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A method of carrying out bootstrap calculations is described in which analyticity properties enter in-
directly. There are two main features: the use of a nonlinear Bethe-Salpeter equation which automatically
maintains the symmetry properties of amplitudes, and the use of crossing symmetry in the construction
of effective propagators. Two illustrative examples are considered. One is a simplified nonlinear equation
for the familiar static model of baryon-meson interactions. The other is a model for interactions mediated

by vector mesons.

I. INTRODUCTION

HE idea that the low-energy dynamics of hadrons
is primarily governed by crossing symmetry
is based on pioneering work by Chew, Low, and
Mandelstam (CLM).!? In applying this principle, they
developed an approximation scheme based on ana-
lyticity properties of the S matrix, practical exploitation
of which requires a drastic truncation of the number of
channels which are considered explicitly (“elastic
unitarity,” or various refinements). Since fluctuation in
the number of particles is also an intrinsic feature of
quantum field theory, it is not surprising that difficulties
often appear when this feature is artificially sup-
pressed.®* For this reason, there is interest in finding
ways to implement the CLM principle which do not
involve the CLM approximation. It is natural to
consider, for this purpose, more old-fashioned methods
of field theory—so called “off-mass-shell” techniques—
which, by incorporating more detailed information
about the variation of fields at nearby space-time points,
automatically take better account of fluctuations in the
number of quanta.’
The CLM principle involves the crossing symmetry
of four-line diagrams; the effective potential acting
between two particles is associated with exchange of

* Supported, in part, by the U. S. Atomic Energy Commission.
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5 The usefulness of the field idea in self-consistent models has
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particles which arise as bound or resonant states in
crossed channels, thereby giving rise to the cooperative
features of hadron dynamics. Another aspect of crossing
symmetry appears in three-line diagrams (which may
also be considered as subsections of more complicated
processes): The value of the vertex part must not
depend on whether a given particle is outgoing or in-
coming. While this ‘“‘vertex symmetry’’ does not direetly
influence the cooperative phenomena, it must be in-
trinsic to any valid calculational scheme. It is obvious
that vertex symmetry is not compatible with any
scheme in which the total number of particles which
are considered to exist at any given time is arbitrarily
limited.

It has been suggested that a calculational method
with manifest vertex symmetry can be based on the
Bethe-Salpeter (B-S) equation.® So far, this method has
been used only in a rather simplified approximation,”?
and there may be some doubts as to how the method
could be extended to higher orders of approximation.
The purpose of this paper is to discuss such an exten-
sion, but for the sake of readability, we shall concen-
trate on the next order of approximation. The main
problem concerning still higher orders of approximation
appears to be how to decide which of several possible
routes it would be most expeditious to follow.

The assumptions on which the procedure rests are as
follows: We assume that some underlying local field
theory exists and has the analyticity properties sug-
gested by the regularized perturbation expansion.

6 R. E. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964).

7R. E. Cutkosky and M. Leon, Phys. Rev. 138, B667 (1965).

8K. Y. Lin and R. E. Cutkosky, Phys. Rev. 140, B205 (1965);
K. Y. Lin, Carnegie Institute of Technology dissertation, 1966
(unpublished).
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However, the “fundamental” fields are assumed to be _

so removed from low-energy hadronic phenomena as to
be useless for calculational purposes. Instead, we use
phenomenological constructs which are derived from
the scattering matrix, with field theory being used to
justify the existence, and suggest the form, of off-mass-
shell quantities. Dynamics is put in through the CLM
principle: Long-range effects, i.e., those associated with
nearby singularities in the space of complex momentum
variables, dominate the structure of the low-lying
hadronic states. Short-range effects are assumed to be
adequately representable through a small number of
adjustable parameters (which are to be introduced in
a symmetrical way, so that, in accordance with Chew’s
idea of ‘“nuclear democracy,” the covariance proper-
ties*? of the bootstrap equations are not spoiled). In
formulating the approximation scheme, we rely on the
empirically demonstrated dominance of ‘‘quasitwo-
body” states. '

II. OUTLINE OF PROCEDURE

Before discussing any specific details of the method,
we give a list of the main steps: (1) Assume a set of
particles (that is, assume the quantum numbers; the
masses and coupling constants are to be adjustable).
(2) Calculate the propagators and vertex functions. In
the lowest approximation, we might use a regularized
pole approximation for the propagators. In order to
maintain vertex symmetry, the vertices (with all
particles off of the mass shell) will have to be approxi-
mated not by constants nor even by form factors, but
by functionals of the Bethe-Salpeter amplitudes (which
are vertices with one particle on the mass shell). (3)
Solve (in some approximation) the ‘“homogeneous”
Bethe-Salpeter equation, and normalize the amplitudes.
Since the vertices are functionals of the amplitudes,
this is really a nonlinear problem. At this step the
masses and coupling constants are determined, as well
as the explicit form of the vertices. (4) Solve the
inhomogeneous Bethe-Salpeter equation to determine
the scattering amplitudes; this is a linear problem. The
self-consistency of the quantum numbers assumed for
the bound states and resonances is checked in this
step. (5) Using crossing symmetry, calculate improved
approximations to the propagation functions and the
vertex functionals.

Steps (2) and (5), which give the scheme a recursive
structure, are the novel points of this method. However,
most of the ideas are already contained in some earlier
papers by Balédzs' and the author.!! To aid in picturing
the approximation scheme, we shall introduce the
notion of “quasicurrents,” which resemble the field-

9 J. G. Belinfante, R. E. Cutkosky, and G. H. Renninger, Seminar

on High Energy Physics and Elementary Particles Trieste 1965

(International Atomic Energy Agency, Vienna, 1965), p. 865.
0T, P. Bal4zs, Phys. Rev. 141, 1532 (1966).
1 R. E. Cutkosky, Rev. Mod. Phys. 33, 448 (1961); Phys. Rev.
125, 745 (1962) ; Nucl. Phys. 37, 57 (1962).
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theoretical currents but are constructed from the S
matrix. However, these quasicurrents are only defined
recursively, as one successively identifies and eliminates
various nonlocal effects.

A quasicurrent with given quantum numbers £
(charge, etc.) is to be constructed by taking a pair of
particles (agbs) - (or possibly more) whose quantum
numbers add up to the right value, and which are
considered to be on their respective mass shells. The
total angular momentum of this set in its center-of-mass
frame is projected into the desired value. The squared
center of mass energy s; of the set is to be varied and
represents the momentum transferred to the quasicur-
rent J;. Then we consider a scattering amplitude Sz,
with a total of 2z particles either entering or leaving.
The “matrix element” of # quasicurrents will be identi-
fied by means of the poles and normal-threshold absorp-
tive parts of Sen in the # variables s, after the contribu-
tion of simple Feynman graphs to the same absorptive
parts is eliminated; we shall speak of “extracting the
quasicurrent interaction” from S, It will usually be
assumed that subtraction are unnecessary. For given
quantum numbers £, there are obviously infinitely many
candidates for J¢; of course, Lagrangian field theory has
a similar ambiguity. It is not clear how this ambiguity
and the question of subtractions are related.

In order to show that the nonlinearity of the vertex
equation used in step (3) is not necessarily a source of
grave difficulties, we shall consider a simple example in
Sec. V. Kinematical questions involving spin will be
ignored in this paper. However, in Sec. VI we shall
consider, as an illustrative application, properties of
vector-particle propagators which seem to be useful in
some current models.

As a final remark, we wish to emphasize that this is
an approximation scheme which is directed towards
certain specific cooperative phenomena and which is
useful in a relatively low order. We do not wish to
suggest its ad infinitum extension, because we 'think
that at very small distances it will no longer be possible
to maintain the phenomenological distinctions between
the strong, electromagnetic, and weak interactions.

III. CONSTRUCTION OF PROPAGATORS

Suppose we wish to construct a propagator for the
particle ¢. For simplicity, let us assume first that with
the given quantum numbers £ there is a single pole
(possibly a resonance pole) in appropriate two-particle
scattering amplitudes. Let us suppose that we have
calculated these scattering amplitudes from the Bethe-
Salpeter equation, perhaps in the ladder approximation.
The quasicurrent J; is associated with a particular pair
of particles (a,b) (or perhaps with a linear combination);
we focus our attention upon the partial-wave amplitude
T ¢(c), which contains the effective interaction between
the quasicurrents Jy and Jg This amplitude T'p¢(c) is
a function of the center-of-mass energy, which we
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denote by c; it will possess both right- and left-hand
branch cuts in this variable. We represent T'g;(c) as
follows:

Tpe(c)=Te ()Gre(©)Te(c)+Trl0)+T'(c). (1)

Here I':(c) is a vertex function I'4s(c) with both ¢ and &
on their mass shells. The contribution of all left-hand
branch cuts is included in T'1(c), and T"(c) is a some-
what more complicated term which is to be subtracted
in order to avoid double counting. The term 7'z is
eliminated by considering the absorptive part of T’y
which is associated with the right-hand cut. Since I'¢(c)
is known through the calculation in step (3), we obtain
Gyi(c). Note that the pole in G is guaranteed to have
the correct position and residue through the calculation
in step (3). The first term on the right-hand-side of (1)
is what we call the quasicurrent interaction term.

We determine 7’ by considering a use to which
Gyi(c) will be put: We are going to calculate the
scattering b;+bs — a;+ds, perhaps again in the ladder
approximation. The potential will be given by

I (017‘22 3 517b2) =T (dI:BI’C)GE’E(C)P (a2;b2;6) ’ (2)

where now none of the particles is restricted to the mass
shell. When we iterate this term by means of the B-S
equation, we generate the graph B in Fig. 1. By crossing
symmetry, if we take the solution of the B-S equation
which uses the potential of Eq. (2), and project out the
cross-channel partial wave which contains the quasi-
current interaction, we should obtain 7'y ¢(c) again. For
consistency, therefore, 77(c) must contain the right-
hand absorptive part of graph 1(b). If we go beyond
the ladder approximation, and include graph (c) of
Fig. 1 in the interaction I(a1,ds; b1,b2), then 77 must
also include the right-hand absorptive part of this
graph.

Note that if Tw¢(c) contains anomalous thresholds,
these are contained either in 7" or in the vertex factors,
so that G will have only the normal thresholds.

IV. SYMMETRY VERTEX EQUATIONS

Symmetrical vertex equations can be constructed
according to the following method: We form a func-
tional TO(T';; a,b,c) of the (truncated) Bethe-Salpeter
amplitudes T', which has the property that it auto-
matically reduces to the appropriate amplitude when
any of the three particles is on the mass shell
[TL2(T; bc)=Tau(b,c)]. We shall use our knowledge of
the singularity structure of graphs which contain
vertex parts to improve the extrapolation of I' away
from the mass shell. We use the approximate functional
I and appropriately constructed propagators in form-
ing an effective interaction I(T';), which is to contain
all irreducible graphs up to some given order. The
“homogeneous” Bethe-Salpeter equation will then take
the form

Ta=A.I" (Fz) ’ 3)
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Fi1c. 1. Graph (a) represents the quasicurrent interaction; (b)
and (c) describe two subtraction graphs. The dashed lines repre-
sent particles which are on the mass shell.

where A is a nonlinear integral operator on the I' which
corresponds to a set of irreducible vertex parts. (We
shall use consistently, in this section, a subscript letter
on a function to indicate that its value on the corre-
sponding mass shell has been taken.) Since I is ex-
pressed in terms of the I';, AT can be expressed as a
somewhat more complicated operator R acting directly

on the I';: T =R.T,. (4)

Equations (3) and (4) automatically possess vertex
symmetry, provided that I'? involves the particles (a,b,c)
symmetrically; if a second particle is also put on the
mass shell, the form of the resulting equation

Tap= Rabrz (5)

is independent of which of the two of Eq. (3) we start
with. Moreover, for given T',, I(T';) is self-adjoint, so
that (in contrast with the CLM approximation scheme)
there is no difficulty in maintaining simultaneously
vertex symmetry and the symmetry of the scattering
matrix.

We might use for the functional I'°(T';; a,b,c) any of
the following expressions®?:

A=+ T+ Tc—Tap—To:—TcatTate,
B=T0p [(Tal'bc+ Tl ca+T'Tab)
—2(T T actT ol satTeal'en) ]
+2 (I‘ab+rbc+rca—rabc) )

C= % (FGI‘ b/rab+rbrc/r bn+I‘cPa/Fca)
—%(Farbc‘{'rbrca'i" Fcrab)/rabc )
D=PabcPanPc/rabecPca- (6)

We could also use linear combinations of these or of
still more complicated expressions. Through use of an
arbitrary modulating function F(a,b,c), we can further
generalize any I' as follows:

I(Pa; a,0,0)=F (a,0,0)T°(Ts/Fu; aby0). (1)

Our rule for improving the approximate functional
is an extension of that used in the last section. We
consider a six-line amplitude and project out the part
which contains an interaction between quasicurrents
Jay Jp, and Jo:

Tapy(a,b,c)=Ta (@)Gaw ()Tp(0)Gpgr (B)T'5 () Gy (c)
XT(a,b,c)+T"(abic). (8)

12 These formulas can be used literally if the particles are
spinless. Otherwise I' has several components, which must be
treated separately.
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Here 77(a,b,c) is to contain all the terms which would
give T' an incorrect analytic structure, i.e., left-hand
branch cuts in any of the energy variables a, b, or ¢, as
well as terms which correspond to graphs not sufficiently
connected to possess, simultaneously, poles or normal
thresholds in @, &, and ¢, etc. In other words, the rule is:
calculate Tegy(a,b,c) using the G and T and all appro-
priate Feynman graphs; then choose the I' so that the
answer will have the analytic structure that would be
required by a Lagrangian perturbation theory in which
all the particles were “elementary.” (The rule of Sec.
IIT can be expressed in the same way.) For example,
I'(a,b,c) should have the appropriate anomalous
threshold corresponding to the graph shown in Fig. 2.

Now, I'° will have anomalous thresholds, but they
will be in the wrong places, in general, because of
replacing some of the variable energies by fixed masses.
One way to fix this would be through use of a cleverly
chosen modulating function in Eq. (7). In order to
formulate concisely a somewhat more systematic
procedure, we introduce a projection operator P, which
means, ‘“take the mass-shell value”; PT'=Tq3.. We also
select a suitable function K (a,b,c), which is chosen to
suit convenience, but must satisfy PK=1, not have
any (incorrect) singularities too close to the mass shell,
and lead to convergent integrals. Then, a zero-order
approximation to I' is provided by y=KPFT'; another
approximation is given by Ay, but in general,
PAy#T ... We may use, as a corrected vertex func-
tional, the following:

I‘OI(PZ) =T (Fa:)'i‘A'Y"I‘O (A,’y) . (9)

The expression (9) retains all the desirable features of
the original I and in addition we have added in a
function which contains some of the correct anomalous
branch cuts, at the same time subtracting the corre-
sponding incorrect branch cuts. Unfortunately, not all
singularities correspond to irreducible diagrams, so we
have to go further, and use in (9) a ¥’ which might be
obtained by iteration:

v'=vy+Ay—KPAy. (10)

This procedure can be continued, and will enable us to
introduce into the operator R the anomalous threshold
discontinuities of I' which lie in some region of the
variables a, b, and ¢ which is near to the mass shell. The
normal threshold discontinuities have to be incorporated
into I indirectly, by having the right anomalous branch
cuts, and through the solution of Eq. (4); the normal
thresholds are, of course, always in the right place.
The above discussion pertains to the problem of con-
structing, in a certain approximation, the nonlinear
operator R which appears in Eq. (4). The problem of
solving (4) is much harder, and we have to consider
whether it is feasible. A simple iterative scheme con-
structed along the following lines will often be effi-
cacious. It should be noted that the most straight-

R. E. CUTKOSKY

154

forward iteration of (4) will usually diverge, but the
iteration can often be controlled through a separate
treatment of the coupling constants. We write the nth
approximation in the form T'.*(d,c)=ges."Ha"(b)c),
where PH=1. The equation

g"=PR(g"H") (11

is a nonlinear algebraic equation for the gqp.”, if the H”
are considered as given functions; this equation is
solved for the g’s. Then we write

Xom(8,6) = (gave™) ' Ra(gH") (b)0) . (12)

A linear combination of the form H»"=(X"+ (1—t)H"
can be used to begin the next step. (For the model
considered in the next section, it is convenient to take
t=1%.) Note that if R is a linear operator, and we have
to find the first eigenvalue instead of a scale factor for
the solution, the procedure given reduces to a standard
method. In the case of our nonlinear equation, we are
also looking for the solution in which the effect of the
attraction is greatest, because we do not want the same
potential I(I';) to have any states which are more
deeply bound ; this fact helps convergence.

In the ladder approximation, Eq. (11) can be written
in the form

gabc=2efg Dubcefﬂgafﬂgebggefc, (13)

where the factor D,».*/? depends only on the G’s and
on the H™, and not on the form of the functional I'°. The
form of I'* enters only indirectly; it affects the form of
the solution H”. In previous work, the approximation
made was that the form of A was chosen on the basis of
intuition and general arguments, and an iteration was
not carried out.*7:8

V. A SIMPLE MODEL

We shall consider here, as an illustration, the so-called
static model of the interaction of baryons and mesons,
which has been treated according to the linear (non-
symmetric) Bethe-Salpeter equation by Belinfante and
Renninger,®® whose work we shall follow. Before we
proceed, however, we must emphasize that there is
actually a fundamental inconsistency between this
model and complete vertex symmetry, because the
mesons are not ordinarily considered as bound states of
baryon-antibaryon pairs, and in fact, virtual mesons can
be treated as remaining on the mass shell. Moreover,
the prescription given in the last section for improving
the form of the vertex functional becomes ambiguous,
because the anomalous thresholds all coincide with
normal ones. In our model, we shall only try to maintain
symmetry between the two baryon lines, and for the
improvement term A<y shall take a function suggested
by the form of the amplitude for a deeply bound state
of two equally massive heavy particles. As usual, we

(1]936J> G. Belinfante and G. H. Renninger, Phys. Rev. 148, 1573
06).
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cut off the meson momentum integration at large
values, and, as in Ref. 13, we approximate the form
factor by a delta function centered at a meson energy
which we take as the unit.

The interaction 7 (a,b,e) depends on the total energy e
(measured from the baryon mass) and also on the
energies ¢ and & of the final and initial mesons, respec-
tively. In the ladder approximation 7 takes the form

I(a,b,e)=1T'(a—e,a+b—e)G(at+b—e)
XT(a+b—eb—e), (14)

where I'(a,b) is the vertex function, G(e) is the baryon
propagator, and 7 is a suitably normalized Racah
coefficient for the representations to which the multi-
plets of degenerate baryons and mesons are assumed
to belong. [In the SU(6) model, »=11/15.] With the
notation ¢(a)=T'(q,0), the vertex equation takes the
form

¢(a)=CrT(a,a+1)G(e+1)T (e+1,1)G(1)p(1), (15)

where C is an uninteresting numerical factor that enters
via the suppressed integration. The normalization
condition is®13:
1=Co(1)°G' (1)+Crré(1)°G(1)?

X[T (1,26 (2)+2r(1,21'(1,2)G(2)], (16)
where

G'(a)= (dG(a—e)/de) e
and
I’(a,b)= (dT'(a—e,b—e)/de) emo.

With use of (15), the normalization condition simplifies
to

1=Co(1PG(IG'(1)/G(D)+G'(2)/G(2)
+217(1,2)/T(1,2)].  (17)

We shall choose the improvement term Ay to be a
function of the squared sum of the four-momenta of
the incoming and outgoing baryon lines, as is suggested
by the form of the B-S amplitude for a deeply bound
state. It may be parametrized as follows:

Ay(a,b)=¢(0)B(4+a+0b)".
A family of suitable vertex functions is given by
¢(0)B e {¢(a)¢(b) ¢(0)4B }
A+a+d $(0) (A+a)(4+D)

(18)

I'(a,b)=

+<1—a>{¢<a>+¢<b>—¢<o>

B B B
x[ +——+1——]} . (19)
Ata A+b A

We use the following approximation for the baryon
propagator:

G(a)=a"48. (20)
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function. AN

The term B is supposed to represent the effect of the
branch cut of G(a); it includes contributions from very
high energies which lie outside the region of validity of
our model, so we treat it as an adjustable parameter.
In fact, such an adjustable parameter is necessary, in
order that (17) can be satisfied by the solution to (15).
An adjustable factor was used in Refs. 7 and 8 to allow
normalizability ; the present model allows us to under-
stand that factor in a more physical way. When the
static model is treated according to the CLM scheme,
a similar adjustable parameter referring to high-energy
phenomena outside the model is also needed, if a
solution is to exist, as shown by Huang and Low! and
Huang and Mueller.!?

The cutoff energy fixes the energy scale of the model,
and also the value of C, which determines a multi-
plicative factor in ¢(a). The properties of the solution
do not seem to depend very much on the parameters
A, B, and q, at least if a=~2, in which case Eq. (15) has
the property that ¢(a) for small values of a is not very
sensitive to the asymptotic value of ¢ for large a. At
least in this case, the iteration method described in the
last section seems to converge quite rapidly, if one
starts, for example, with a trial solution which is
constant.

If a is chosen to have the special value

a=¢(0)/[¢(0)—¢(1)]=(1—h)7, (21)

the values g=¢(0) and gh=¢(1) are given by equations
in which higher meson energies do not enter:

g=Crg*n*(B+1)

aAd
X {h—l—BI:—————
A+2 (A+1)2

B (l_a)(Aj-l-—jfﬂ} (22

gh=Crg®h(B8+1) (8+3)

aAd
h+B
X{ + [A+3 (44+1)(44-2)

il )] e

14 K. Huang and F. E. Low, Phys. Rev. Letters 13, 596 (1964);
J. Math. Phys. 6, 795 (1965).
15 K. Huang and A. H. Mueller, Phys. Rev. 140, B365 (1965).
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If B=0, there is one solution with 2= (8+1)/(6+1)
(the question of uniqueness has not been looked into in
the general case). A linear equation with the same G(a)
would also lead to this value for 4. In order to discuss
the normalization, it is necessary to construct the
entire solution, because the derivative of ¢ () is needed.
It appears that 8 usually lies in the range $ <8 1. The
value of Cg? remains close to the value obtained from
the linear B-S equation, showing that the vertex modi-
fications tend to damp out the high-energy contribu-
tions, and thereby compensate for the use of a propa-
gator which remains large.

A detailed discussion of the results is omitted. The
main point of this section is that it is possible to con-
struct reasonable looking nonlinear equations which
are not only easy to solve, but whose solutions appear
to have a reasonable behavior. Although this example
is rather academic, it is possible that it would give
interesting results if applied to baryons which were not
assumed to be degenerate.

The off-mass-shell scattering amplitude 7'(a,b,e) is
the solution of the equation

T(a,b,e)=1(a,b,e)
+ / (I (0,6,0)G(c—)T(che), (24)

where I(a,b,e) is given by Eq. (14). The mass-shell
amplitude 7 (e) is obtained by setting a=b=e¢. A simple
approximate way to solve (24) in the neighborhood of
the pole at e=0 is to use Schwinger’s variational method
with a trial function proportional to ¢(e). The ampli-
tude 7T'(e) has both right- and left-hand branch cuts,
which are related by crossing symmetry. The integral
on the right side of (24) does not have a left-hand
branch cut, so this must be provided by I(ee,e)
=7¢(e)?G(¢). Therefore, when we solve the scattering
problem, we learn something about the nearby singu-
larities of G, and have the possibility redoing the
calculations with a more exact form for G(¢). However,
in the present model we would still need to use a
parameter like B to represent more distant parts of the
branch cut of G(e). If the baryons were treated rela-
tivistically, or if meson-exchange forces were included
in I(a,b,e), then the integral in (24) would also contri-
bute to the discontinuity across the left-hand branch
cut.

VI. PHENOMENOLOGICAL VECTOR-MESON
PROPAGATORS

The ideas presented above can be applied to a feature
of phenomenological vector-meson interactions which
has been used in some recent work by Capps!® and also
by Jacobs and the author.’” In the treatment by Capps,

16 R. H. Capps, Phys. Rev. 148, 1332 (1966) ; 150, 1263 (1966);
Phys. Rev. Letters 16, 1066 (1966).
17R. E. Cutkosky and M. Jacobs (unpublished).
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this feature was introduced as a “subtraction” term, in
order to maintain SU(6) symmetry. We shall show
that although this feature is somewhat model-
dependent, it is associated naturally with a composite-
particle picture of the vector mesons.

For the quasicurrent J we consider a pair of particles
which we may take to have a nonzero spin; then we
must specify the combination of helicity states that
enters into the definition of J and of the partial-wave
amplitude 7'. In particular, the spins may be chosen to
enter in manner corresponding to a “convective”
current Jy or to a “spin” current J,, that is, to vertices
having roughly the form

Tp=Py,—P/,

Tup e Suik?, (25)

where P, and P,/ are the momenta of the two particles,
S is an antisymmetric spin tensor, and k,=P,+ P,
Let us consider the absorptive parts of the amplitudes
T'11(k*) and T2 (k?), assuming, for the sake of argument,
that the vector mesons are stable against decay into
pseudoscalar mesons. In addition to the poles, these
absorptive parts contain contributions from two-meson
states and baryon-antibaryon states. We may expect
the two-meson contributions to be similar, and in fact,
they both have a P-wave threshold behavior. In Capp’s
model,'® the coefficients are proportional to the residues
of the poles. The threshold behavior of the baryon-
antibaryon states is different for the two amplitudes,
but it can be shown to be approximately self-consistent
to assume that T'y; and T are nearly proportional
outside the threshold region.” Since the threshold
region is small compared with the distance from the
threshold to the pole, we may neglect the difference.
The same remarks apply to the subtraction terms 7',
and 7". The natural expectation, therefore, is that the
two expressions I13;=T,1G*T,1 and Isg=TyGas*T,e
should have a similar dependence on #2, provided that
we don’t need a subtraction when we try to reconstruct
the entire propagator by integrating over the absorptive
part.

On the other hand, the usual pole approximation for
the propagators,

GMV(k) = (guv_kﬂkv/m2) (k2—m2)—1 )

when used with (25), leads to expressions for I;; and I3,
which have entirely different behavior when %2~0. This
suggests that a more exact phenomenology is obtained
if the form (26) is given up and the effective propagator
is constructed in such a way that both I;; and I, will
vanish when %? is close to zero. In order to do this, we
define several propagators Gui, Gas, Gy, etc., by using
the independent quasicurrents J; and J», and use them
with the corresponding vertex functions. (Vertex terms
corresponding to higher multipoles could also use Gaq;
the essential point is that the convective current ought
to be treated separately.) Thus, we exploit the non-

(26)
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uniqueness of the quasicurrents in order to satisfy
crossing symmetry more exactly.
The vertex equation has such a structure that a
solution with
BT,=0 27)
is self-consistent. That is, if we assume (27), the B-S
amplitudes will also possess this property, and it can
be retained in the procedure given in Sec. IV for
constructing the general vertex from the B-S ampli-
tudes. This suggests that a more accurate approxima-
tion than (25) is
Ty < B(Py— Py) —ku(P*—P"). (28)
[T already has the property (27).] A factor £~2 must
then be included in Gy; so that I3; will not have an extra
zero for small %% If we use the following expression
for I 22,
Lno=goge'SwSU W E () (B—m2) ™, (29)
where F(k?) is a phenomenological form factor, we
should use the following for q;:

In=gigy' T (Qu— Q) (Pr—P¥)+ (P*— P*)(Q*—0")]
XF &) (B —m?)™,  (30)

where Q, and Q,’ are the momenta at the second vertex,
satisfying Qu+Q.'= —k,, and g;, g/ are coupling con-
stants. Equations (29) and (30) are approximations, in
that we assume there that P, P’, Q, and Q’ are nearly
on the mass shell. For the full interaction, we also
need /9, etc.

Let us apply (29) and (30) to an example in which
the two vertices lie on the same baryon line, and assume
that the baryon mass M is very large. To the leading
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order in M, we find in the baryon rest frame that

Pr— PR QP— Q2 2M @31)

and
(Q-Q)u(P—Py~—4217,

so that the bracketed expression in (30) reduces to
4M%K2. Both I;; and I, in this case, depend on the
virtual momentum £k, in the same way, as is assumed in
treatments of the static model.’® (The contribution of
I1» vanishes.) In other words, our treatment of the
vector-meson vertices and propagators, which is both
relativistic and crossing-symmetric, provides a natural
generalization of the static model. Further implications
of (30) are discussed elsewhere.16:17

Our conclusion, therefore, is that the form of (30)
does not need to be imposed through choice of an
arbitrary subtraction constant but is a consequence of
crossing symmetry provided that in the dispersion
relation no subtractions are necessary. There are some
cases in which the nature of the interaction at small
distances may be such that we do need a subtraction,
and then the usual pole-approximation treatment of
vector mesons might be more accurate than (30). For
example, this might apply to analysis of electromagnetic
form factors in terms of vector mesons. As another
example we might consider the use of a gauge-invariant
theory involving the conserved baryon-number cur-
rent,'® in which we would have to replace (27) by Ward’s
identity in dealing with one of the vector mesons.
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