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rapid decrease in intensity until about a distance of
20 cm™! is reached, and also agree qualitatively with
Ranganadham,??> who obtained a maximum at the
Rayleigh line of benzene and a gradual falling off of
intensity from a maximum at or very near the Rayleigh
line itself.

Fabelinskii?* has obtained the orientation relaxation
time in several liquids. His photographic results on CS,
yield a relaxation time of 2.4X 1072 sec. Our result for
the relaxation time at room temperature is 1.96X 1072
sec from measurement of the half-widths of the scat-
tered light and 1.5 1072 sec when measured by plotting
the inverse of the intensity at different frequency shifts
versus the frequency shift squared. Recent results*
obtained with an Ar* laser for orientation scattering
in CS; at room temperature differ from these results

22 S, P. Ranganadham, Indian J. Phys. 7, 353 (1932).
281, L. Fabelinskii, T. Fiz. Akad. Nauk SSSR 9, 183 (1958).
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because the weak exciting source used in their experi-
ment prevented as accurate measurements. Starunov
and Zaitsev?* have examined orientation scattering by
observing the wings of the Raman and Rayleigh lines
in liquids and conclude that at large frequency shifts
faster processes take place such as oscillation of the

molecule as a whole.
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Mobility of Electrons in Low-Temperature Helium Gas*
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Experimental measurement of the mobility of photoelectrons in low-temperature helium gas is described.
At the highest gas densities (near the normal boiling point) the mobility is lower than the value predicted by
kinetic theory by four orders of magnitude. At intermediate density a transition region occurs, and at the
lowest densities studied, the mobility approaches the kinetic-theory limit. A theoretical discussion of the
interaction of a slow electron with a collection of helium atoms is given, and it is shown that at high density
and low temperature a correlated (“bubble’’) state becomes thermodynamically stable. The theory predicts
correctly the mobility at high density, the critical density at which the transition occurs, and the approach
to the kinetic-theory value at low density. It does not, however, account for the details of the transition
region.- The observations, and their interpretation, provide strong support for the ‘“bubble’” model for

electrons in liquid helium.

I. INTRODUCTION

HE present work, a study of electron mobilities
in dense, low-temperature helium gas, was moti-
vated by the idea that it might shed some light on the
interpretation of electron and ion mobilities in liquid
helium.! '
The observation that in liquid helium the negative
carrier (whether produced by ionizing radiation or by
injection of photoelectrons) has a mobility somewhat
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1 A survey of information on this subject, as of 1960, is given by
G. Careri, in Progress in Low-Temperature Physics, edited by C. G.
Gorter (North-Holland Publishing Company, Amsterdam, 1961),
Vol. 3, p. 58.

below that of the positive carrier suggested that the
negative carrier was not a free electron. Various possible
structures appeared in the literature but were not sub-
jected, it seemed, to very critical experimental tests.
At the time when the present experiments were begun
we were inclined to believe that an electron injected
into helium gas would form a dense complex, bound
together by electrostatic polarization. Such a structure
had been suggested by Atkins? in connection with
charged particles in liquid helilum. Such a complex
might also be expected to be stable in sufficiently cold
and dense helium gas. At any rate, in the gaseous phase,
the helium density could be varied over a wide range
and the possibility of complex formation could be studied
in a manner not possible in the liquid.

First measurements?® showed that at high gas density

2 K. R. Atkins, Phys. Rev. 116, 1339 (1959).

(1’9 g2 )L Levine and T. M. Sanders, Jr., Phys. Rev. Letters 8, 159
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the mobility was very low, far below the value predicted
by kinetic theory. The data suggested that at high gas
density the stable carrier was a heavy complex. As the
gas density was lowered the mobility was observed at
first to rise slowly, then precipitously, and finally to
approach the kinetic-theory value at the lowest
densities.

More detailed consideration of the electrostrictive
complex showed that this picture could not account
consistently for the data. Various other possibilities,
such as negative impurity ions, were considered and
rejected. Finally it appeared that a consistent and
quantitative account of the data could be given in terms
of the “bubble” model,* discussed by several authors
in connection with electrons® and positronium® in
liquid helium.

In the present paper we will first present our experi-
mental results, then discuss the theory. We will show
that the “bubble” model is quite consistent with our
observations. We conclude that it is capable of describ-
ing the states of electrons in both liquid helium and gase-
ous helium at high density and low temperature.

II. EXPERIMENTAL TECHNIQUES
A. General

The mobility was measured by a time-of-flight tech-
nique similar to that of Hornbeck.” The arrangement
is shown in Fig. 1. A short (~3 usec) pulse of light is
incident on the semitransparent photo surface, releas-
ing a thin “sheet” of electrons. These drift to the anode
in the applied electric field & and are collected, after a
time ordinarily long in comparison with the duration of
the light pulse. If the applied field is uniform, and effects
due to space charge, diffusion, and capacitance can be
neglected, the electrons will drift at a uniform velocity,
giving rise to a constant current through the resistor R.
The current pulse will end when the electrons reach the
anode. The (small) voltage developed across R is
amplified by a wide-band amplifier and displayed on an
oscilloscope, and the trace is photographed. The transit
time, and hence the drift velocity, are obtained from the
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Fi1c. 1. Basic experimental arrangement.

*T. M. Sanders, Jr., Bull. Am. Phys. Soc. 7, 606 (1962).
5 C. G. Kuper, Phys. Rev. 122, 1007 (1959).

6 R. A. Ferrell, Phys. Rev. 108, 167 (1957).

7 J. Hornbeck, Phys. Rev. 83, 374 (1951).
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Fi1G. 2. Photocell construction (not to scale). The photo surface
is formed by successive evaporations of antimony and cesium
followed by baking at 150°C.

duration of the recorded pulse. The ratio of drift velocity
to field strength in the limit of zero field yields the mo-
bility. In practice, inhomogeneities in the field distort
the shape of the pulse, although an abrupt drop in
current still occurs when the electrons reach the anode.
This will be discussed in more detail in Sec. IT E.

B. Photocell

A diagram of the photocell is given in Fig. 2. Prior to
assembly, the metal parts, mostly stainless steel, were
outgassed under high vacuum, the silver paste cathode
connection was fired, and a semitransparent layer of
platinum was evaporated onto the window and upper
portion of the tube. After assembly, the cell was
evacuated and baked until a vacuum of a few times
1077 Torr could be maintained with the tube sealed off
from the pumps. A semitransparent cesium-antimony
photosurface was then formed on the window by the
method described by Zworykin.® The underlayer of
platinum was necessary for electrical contact to the
photosurface at low temperatures; identical units
made without backing showed a large apparent decrease
in emission when cooled to 4°K. The platinum coating
on the side walls of the cell prevented surface charging
during a run. The resulting photosurfaces compared
satisfactorily with those produced commercially. After
the surface was formed, the tube was sealed off and

8V. K. Zworykin and E. G. Ramberg, Photoelectricity and Its
Applications (John Wiley & Sons, Inc., New York, 1949), pp.
96-98.
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connected to the remainder of the experimental system
through the break-seal shown in Fig. 2. A sputter-ion
pump prevented oxidation of the photo surface when the
tube was not in use.

C. Gas Handling and Cryogenics

The photocell was immersed in a bath of liquid
helium during the measurements. A glass double-Dewar
system of standard design was used. The bath tempera-
ture was controlled by pumping through a manostat
which held the vapor pressure constant to =4=1 Torr over
the temperature range 2.6-4.2°K, corresponding to a
long-term temperature stability of =0.006°K. The
vapor pressure was measured with a mercury manom-
eter and the temperature was calculated from the 1958 E
helium vapor pressure scale. The photocell was filled
with high-purity helium gas evaporated from a separate
reservoir of liquid. The gas handling system was pumped
to a few times 1078 Torr and then flushed with the
purified helium before gas was admitted to the cell.
The pressure in the cell was monitored with a second
mercury manometer (with an accuracy of £1 Torr). A
liquid-nitrogen cold trap prevented contamination of
the cell with mercury. The fact that the cell could be
reused several times without deterioration of the photo-
surface due to oxidation is evidence of the purity of the
helium gas. Attempts to purify tank helium gas by
passing it through a liquid-nitrogen-cooled charcoal
trap were notably unsuccessful in this regard.

D. Electronics

The cathode voltage was supplied by a regulated
power supply (500-1500 V) followed by a divider for
low voltages. The cathode voltage lead was enclosed in
a Pyrex tube which dipped below the level of the liquid
helium, in order to prevent breakdown in the gas. The
signal was fed to a Keithley model 102B wideband
amplifier, using a triaxial cable. Standard feedback
techniques reduced the effective input capacitance to
approximately 5 pF. A 1-MQ resistor connected across
the input served as the signal resistor (R, in Fig. 1).
The output was displayed on an oscilloscope with sweep
speeds calibrated to 19, and was photographed with
an oscilloscope camera.

The light flash was produced by an E.G.&G. model
FX-6A xenon flash tube. The discharge current was sup-
plied by a 1-uF capacitor charged to 1 kV. The light
was collected by a mirror and Lucite light pipe and was
directed down a quartz light pipe to the photocell. A
commercial phototube mounted near the flash tube was
used to trigger the oscilloscope sweep.

E. Pulse Shape

As indicated in Sec. IT A, a rectangular pulse is ex-
pected for a uniform field. The observed pulses were
more complicated, as shown in Fig. 3(b). The current
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rises somewhat, then drops abruptly, and finally tails
off rather slowly to zero. This complication is associated
with the actual field distribution in the drift space,
which is far from uniform. The major distortion is
caused by the conductive coating on the walls of the
cell, which causes the field lines to diverge outward from
the anode. The field was mapped with an electrolytic
tank, and the shape of the current pulse was calculated.®
The result is shown in Fig. 3(a). The initial gradual
increase is caused by an increase in drift velocity of the
electrons as they approach the anode. The grounded
guard ring shown in Fig. 2 collects the electrons which
have gone through the worst part of the field. The peak
occurs when the electrons moving down the center of
the cell are first collected, and its location is not sensi-
tive to the details of the field. The shape of the tail of the
pulse was found to be very sensitive to the exact manner
in which the current divides between the guard ring and
the anode, and hence is not given accurately by the
calculations. Let 7 be the time at which the peak
occurs, D the length of the drift space, and V the applied
voltage. Define an average drift velocity and an average
field strength by

<‘Ud>=D/T,

Then for our geometry, we find the true mobility to
be given by the expression

r=1.1¢va)/{8).

(8)=V/D.

CURRENT

TIME
(a)

CURRENT

TIME
(b)

Fic. 3. (a) Calculated current pulse. (b) Typical experimental
current pulse. The noise is approximately to scale but was not
copied directly. Transit times are varied from a few microseconds
to a few milliseconds. Peak currents were of the order of 1 nA.

9J. L. Levine, M.S. thesis, University of Minnesota, 1961
(unpublished).
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Fi16. 4. Drift velocity versus field strength for the temperatures
and pressures indicated. The pressures are given in units of the
saturated vapor pressure p,. Curve (a) is typical of the low-
density region, curve (b) of the intermediate-density region, and
curve (c) of the high-density region.

The numerical factor would be unity for a uniform field.
In practice, the correction factor was not used, as the
uncertainties in determining its exact value were be-
lieved to be comparable in magnitude with the cor-
rection itself.

F. Errors and Limitations

We estimate an uncertainty of 4=209%, in the absolute
values of mobility and 22109, in relative values. These
limits were set by misalignment of the electrodes, un-
certainties in the electric field distribution, and un-
certainties in the measurement of transit times due to
noise and the finite resolving time of the equipment. In
addition, the finite resolving time limited the maximum
measurable mobility to about 10 000 cm? V= sec™. A
puzzling feature of the measurements was that the total
charge actually injected into the gas increased approxi-
mately linearly with the applied voltage, and did not
appear to depend on the value of the mobility. This
may have been caused by space-charge effects during the
light flash. On the other hand, reducing the light in-
tensity produced a proportional decrease in the injected
charge, but did not have any noticeable effect on the
pulse length. As a test of the equipment, the mobility
was measured at room temperature and compared with
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published data.!® Our value was 129, high, within our
estimated error.

III. EXPERIMENTAL RESULTS
A. General

Figure 4 shows the experimental relationship between
drift velocity and field strength at 7=4.19°K for several
pressures. The pressures are given, in each case, in units
of the saturated vapor pressure. Note that at low fields,
the curves are linear and extrapolate accurately to the
origin. Such a linear region was found at all pressures
and temperatures; the mobility was taken from the
slope of this portion of each curve. At higher fields, the
curves become distinctly nonlinear [see Fig. 4(b) in
particular].

B. Mobility

Figure 5 shows the mobility as a function of pressure
for three temperatures. The pressures are again given
in units of the corresponding saturated vapor pressure.
The 4.2°K isotherm contains data taken on several
runs, and with two photocells, and shows the reproduci-
bility of the data. In Fig. 6, we show the mobility as a
function of temperature at the saturated vapor pressure.
Note the large variation of mobility over a narrow range
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F1c. 5. Mobility versus pressure at constant temperature. The
solid curves have no theoretical significance.

10 A, V. Phelps, J. L. Pack, and L. S. Frost, Phys. Rev. 117, 470

(1960) ; J. L. Pack and A. V., Phelps, ibid. 121, 798 (1961).
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F16. 6. Mobility versus temperature at the saturated vapor
pressure. The solid curve has no theoretical significance.

of pressure or temperature in each case. At sufficiently
low density, the mobility should be given correctly by
the usual kinetic-theory expression [Eq. (1) below].
This expression predicts that the quantity (7/7)%u
should be a universal function of the helium atom density
n.In Fig. 7, we have plotted some of the mobility data in
this fashion, along with a theoretical curve using the
cross section given in Sec. IV.

It is evident that at low density, the mobility does
approach the expected values. Further, it is clear that
the mobility is essentially determined by the gas density,
rather than by the pressure or temperature separately,
over the entire range of our data.

IV. THEORY
A. Introduction

In this section we will discuss the theory of the inter-
action of an electron with a number of helium atoms.
Beginning with the interaction of a low-energy electron
with a single helium atom, we will show that at low
gas density the states of the electrons and atoms are
approximately uncorrelated, and that well-known
expressions derived from kinetic theory can be used to
calculate the electron mobility. This domain en-
compasses the region studied when electrons are injected
into helium gas under normal conditions (pressure not
too high, temperature not too low). On the other hand,
we will show that at high gas density correlated states
appear, having energies below those of the uncorrelated
states. At sufficiently low temperatures and high
densities these correlated states become thermody-
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namically stable, and the electron mobility undergoes
a large change. These correlated states are of the same
type as the “bubble” states discussed in connection
with electrons and positrons in liguid helium.

B. Electron-Helium-Atom Interaction

Theoretical and experimental information concerning
the interaction of a low-energy electron and a helium
atom has recently been reviewed.!> The interaction
consists essentially of a strong short-range repulsion,
arising from the Pauli principle, and a long-range polari-
zation attraction. For electrons in the energy range of
importance in this work (E~10"% V) only s-wave
elastic scattering is of any importance, and the interac-
tion can be adequately characterized by a single
parameter, the zero-energy s-wave scattering length a.
We adopt for this parameter the value recommended
by O’Malley,t @=1.18a2p=0.62 A, so that o=4ra?
=4.9X1071% cm? The applicability of effective-range
scattering theory to problems where the interaction
includes a 1/7* “tail” has already been studied.’® It is
worth noting that the s-wave scattering length is posi-
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1T, F. 0’Malley, Phys. Rev. 130, 1020 (1963).

12D, E. Golden and H. W. Bandel, Phys. Rev. 138, A14 (1965).

13T, F. O’Malley, L. Spruch, and L. Rosenberg, J. Math. Phys.
2, 491 (1961); R. W. LaBahn and J. Callaway, Phys. Rev. 135,
A1539 (1964).



154

tive (i.e., the effective interaction is repulsive). This
fact will be assumed implicitly in the following discus-
sion. Many of the arguments may therefore not be
applicable to the heavy rare gases, which have a nega-
tive scattering length and show a Ramsauer effect in
low-energy electron scattering.

C. Electrons in Low-Density Helium

The mobility of electrons in low-density (e.g., NTP)
helium is customarily analyzed using the Boltzmann
equation, in which the electron is thought of as propa-
gating as a free particle between collisions. When only
s-wave elastic scattering is important the distinction
between total cross section and momentum-transfer
cross section disappears and the resultant expression for
the low-field mobility is*

4 e

pm—— W
3 no 2emkT)12

Here p is the mobility, #» the density of scatterers

(atoms), o the total cross section, and m the electron

mass.

In addition to being scattered when they are injected
into a gas, the electrons experience another effect, first
discussed by Fermi.!® This second effect can be described
as a shift in the zero of energy, relative to a vacuum.
Alternatively, the effect can be described optically as a
modification of the dispersion law for electrons in the
presence of a collection of scatterers. From the optical
point of view this second effect is a change in the real
part of the propagation constant for electrons, caused
by coherent forward scattering from the atoms. The
incoherent scattering, which determines the mobility,
appears as an imaginary part of the propagation con-
stant, and corresponds to attenuation of Schrddinger
waves in the medium. Derivations of the equations
governing these effects appear in the literature in several
places,’>'® and will not be repeated here. We shall,
however, require the results in what follows and present
them below in a form convenient for our purposes.

If an electron is normally incident on a medium con-
sisting of » randomly distributed scatterers, of scatter-
ing length @, per unit volume, and if the wave function
in vacuum is

‘p 0= etkoz ,

the wave function in the medium will have a gross struc-
ture of the form
l// — Teikz ,

14 H. Margenau, Phys. Rev. 69, 508 (1946).

18 E. Fermi, Nuovo Cimento 11, 157 (1934); H. Margenau and
W. W. Watson, Rev. Mod. Phys. 8, 22 (1936).

161,. L. Foldy, Phys. Rev. 67, 107 (1945).

1" E. Fermi, Nuclear Physics (University of Chicago Press,
Chicago, 1950), p. 201.

18 7. L. Levine, Ph.D. thesis, University of Minnesota, 1965
(unpublished).
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where the (complex) value of & in the medium is related
to ko by the equation

k?=ky*—4mna+idrnak. 2)
If we write
k=k,+1k;,
we obtain
ki=3ndrad*=%no,

k2=ke—4mrna(1+mnad®). 3)

We may note that inside the medium the probability
density will be attenuated according to the equation

l‘[/|2 o g—2kiz = e—n41razz= —n0z— g—2/\ R

corresponding to each of the scatterers acting independ-
ently. This result does not depend on an assumption
that the number of scatterers within a wavelength is
small (which it is not in the present experiments) but
does depend on the assumption of random spatial
distribution of the scatterers. Corrections due to spatial
correlations among the scatterers are discussed below.
This equation justifies the use of the kinetic-theory
point of view in a domain where its validity might be
questioned. The equation for the real part of the propa-
gation constant may be further simplified here, for the
dimensionless parameter 7a® is very small. At the high-
est gas densities studied, we have

n~2X10" cm™3; na*~1073,
To a good approximation we have
k2=kd—4mna. 4)

Multiplying this equation by #%/2m and transposing we
may rewrite this relation in the suggestive form

2k o Wk2 R
+—C(47na). 5)

2m 2m  2m

Thus we may alternatively describe the effect of the
medium as a shift in the zero of energy. When an elec-
tron enters a region containing scatterers of density #,
the region appears like a potential barrier of height

V= (#/2m)4nna. (6)

In fact, from this point of view we may regard the at-
tenuation of the wave in the medium as the result of
density fluctuations, and the associated potential
fluctuations. It is easy to show that in the case of a
random distribution of scatterers the expression (2)
results.!®
The equation
V= (#*/2m)4rna

can also be readily derived by introducing an electron-
atom pseudopotential and calculating the shift in
energy of the electron by first-order perturbation theory.
Such a perturbation calculation also justifies the use of
this equation in case the density # of scatterers is not
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constant in space. Some calculations of the effective-
barrier height represented by a dense collection of
helium atoms have recently appeared in the litera-
ture.9%® At a density corresponding to that of liquid
helium (an order of magnitude larger than encountered
in the present work), the first-order expression (6) is too
low by a factor of approximately 2. This conclusion
is in agreement with experimental data also.?"? These
high-density calculations provide additional support for
the use of Eq. (6) in the density range of concern here.
Finally, we may note that spatial correlations among the
scatterers can be taken into account in evaluating the
incoherent scattering in a manner identical to that used
in the analysis of scattering of electromagnetic waves.
The result is also identical, namely,?

ki=%na[leT / (%)T] Q)

where the factor in brackets is equal to unity for a
material obeying the ideal gas law. In the domain of the
present work (2.2°K<7T'<4.2°K ; p<1 atm) this correc-
tion is sometimes appreciable and can be evaluated
from known equation-of-state data.?

D. Electrons in Dense Helium
1. The Ground State—A Model Calculation

The effects discussed in the previous section, in
particular the shift in the zero of energy of an electron
when it is in a region containing scatterers, can lead to
qualitative changes in the behavior of the system when
the density of scatterers becomes high. Before proceed-
ing to the real problem, namely a number of electrons
in a real (nonideal) gas at finite temperature, we will
discuss briefly a model calculation. The model exhibits
some features which will be of interest later, and is more
amenable to simple discussion.?»

We consider a single electron of mass 7, and N atoms
(bosons) of mass M, in a volume V. We suppose the
atoms not to interact with each other, but to interact
with the electron via a short-range repulsion which we
represent by the pseudopotential

V(e—R;)= (#2/2m)4wad(x—R;). (8)

19 B. Burdick, Phys. Rev. Letters 14, 11 (1965).

2 J. Jortner, N. R. Kestner, S. A. Rice, and M. H. Cohen, J.
Chem. Phys. 43, 2614 (1965).

2W. T. Sommer, Phys. Rev. Letters 12, 271 (1964).

(1;261.\5%. A. Woolf and G. W. Rayfield, Phys. Rev. Letters 15, 235

% J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Liquids and Gases (John Wiley & Sons, Inc., New York,
1954), p. 896.

2 W. E. Keller, Phys. Rev. 97, 1 (1955); J. F. Kilpatrick, W. E.
Keller, and E. F. Hammel, 7bid. 97, 9 (1955).

#a Related calculations are summarized by E. P. Gross, in
Proceedings of the Sussex University Symposium on Quantum
Fields, edited by D. F. Brewer (North-Holland Publishing Com-
pany, Amsterdam, 1966), p. 275; see also R. C. Clark, Phys.
Letters 16, 42 (1965).
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We look for the lowest energy solution of the Hartree
(or Hartree-Fock) equations for the system wave func-

tion, assumed to be of the form

V@ RRy - Ro)=o@ITYR). ()

=1

¢ and ¢ satisfy the equations

h2 h2
——Vi2o+—AraN ¢ (1) [*o—ep=0,
2m 2m
(10)
h2 hZ
—— Ve (R)+—4ma| o(R) [ R)— Wy (R)=0.
2M 2m
These equations are clearly satisfied by
= (1/V12)gik ,
o= (1/V"?)e (1)

¥=(1/ Ve,

for which |¢|? and |¢|? are independent of position.
For the lowest state of the system (k=K=0) we have

/ W

E,= (3¢)=—-(4mwa)—=—~4mna),
2m VvV 2m

(12)

in agreement with the results quoted in the previous
section. We shall refer to this state as ‘“uncorrelated.”
We can approximately satisfy the Hartree equations
with a different type of trial function as well. Suppose
we take again

‘If(rJRly e 1RN) = gD(I‘)H ¢(R2) )

with ¢ and ¥ now free-particle functions in part of the
volume and zero elsewhere. Thus we may try

sink(r—b)
o(t)=4————, r<b
r (13)
=0, r>b,
sinK (R—b)
YyR)=B————, R>)
R (14)
=0, R<b.

For these functions the interaction terms in the Hartree
equations vanish everywhere, and the energy of the

system is
n? H?
E,=(3¢)=—~"r+N—K? (15)
2m 2M
with k=m/b.
The lowest value of K is readily determined, and for
periodic-type boundary conditions on a sphere of radius
L (i.e., d¢/dR=0 at R=L) takes the form

K?=3b/I5.
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In deriving this expression we have assumed d<KL.
Expression (15) for the energy then becomes

e om\® W
E.= ——<~) +—(4wnbd),
2m\b 2M
where we have written
n=N/4wL3.

We may now regard b as a variational parameter and
find both the value of & which minimizes E. and the
corresponding minimum energy. The results are

bd=7mM/2mn (16)
3h2w fen M\
Ecm——-———( ) . an
M m

Accordingly the ratio of the energy of the correlated
ground state (17) to that of the uncorrelated ground
state (12) is given by

(Ecm 8 271r<'m 2< 1
Eu) 8 M) nas) '
Thus E.n, will be less than E, for sufficiently large den-
sity. The quantitative criterion is

Ecn<E.

27w fm\?
na3>——<—~> .
8 \M

(18)

for

(19)

Inserting numerical values for electrons and helium
atoms we obtain
Ecm<Eu
for
n>10"8 cm—3.

The result, which pertains to the ground state only,
does not, of course, imply that these correlated states
will dominate at finite temperature whenever # is
larger than 10*® cm™3. The domain in which these cor-
related states will be statistically preferred will be dis-
cussed in the following section. As a concluding remark
we may note that the calcualtion of the present section
can also be carried through using box boundary condi-
tions (i.e., ¥=0 at R=L). In this case the uncorrelated
state does not satisfy the Hartree equations exactly
because of the somewhat unphysical variation in density
across the box. For this reason, we have preferred the
periodic-type boundary conditions, although the results
of the two calculations are essentially the same.

2. Stability of the Correlated State at
Finite Temperature

In the previous section we have demonstrated, in a
model problem, the existence of correlated states which
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can have energies well below those of the customary
uncorrelated states. Both that calculation and those of
the present section are essentially variational in charac-
ter. That is to say they establish the existence of states
below the normal uncorrelated ones, but the question of
whether these correlated states are well-represented by
the wave functions here employed must be regarded as
open, pending a solution of the real many-body problem.
It may be noted, however, that the correlated wave
functions have the characteristics of bound states and
are very likely not readily susceptible to analysis through
use of perturbation theory.?

We now address ourselves to the problem of an elec-
tron, or a very dilute gas of electrons, immersed in
helium gas at finite temperature. Interactions among
the helium atoms will be accounted for approximately,
insofar as they affect the equation of state of the gas.
Our model of the correlated states is basically that of the
previous section. We suppose the density of helium
atoms to be constant outside a sphere of radius & and
zero inside. The results of Sec. IV C show that such a
density distribution appears to an electron to be a
spherical square well of radius & and height V= (#2/2m)
X4mna. Whatever the value of #, there will be bound-
state solutions of the Schrédinger equation when b is
sufficiently large. The ratio of the number of electrons
to be found in these correlated (or “trapped”) states
(IV:) to the number in the uncorrelated (or “free”)
states (IVy) is given by

N/ Ny= AP, (20)

where AF is the change in free energy of the system
associated with a transition of an electron from a free
state to a trapped state. We write

AF=AF q+AF gas, (21)

where the interaction energy between electrons and gas
atoms will beincluded in AF ¢1. AF zo5is readily evaluated,
since in the trapped state the gas is excluded from the
volume of a sphere of radius b. Thus we have

( oF L7 b%) = L (22)
AF ggs=|—) (—5w0®)=5mb%p. 22
g 5 V) . 3 sTO°p

We are, however, only partially successful in evaluating
the free-energy change of the electron.

Writing AFg=AEq— TASel, we have AEg=—FE,
where Ej is the binding energy of the electron in the
spherical square well of height V' and radius b. This
quantity is readily evaluated, although no closed expres-
sion can be given. We have not succeeded in evaluating
AS¢1, whose determination requires a knowledge of the
density of states of the system for electrons in the
trapped states. We will discuss this quantity somewhat
speculatively below, concluding that it is unlikely to
change any of our results qualitatively. Meanwhile, we

25 M. Coopersmith, Phys. Rev. 139, A1359 (1965).
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500 associated with the process. There are at least two con-
400k tributions which we can estimate, but we are not able to
00l give a complete calculation of the entropy change. 'I:he

AFg first contribution comes_ from the fact that the density
200r of translational states depends upon the mass of a
ook particle. If we apply the customary ideal gas theory to
s o the electrons, this makes a contribution AF,=—%5kT
N XIn(m*/m). Here m* is the effective mass of the bubble,
© -100r" aF! and m the free-electron mass. The result is only logarith-
Y 200} mically dependent on the mass, and will be very slowly
“ _30'0_ varying. If we use as a mass estimate one-half the mass
of the displaced atoms, the numerical value of this term,
-400f AE? at 4.2°K and 1 atm, is AF,/k==—80°K. Adding this con-
~500 | ! ) | tribution to AF’ would have the effect of lowering all the

0 5 10 15 20 25

WELL RADIUS (lo\)

F1c. 8. The quantities AFgas, AFe1, and AF’ as functions of square-
well radius b, for '=4.2°K and the saturated vapor pressure.

may examine the behavior of the quantity

AF'=AF4TAS=AF gpust+AEqg

=4rb*p—Ey. (23)
In Fig. 8 we show, as functions of &, the quantities
AF g, AEq, and AF’ for T=4.2°K and p=1 atm. In
Fig. 9, we'show AF’ versus b'for T=4.2°K and several
pressures. When the density is large and the pressure
not too large (i.e., at high # and low T) the plot of AF’
versus b shows a well-defined minimum with AF’ nega-
tive near the minimum. As the density is lowered, at
fixed 7, the value of AF’ increases and the minimum
becomes shallower until a critical value of the density
is reached, below which there is no minimum.

We now return briefly to a discussion of the terms
omitted so far in the calculation of AF, the free-energy
change associated with bubble formation. We must
evaluate the change in the entropy of the electron,

140
: P/Pg=0.6
1201
ook P/Pg=0.7
sor P/Ps=0.8

60| F16. 9. The partial
free energy AF’ as a
function of square-
well radius b, for
T=42°K and for
the pressures indi-
cated. The pressures
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curves of Fig. 9 by approximately this amount so that
all the minima shown would occur at negative values of
AF. There will be an additional contribution to AF
from the vibrational degrees of freedom of the bubble.
This will have the effect of making AF still more negative
at the minimum. In Hooke’s law approximation, each
normal mode contributes a term AF,=kT In(fwo/kT)
to the free energy. We have assumed 7w <kT in writing
this expression. For the spherically symmetrical mode,
for example, this amounts to AF,/k=2—10°K.

Thus the effect of these contributions to AF is to
lower all free-energy curves to such an extent that
whenever the free-energy curve has a minimum the
value of the free energy is lowered by bubble formation.
In the discussion which follows we will assume this,
but we will not otherwise be dependent on an under-
standing of these contributions to the free energy.

We assume further that the bubble states are not
important when the free-energy curve has no minimum.
Under these conditions a bubble, if formed, will col-
lapse and eject the electron.

E. Self-Consistency of Model

In calculating the wave function and binding energy
of an electron in a “bubble” state, we made use of a
rather simple form for the density disturbance in the
gas, a square well whose radius was to be adjusted to
minimize the over-all free energy. This is certainly an
oversimplification. In this section we will derive a self-
consistent set of equations for the electron wave
function ¢ and the gas density #(R). We assume that
the electron wave function will adjust itself to the
average position of the gas atoms given by 7 (R). There-
fore, ¢ will be a solution of an effective Schrédinger
equation,

h? 2rh*a
——V2o+Ve=Ep; V=——nR). (24)
2m m
At the same time, we assume that the gas density will
adjust itself to minimize the free energy. Using the pseu-
dopotential [Eq. (6)] we can calculate the interaction
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energy of an atom located at position R,

2whia
(Vint> = ! ¢(R)
m

2, (25)

Then a straightforward calculation shows that #(R) is
given by

n(R
n

ET1 )—l—2kTB(T)[n(R)-—n0]

o

2rhia
=———]oR)[2. (26)
m

Here, B(T) is the second virial coefficient. n¢ is deter-
mined by requiring that the volume integral of #(R)
yield the number of atoms. Dropping small terms, we
find

rhia

2
n(R)=mn, exp{ — 27

o]
mkT
Equations (24) and (27) form a highly nonlinear set of
equations which we have not attempted to solve directly.
We regard the square well and its associated wave func-
tion as a trial solution for this set of equations. In
Fig. 10, we show the initial square well, the square of the
electron wave function, and the density function calcu-
lated by substituting the wave function into Eq. (27),
plotted as functions of R. The agreement between the
initial and recalculated density functions is fair. We
have multiplied |o(R)|%2 by (2x#2a/mk) in plotting
Fig. 10(b) so that this figure represents the interaction
energy of an atom, measured in temperature units.
We see that the classical turning radius of a 4°K ther-
mal atom approaching the electron is approximately
16 A. Therefore, the “bubble” will behave somewhat
like a (soft) sphere of this radius. We will use this radius
in estimating the mobility.

F. Calculation of the Mobility of a ‘“Bubble’’ Ion

In this section we will estimate the mobility of a
trapped or “bubble” ion. We base our calculation on
the result of the previous section, that the ion should
behave approximately like a sphere of radius =16 A.
Unfortunately, at the gas densities of interest, the mean
free path for atom-atom collisions (A,) is ~10 A, so
that neither kinetic theory nor classical hydrodynamics
applies accurately. We will therefore make use of an
interpolation formula which has been known for some
time.26 We must first discuss briefly the effective mass
of the bubble. If the situation were described adequately
by classical hydrodynamics, the carrier would have an
effective mass of one-half the mass of the gas displaced,
approximately 20 helium atom masses for the ions under
consideration. Since classical hydrodynamics is only

26 A, M. Tyndall, The Mobility of Positive Ions in Gases (Cam-
bridge University Press, New York, 1938).
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Fi1c. 10. (a) Square well pertinent to the discussion of Sec. IV E.
(b) Electron wave function, squared. (c) Density calculated from
Eq. (27), to be compared with the square well. The conditions cor-
respond to 77=4.2°K and the saturated vapor pressure.

approximately applicable, this is only a rough estimate.
However, in the formula to be given for the mobility,
the reduced mass between an ion and a helium atom
enters. As a result, the effective mass appears only
weakly in the final result as long as it is large compared
to the atomic mass.

The interpolation formula is arranged so that it re-
duces to the appropriate expression for the mobility in
the regions where kinetic theory or hydrodynamics be-
comes applicable,

¢ r 97y
p= 1+ :I
6mRL " 4nRQxMET) 2

(28)

Here 7 is the viscosity, and we have assumed that the
reduced mass of the ion is equal to the helium atomic
mass. For a gas of (classical) hard spheres, this may be
written as

45TV2 ),
= ) . (20)

e
o= (1 T2
6y R 128 R
Equation (28) is applicable to real gases.

V. INTERPRETATION OF DATA
A. Low-Field Mobilities

The data presented in Sec. ITI show that the mobility
of electrons in low-temperature helium gas is consist-
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F1c. 11. Variation of mobility with pressure at 4.2°K. The circles
are data points. The curve is calculated in the manner described
in Sec. V A.

ently lower than predicted by normal kinetic-theory
considerations [Egs. (1) and (7)]. At the highest densi-
ties the mobility lies below the kinetic-theory value by
a factor of approximately 10% As the density is lowered
the mobility rises rapidly, approaching the kinetic-
theory value at the lowest density studied (see Fig. 7).

The theory described in Sec. IV predicts that in the
high-density region the stable state of the electron is
one in which the electron wave function is localized in a
“bubble.” Equation (28) of Sec. IV F permits us to
calculate the approximate mobility of a “bubble” in
terms of its equilibrium radius (see Fig. 9) and known
properties of helium gas.

The theory given in Sec. IV also permits us to calcu-
ate the mobility of the “free” electrons [Eq. (1)] and
the relative probability of finding an electron in a
“free” state or a “trapped’’ state. If we assume that
in the intermediate range, where the electron is not
overwhelmingly in one state or the other, an electron
makes many transitions between the two states during
the time required to traverse the drift space, then we can
calculate the mobility for all densities from the equation

w=prustpepse. (30)

Here, us and u: are the mobilities of free and trapped
electrons and py and p:= (1—p;) are the probabilities
of finding an electron in the free state and the trapped
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state. The mobility—versus—pressure curve for T=4.2°K
predicted by Egs. (1), (28), and (20) is plotted in Fig.
11. It can be noted that the major qualitative features
of the data are consistent with the theory. First, the
mobility at high density is in rather good agreement
with the approximate theory of Sec. IV F. Second, a
very rapid rise to the kinetic-theory mobility is pre-
dicted at approximately the correct value of the pres-
sure. In quantitative detail, however, the theory pre-
dicts that the transition from the trapped-electron
behavior to the free-electron behavior occurs over a
much narrower density range than is observed. The
reason for this is that the quantity AF of Eq. (20) need
only change by a few times £7'~107% eV to cause the
transition to be nearly complete, and the terms con-
tributing to AF are so large that this small change in AF
occurs over a very narrow density range. We can only
make some rather speculative remarks about the actual
state of affairs in the transition region, in which the
mobility is rapidly varying. We assume that the fact
that the mobility in this transition region is low implies
that the motion of the electron does involve some cor-
related motion of helium atoms. The theory of Sec. IV
implies that the electron-helium-atom interaction is not
strong enough to produce thermodynamically stable
bound states at the densities involved here. In this
domain the free energy of the trapped state may be
lower than that of the free state, but the free-energy—
versus-bubble-radius curves do not have minima.

B. High-Field Effects

At the highest gas densities studied, the range of
electric fields available limited us to the region where
the drift velocity of the charges was proportional to the
electric field strength. At the lowest densities, the
behavior was that normally observed for “hot” free
electrons, although in this region the transit times
became so short that instrumental resolving times
severely limited the region we could study. In the
intermediate-density region, where the mobility is
strongly density-dependent, the electric field depend-
ence of the mobility was quite anomalous [see Fig.
4(b)]. The high-field data can be collected together
and compared by making use of a different type of
display. The ratio of the drift velocity to the thermal
velocity should be a universal function of the dimension-
less parameter eSN/k&T for iree electrons in helium gas.
That is, data taken at arbitrary values of &, p, and T
will lie on the same curve, provided the electrons are
correctly described by the usual kinetic-theory assump-
tions. In Fig. 12, we display our high-field data on such
a plot. The solid curve is obtained from accurate room-
temperature measurements.!® The low-field region,
where the electrons are still in thermal equilibrium, is
characterized by v proportional to 8. At high fields the
electron velocity distribution is determined by &, and
vg is proportional to §'/2. The experimental data, shown
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¥16. 12. “Universal” curve for “hot” electrons in the kinetic-
theory regime. The heavy solid curve is obtained from room-
temperature data. The circles are data points; the smooth
curves passing through them are intended as guides for the eye.

by dashed curves in Fig. 12, all show low-field drift
velocities below the kinetic-theory value, but appear
to converge to the universal curve for “hot” free elec-
trons at sufficiently high electric fields. Evidently the
correlation between an electron and a helium atom,
which lowers the mobility below the kinetic-theory
values in the intermediate-density region, is dependent
on electron energy. As the electron energy is raised, in
the high-field region, the correlation becomes weaker
and weaker until, at the highest fields, the behavior is
that expected for free electrons. We have not succeeded
in extracting quantitative information out of the high-
field phenomena.

VI. CONCLUSIONS

The experimental results reported here show that the
mobility of electrons injected into dense helium gas at

MOBILITY OF ELECTRONS IN LOW-TEMPERATURE He GAS

149

low temperatures is very anomalous. At the highest
densities the mobility is that of a heavy complex. After
a transition region at intermediate density, the mobility
approaches the expected kinetic-theory value at the
lowest density studied.

This behavior, including the values of the mobility
in the high- and low-density regimes, and the critical
value of the density at which the transition occurs, is
shown to be understandable in terms of the known
interaction of slow electrons and helium atoms. At high
densities a “bubble” state, similar to that previously
discussed in connection with electrons and positronium
in liguid helium, is thermodynamically stable. At lower
density a rapid transition to the kinetic-theory regime
is predicted. In the transition region a weakly correlated
state is evidently present. The experimental data at
high electric fields show that this correlation becomes
weaker as the electron temperature is raised, but do
not elucidate completely the nature of this intermediate
state.

None of the other models considered is able to account
for the observed variation of mobility with gas density.

The data, and their interpretation, provide strong
support for the “bubble” model for electrons in liquid
helium.
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