(I+1) QI+1)[I+1)2—I¢#]

where

I(I4+1)4-Cs.
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Making the substitution D;=C;—1¢? in the above equation, we find

&(IIok,D1)=r(3k—1)+D:(1—k)+

where

r

D=0, k=1,2,3, (3.9)

P—I

fEr(I,Io)=I(I+1)—I02.

We wish to find all the roots of this quadratic equation in D; which are independent of I. Solving (3.9) for Dy,

one obtains

Di= {k—l:tl:(k—— 12+

From the above equation it is clear that D, is a constant
only when 2=2 and its value then is zero. This implies
Ci1=1I¢% which reduces the mass formula (3.5) to

M) =Cot3I(I+1), (3.10)

which is, as noted previously, the one employed by
CGS. We have shown, therefore, that the most general
mass operator as a function of the Casimir operator 12
of the subgroup SU (2) of G which satisfies the unitarity
equation is the one given in Eq. (3.10). We would like
to emphasize that the mass operator in Eq. (3.10) gives
all the representations of G, and conversely the only
mass operator allowed by the unitarity condition for
the group G is M « I2,

IV. CHARGE-SYMMETRIC PSEUDOSCALAR-
MESON THEORY

We consider the p-wave scattering of a pseudoscalar
pion by an isobar. The appropriate group for this case
is g=[SU2);QSU(2);1XTs! Even though several
unitary irreducible representations of this group are
known,!? there are only the following two irreducible
representations which are physically interesting: one
relating to the nucleon isobar series,’® and the other to
the hyperon isobar series.? Both these representations
are infinite dimensional ; the isospin-spin content of the
nucleon isobar series representation is (3,3), ¢,3), ---,
thatis I=J=%, %, ..+, o, whereas that of the hyperon
isobar series is (0,3), (1,3), (1,3), --+, which can be
characterized by J=I4%=1 3, ..., . Inwhat follows
we shall restrict ourselves to these representations only.

A. The Nucleon Isobar Series

Since every isobar state in this representation has
I=J, only one label is sufficient and the isobar state
may be represented by |J ; 7,m). Therefore, Egs. (2.18),
(2.19), and (2.20) involve only one summation. The

12C. J. Goebel, in Non-Compact Groups in Particle Physics,
edited by Y. Chow, (W. A. Benjamin, Inc., New York, 1966);
T. Cook and B. Sakita, Argonne National Laboratory Report
(unpublished). See also for an alternative treatment P. Babu,
A. Rangwala, and V. Singh, Tata Institute of Fundamental Re-
search Report (unpublished).
(1;‘ S;e Refs. 1 and 12. See also V. Singh, Phys. Rev. 144, 1275

66).

272 (k—2)

fz—Ioz

112 2r
1/, sans
r—I¢

reduced matrix elements 4 ;+7 are given by
2T41\112
Asat= Go( ) )
27—-1
A JJ = Go )

2741\1/2
A J+1J= Go( ) .
2J43

(4.1)

The vertex-symmetry relation (2.16) (i.e., unitary of
the representation) demands that Go be real and the
normalization of ®; to unity yields Gi=4%. Substituting
the reduced matrix elements from Eq. (4.1) into
Eq. (2.20), we obtain the following difference equation:

27—-1

F(]—l)(ZJ—}—l

)—2F(])+F(J+1)(§—j—::—:—:1§)=1, (4.2)

where F(J)=f(J)/3k, k=1,2,--,9. Following the
procedure used to solve the difference equation in the
last section, we obtain the solution

C
f(J)'—‘k{%f(]‘f‘ 1)+m+C2} ’

k=1,2,---,9. (43)
The corresponding mass formula is
C
I
2741
k=1,2,---,9. (4-4)

As before, we have to obtain the restrictions on the
constants k, Cy, Cs in Eq. (4.4) so as to satisfy the
reduced unitarity equation (2.18). Restricting ourselves
again to J’=J=J; in Eq. (2.18), we obtain the
following condition on Ci:

4k (J2+J+-6)C2—2(k+3)C,
X[T(T+1)(27—1)(2T+1) (2T +3) ]+ (k—3)J?

X (T+1)2(27—-1)(27+1)2(27+3)=0, (4.5)
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where J=1%,%, -+, «. The dependence of 917(J) on Cs
is trivial; the contribution of the C; term to the matrix
elements S(J,J’;J;) vanishes identically. To obtain
the solutions C; of the above quadratic equation which
are independent of J, we note that since Eq. (4.5) is to
hold for arbitrary value of J the coefficient of each
power of J must vanish separately. Equating to zero
the coefficient 16(k—3) of the highest power J3, yields
k=3. For k=3, Eq. (4.5) reduces to

CiL (24 T+6)C
—J(J+1)(27—1)(2J+1)(27+3)]=0,

which has C;=0 as the solution independent of J. Thus
for k=3 only does there exist a constant root C; of
Eq. (4.5), its value being zero.

The mass formula (4 4) then becomes

M= (T+D)+C; (k=3). (4.6)
Go
An,n—%"’n-*_%:_'——‘—'—;
[n(2n+1)]2
n+1 1/2
An~l,n—§"'n+%=<—) GO,
n
n(nt3) \12
An,n+%n,n+§=<____—__,_) GO;
(n+1)(2n+1)
Go
Anp1npymnti= ;
L(e41) 2n+3) ]
- 2nt 1\
An+1,n+%n,n+7:< ) GO,
2n+3
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For the nucleon isobar series the only nontrivial mass
formula which satisfies the unitarity condition is that
given by Eq. (4.6). Mass formula (4.6) is the same as
that given by CGS, namely,

M= [al*+ (1—a)J?](3/465),

where a is an arbitrary constant and which in the
present case (I=J) reduces to M =37%/4®,.

B. Hyperon Isobar Series

For this representation both I and J labels are
necessary. Since we restrict ourselves to J=1I=1, there
are only five independent final states that are connected
to a given initial state, (I=n,J=n-+3%) say, via the
meson-current operators. The reduced matrix elements
ared:

Go
[(nt+1) (2nt-1) ]2

21y
n——l n— in n—%—( )

"v""%: —_—

An.n+%

n+1 n+1 < ) GO, (4.7)
Go
n—l,n-—}n’n_%= T —
[#(2n—1)]"
(n+1) 2u—1)\12
An,n~§"'"‘%= (__.*—> 0,
n(2n+1)

where the first and the second columns give, respectively, the reduced matrix elements when the initial states are
(I=n, J=n+3%) and (I=n,J=n—1). Unitarity demands that G, be real and the normalization of ®, to unity

fixes it to G?=1

The reduced matrix elements (4.7) can be substituted into (2.20) to obtain the necessary condition on f(7,J).
However, in this particular case we obtain two independent difference equations depending upon whether we
choose I=n, J=n-+3 or I=n, J=n—}% for the initial state. The difference equations obtained are

(zn_ Yot b D
2n4-1 (n+1)(2n+1) (n+1) (2n+1)
L P2 .
+mf(n+1,n+§)+;}_—1f(n+1,n+7)=3k (4.8a)
and
(n——1>f(n—1,n—%)-|- — f(i—1n—1)— wf(n,n—%)
n n(2n+1) n(2n41)
1

I
n(2n+1)

(4.8b)

2n+3
2n+1
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These difference equations can be solved (see Appendix A part II). The solution is
1 2
fnt+3)=—-+ +eamn+1)+ a4+ 14855
n+1 2n41
§1. &2
n 2n+1
which can be combined into one single equation as
24 2 , , ,
JUT)=———F+ T+ D)+5T T+ D+, (4.10)
2741 2141
where
§=C—Fs, $d=84, §=iCtls,
and ¢y, -+ -, &5 are the constants of integration. Substituting (4.9) into (4.8), one obtains the condition 2{;=*%.

Having obtained the expression for 9 (Z,J) (= f(Z,J)/2), one may now substitute this into the reduced unitarity
equation (2.18). We take I=I""=I,=n and J=J"=J;=n-+%. After a straightforward but long and tedious
calculation, one can simplify the unitarity equation to obtain

(n+1) 2n+3) (n+2)[ 2n— )51+ (r+1)s2—n (n+1) (2n+1) (20— 1) P
+ (2n—1) 20437 (n+2)[ (202 4-n—3)t1+ (24 2n+3)F2—n (n+1) (2n+1) (0 —1) 2n+3)§5 T
+91(2n—1) 2n4-3) (n4-2)[ 2n— D1+ (0+2)So+n (n+1) (2n4+1) 2n+3)5s T
+12(2n—1) (n+2)[ (4n*+-4n4-9)¢ 1+ (2024 5n) o —n(n+1) (20+1) (2n43) 2n+5)83 I
+dnt (2n+1) 2n— DL (2n— 1)1+ (04 2)F2— (0+1) (0+2) (2n+1) 2n4-3)53 T

—92(n+1)2(2n+1)2(2n—1) 2n+3)2 (n+2)[2n—1)¢ 1+ (n42)¢ o+ 1 (n+1) Cn4-1) (204-3)§5]=0.

This is a fourteenth-degree polynomial in %, the coeffi-
cients of whose terms are polynomials quadratic in
1, £2, £3. Note that ¢4 and ¢5 do not occur in Eq. (4.11).
Hence the unitarity equation does not place any
restriction on {4 and {;. We have to determine all
possible sets of values of {i, s, {3 such that (4.11)
holds for arbitrary non-negative integral values of 7.
This implies that the coefficient of each power of #» must
vanish separately. From these sets of equations we can
obtain the desired sets of values of {1, {2, {3. One such
set of minimum number of equations is obtained by
equating separately to zero the coefficients of n, n',
and 7' terms. These yield the following sets of three
equations:

$3(3—285)=0;
2(45543) (201452) —98153(283—3) =0;

—8¢1(86¢3463) —2¢2 (2168 5+171)

+9279¢5(283—3)=0.  (4.12)

Two sets of values of {1, {», {3 obtained from (4.12) are
(§I)§2)§3) = (0,0,0) and (§17§2y§3) = (0)0)%) One checks
that both these solutions satisfy Eq. (4.11) identically
for all . Hence, these are the only two possible sets of
values of {1, 2, 3.

(4.11)

For {1={2={3=0, the mass formula becomes

ML) =3fIJ) =35 TT+1D)+38/T(T+1)+58
=3I+ —T T+ ]+585
In this case k=2{3;=0. This mass operator, therefore,
gives a vanishing scattering amplitude and hence is
trivial. However, the solution {1=¢2=0, {3=% gives a
nontrivial scattering amplitude, the mass formula in
this case being

m(l,J)=2al I+ 1)+bJ(U+1)I+C, (4.13)

where a=2{y, b=2%¢/ and a+b=%(¢+¢4)=1. Here
C=1¢5'. The value of % is 3. Hence the most general
mass operator, for the hyperon isobar series, as a func-
tion of Casimir operator is the one given in Eq. (4.13).
This mass operator is identical to the one obtained for
the nucleon isobar series.
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APPENDIX A
1. Solution of the Difference Equation (3.2)

The difference equation (3.2) is

(12—102)F(I_ 1)_[I(I+1)—102:|F 7 [(I+1)2_I°2]F(I+1)=1. A1)
I(2I+1) I(I+1) (I+1)(2I+1)
Let
I2—1?
H(I)= [FI-1)—F(D)];

I
then Eq. (A1) reduces to

. HI+1)—HI)=—-2I-1.
Therefore, we have
H(I)=C,—1I?,

where C, is a constant of integration. Hence

1 1
FI4+1)—F()=I+1)+3(Ue—C } .
DD = D430 b

Let AF(I)=F(I+1)—F (I). Then operating on both sides of the above equation by A~ we get

1 1
F(I)=A‘1(I+1)+%(Io2—C1)[A—’ A ]+c2,
I+1+1, I+1—1I,

where C, is another constant of integration.'* Now we have
AT (I+1)=31(I+1)

1
A‘1<———> =V (I+1%1),
I+1+1,

where ¥ (x) is the logarithmic derivative of the gamma function:

and!®

(=) L ¢ T'(x)
V(x)=———T(x).

T'(x) dx
Explicit expression for ¥ (x) is given by

‘I'(x)=—7—i( : ——1—)

= \ets 1+5/’
where y=Euler’s constant=0.5772- - -. Hence, the complete solution of the difference equation (A1) is
F(I)=Cot3I(I+1)+5T2—C)[¥ ([+14+T1)+ ¥ (I+1—1o)]. (A2)

II. Solution of the Difference Equations (4.8)
We have the difference equations (4.8):

T U s ki A Y
—Ln=z) =) jn,nT3
2n+1 ’ (n+1) 2n+1) (n+1)(2n+1) i

n42
— D4——fn+1,n+3) =3k (A
+(n+1)(2n+1)f(%+1,n+ )+n+1f(n+ n+3)=3k (A3)

" For the definitions of A and A~! operators see C. H. Richardson, An Introduction to the Calculus of Finite Differences (D. Van
Nostrand and Company, Inc., New York, 1954) ; or L. M. Milne-Thomson, Tke Calculus of Finite Differences (MacMillan and Company
Ltd., London, 1933).

16 See, for instance, L. M. Milne-Thomson, Ref. 14, Chap. VIIIL.
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and

(- - 4n*+2n+1 ( 1
@ +1)f —z n(2n+1)fn,n 2

(?)f(n—l,n—%wr

SOt kL3 =35, (Ad)
X n+1,n+3)=3k,
n( nt1) L o

where # is a non-negative integer.

Let n=m—1% in Eq. (A3) and n=m-+3 in Eq. (A4), where m is a positive half odd integer. We then obtain

m—1 ( n 1 ( - 4/m2+2m+1( )
fm hm— +m(2m+ )fm m(@2m—+1) flm=4m
2, = A
+m(2m+1)f( m+3 )+—f(m+ ym+1)=3k (AS)
and
2m—1 ( n 1 - 4m2+-6m—+3 (mt-1m)
ot ety " ety "
———————f(m+3m+1) m+2( +3m+1)=3k. (A6)
+(m+1)(2m+1)f m+2>m+ +7mfm 2, - .
Subtracting Eq. (A4) from Eq. (A3) and Eq. (AS) from Eq. (A6), we obtain
n—1 2102+ 2n+1
L= =)= = =T fsnt-5)— fn—$)]
n n(n+1) s
+ L L) — f L) 1=0 (A7)
n+1
and
-1 m2+2m~+1
L[f(m—%,m—l)—f(m~%,m—1)]————————[f(m+z,m) fon—3m)]
m m(m—+1)

+—_:i[f(m+%,m+1)—f(m+%,m+1)]=0- (48)

Equation (A7) is a difference equation for F(I)=f(I,J)—f(I,J—1), whereas Eq. (A8) is in G(J)=f(I,])
— f(I—1,7). The coefficients of G(I) in Eq. (A8) are same as those for F(I) in (A7). It is, therefore, necessary to
solve only one of them. Let F(n)= f(n,n+3)— f(n,n—%)=F1(n)H (n), where F1(n) is a particular solution of
Eq. (A7). One can check that F;(#)=2n-+1 satisfies the Eq. (A7). To reduce the order of the Eq. (A7), define

D(n)=AH (n)=H (n+1)—H(#n);
then Eq. (A7) becomes
n(n+2)(2n+3)D(n)— (n—1)(n+1)(2n—1)D(n—1)=0.
Multiply through by (2#-+1) to obtain
R(n)—R(n—1)=0,
where R(n) =n(n+2) (2n+1) (2n+3)D(n). Solution of the above difference equation is

R(n)= K= constant.
Hence

D(n)=H (n+1)—H (n)=K1/n(n+2) (2n+1) (2n+3).
The solution of this equation is
Hn)=—%:Ki{nn+1) 2n+1) ]+ Ko,.

Hence

F(n)= f(nn+3)— f(n,n—3)=F1(n)H () =[C1/n(n+1) 1+ C2(2n+1), (A9)
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where C1=—3%K, Co=Ko,. Exactly in the same way, we have from Eq. (A8)
flm+3,m)— f(m—3,m)=[vi'/m(m+1) ]+~ 2m+1).
Let m=n—% in Eq. (A10); then
fn—3)—f(n—1n—3)=[v1/ 2n—1) 2n+1)J+van.

Adding Egs. (A9) and (A11), we get
C1 71

ot —f(n—1n—%)= ' t (vat+2C)n+Co.

n(n+1) @n—1)Q2n+1)
The solution of (A12) is
2

¢
Found) =t (4 DG 1)+,
n+1 2n+1
where

§1=—C1, $o=—371, $=3(v2+2Cy), $4=Cs.
From Egs. (A13) and (A9), we obtain

<1 &2
f(n;n'_%)=_+ +§‘3n(n+1)—§‘4n+§‘5
n 2n+1
APPENDIX B
We list here the relevant crossing matrices:
L[r=1—1 I,=1
1 2 ([+1)(I-1) ]m
- - =I-1
o (i 1 1 Ler+ner—1)
-1 (I+DI-1) 7~ 1
- - Il=I
I L(21+1)(21—1)] I
Iy=1—-1 I.=1 Iy=T+1
1 1 2143
- —_— I,=I-1
I(2I+1) I 2I+1
2I—1  DPHI—-1 2I+3
Chi=|— =1
IQI4+1) I(I+1) QI+1)I+1)
2I—1 1 1
L=T+1
2I+1 I+1  QI+1)(I+1)
Iy=1 I,=1+1
1 A+ 1042
I+1 Crriler+ner 3J h=t
CHI=CLIH+= + + ( + )( +)
2A+1  II+2) ]1/2 1
r+1L@r+1)er+3) I+1

Cl2I=CI,I2= Cr1112=1
and
CH2I=CLIR=Cp [ TH#=1,

IL=141
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(A10)

(A11)

(A12)

(A13)

(A14)



