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Final-State Interactions and the Simulation of Resonances*t'
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It is shown that the singularities of the triangle or rescattering diagram cannot produce peaks in the total
transition rate. Rescattering bands can be seen on the Dalitz plot, but their projections into invariant-mass
plots do not produce peaks, if all events on the Dalitz plot are included. In other words, the Peierls mechan-
ism and its recent variants do not work, even if the singularity is on the physical boundary. The reason is a
cancellation of the peak, which occurs when the diagram without rescattering is added coherently to the
triangle diagram. It is also shown that interference of overlapping resonance bands does not produce the
previously expected peaks in the total transition rate or in the two-body mass plots in three different cases.
This result holds to 6rst order in the ratio of the resonance width to the diameter of the Dalitz plot.

I. INTRODUCTION

ESONANCES are observed as peaks in invariant-
mass plots, but are all the peaks really resonances?

Can some of the peaks be explained as kinematical
eAects? Can we 6nd mechanisms which produce peaks
without resonances?

%e shall discuss two groups of e6ects, which have
been assumed to be capable of simulating resonances.
Both arise from Gnal-state interactions of three particles.
We shaD show that neither can produce peaks.

The first group of eA'ects is based on the singularities
of the triangle or rescattering diagram. These are the
different versions of the Peierls' mechanism for gener-
ating three-body peaks. Goebel and others' have pointed
out that the original version does not work, because the
singularity lies on the wrong Riemann sheet. However,
in the modified and inverted versions' the singularity
can be on the correct sheet, i.e., on the physical bound-
ary. There has been criticism that these peaks would be
small and unimportant. What we shall prove is that
they do not exist at aD: The singularity on the physical
boundary wiD not produce a peak in the total transition
rate or in the mass plots, because one must add another
diagram (primary production without rescattering), and
the peak disappears in the process of coherent addition.
On the other hand, the singularity does produce a weak
rescattering band on the Dalitz plot, but its projection
into the invariant-mass plot does not show a peak, if we
include all events on the Dalitz plot.

The second group of suspected peaking effects has to
do with interference of overlapping resonance bands. 4

We shall show again that they produce no peaks in the
total transition rate or in the invariant-mass plots.

* Work supported in part by the U. S. Atomic Energy Com-
mission. Prepared under Contract No. AT(11-1)-68 for the San
Francisco Operations OKce, U.. S. Atomic Energy Commission.

t Based on parts of the Ph.D. thesis submitted to the Physics
Department of the Massachusetts Institute of Technology,
February 1966.

' R. F. Peierls, Phys. Rev. Letters 6, 641 (1961).' C. Goebei, University of Wisconsin Report, 1962 (unpub-
lished); Phys. Rev. Letters 13, 143 (1964);R. C. Hwa, Phys. Rev.
130, 2580 (1963);P. K. Srivastava, ibid. 131, 461 (1963);I. J. R.
Aitchison and C. Kacser, ibid. 133, B1239 (1964).' See, e.g. , C. Kacser, Phys. Letters 12, 269 {1964).

4 See, e.g., J. Gillespie, Final-State Interactions (Holden-Day,
Inc. , San Francisco, California, 1964).

Section II deals with the first group of effects, the
different versions of the Peierls mechanism. They are
reviewed in part A. There we discuss those aspects,
mainly kinematical, which can be understood without a
detailed knowledge of the triangle diagram. The im-
portant tool is the theorem of Coleman and Norton, ' '
with its classical space-time picture. In part 8, we state
our fundamental equation (12), interpret it in physical
terms, and arrive at our conclusions about the ob-
servable effects of the triangle diagram and the absence
of peaks in transition rates and invariant-mass plots. In
part C, we prove the fundamental equation, first in
perturbation theory, and then in the dispersion theory
of final-state interactions. Parts D and E should be
skipped by the general reader who is only interested in
the absence of peaks in the mass plots, but not inter-
ested in the calculation of the weak rescattering band.
In part D, we give the kinematics and the analytic
properties of the Born amplitude in order to 611 in
details for part C and to prepare and introduce notation
for part K, where we shall derive a convenient, explicit
expression for the triangle amplitude.

Section III treats the second group of sects, three
eBects based on the interference of overlapping reso-
nance bands. First we shall explain why peaks were
expected, and afterwards we shaD show why such peaks
do not arise.

FIG. 1. The original Peierls
mechanism. W

5 The general theorem was given by S. Coleman and R. K.
Norton, Nuovo Cimento 38, 438 (1965).' The theorem in the special case of the triangle amplitude was
6rst given by J. B.Bronzan, Phys. Rev. 134, B687 {1964).
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II. TRIANGLE SINGULARITIES, RESCATTERING
EFFECTS, AND THE PEIERLS MECHANISM

A. The Diferent Mechanisms and the
Triangle Singularities

1. The Origirtal Versiort of the Peierls Mechanism

Peierls' considered the diagram of Fig. 1 and observed
that this one-particle exchange pole can be inside the
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peak in W ?2

Fro. 2. The triangle
diagram for the original
Peierls mechanism, My =&2
=X*(1238),mr=ms=s, ms
=E.M2 is Reed, the singu-
larity in W2 is on the wrong
sheet.

'

now 6nd out where the triangle singularities are located,
at what energies, and on which sheets. We consider the
generalized case, ' where all masses are different.

Z. Location of the Triangle Singularities

Ml
FIG. 3. Classical space-time

process discussed in connection
with the triangle diagram.

' M. Nauenberg and A. Pais, Phys. Rev. Letters 8, 82 (1962);
R. J.Oakes, iNd. 12, 134 (1964); S. F. Tuan; Phys. Rev. 125,',1761
(1962).

physical region, i.e., the physical scattering amplitude
can become (almost) infinite. Because the exchanged
nucleon can be on the mass shel), it can travel in6nitely
far before it is reabsorbed, and this produces an in6nite
range of interaction.

Experimentally, we cannot have a beam of incident
E*.Therefore we study the production process E+ir ~
X+n+ir. Th.e Peierls diagram enters by unitarity: The
S* is produced by some primary interaction, and the
three-body interaction, i.e., the 6nal-state interaction,
is represented by the Peierls diagram. Because we are
only interested in the structure caused by the 6nal-state
interactions, and because we know nothing about the
structure of the primary production vertex, we replace
it by a point vertex and arrive at the triangle diagram
of Fig. 2. lV is the invariant mass in the initial two-body
channel f1''+ ir.

Naive unitarity seems to suggest that the peaks in the
amplitude of the Peierls diagram (Fig. 1) would produce
peaks in the (imaginary part of the) whole amplitude
(Fig. 2). This argument is wrong, because the general-
ized unitarity relation gives the discontinuity and not
the imaginary part (see part C of this section). If it
were right, as originally supposed by Peierls, a peak in
W'2 wouM simulate a three-body resonance in the 6nal
state. The predicted energy is 1490 MeV, suggestively
close to the Etsts (s s ). Peierls' also predicted four
other E*peaks, and others~ applied the mechanism to
meson and hyperon systems. Everywhere one obtained
a lot of predictions for peaks, and the agreement v.ith
the measured energies seemed to be good, although there
are no free parameters in the predicted energies. It is
usually not possible, however, to assign definite quan-
tum numbers, because kinematical peaks show up in
several angular momentum and isospin channels. Only
under special circumstances will a peak be much
stronger in one particular channel. ' ~

This is the Peierls mechanism in the original version
where the initial and final states (in Fig. 1) are the same.
This version does not work, because the singularity is on
the wrong Riemann sheet, as shown by Goebel. ' Let us

The two triangle singularities appear at the highest
and lowest energy 5" which allows all three internal
lines of Fig. 2 to be on their respective mass shells
simultaneously. This is the same as putting a11 lines on
their mass shells and the rescattering angle (=scat-
tering angle of Fig. 1) at its two extreme values s= &1.
Then all vectors are parallel in the center-of-mass frame.

What do we mean by "wrong sheet" P The triangle
amplitude has a threshold singularity at W'= (Mt+nit)'.
This is where the right-hand branch cut (unitarity cut)
starts, and the physical region (=physical boundary) is
just above the cut. If we move upwards, we never 6nd
any singularity. If we move downwards, the cut is in our
way and forces us to go into the second sheet immedi-
ately. If we 6nd a singularity here, it is very close to the
physical region. On the other hand, if a singularity lies
above the axis on the second sheet or below the axis on
the 6rst sheet, it is far away from the physical region.

On which sheet are the triangle singularities? Coleman
and Norton' and others' gave a simple and general
answer. The singularity of a Feynman amplitude is on
the physical boundary if, and only if, the diagram can be
interpreted as a classical process in space--time. For the
rescattering process (triangle amplitude), this means
(see Fig. 3):All three internal particles must be on their
mass shells, the decaying M~ must emit the m3 in the
backward direction (Hi ——m), nis must have enough speed
to catch up with m~ in order to rescatter, and m~ and ns3
must have enough rejative velocity to form M2. The
condition of Coleman and Norton also implies that the
singularity which corresponds to 8&

——0 is never on the
physical boundary.

Let us determine the energies of the singularities. We
assume that 8" is given and ask what the mass M2 is
which is being formed. %e start with the minimum
value W; '= (Mt+mt)'. Then Mt and nit are created
at relative rest. The invariant mass of m~ and ass mill be
called s, and it is given by

s =mP+niss+2nitEs,

Es (MP+nis' —ms') (2M t)——-'.
(1)

(2)

Ke call this s value s, , because s will decrease upon an
increase in 8". M~ and ms~ will move apart with in-
creasing velocity, and it will become harder for m3 to
catch up with m~. The invariant mass s decreases to the
point where m~ and m3 have zero relative velocity and
s=s; = (nit+nis)s. The corresponding value of Wi is
called S", and it is easily determined in the rest

Such a singularity is on the 6rst sheet with respect to the
threshold W'= (3E~+m1)', but on the second sheet with respect to
the threshold W'= (m&+ms+m&)', which is far away and neg-
lected in our treatment,
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system of m~ and m3..
W~~'= Mt'+ tli'+ 2ttt t'ai ) (3)

3. The Modhfied Pef',eris Mechanism

Here one takes tvro diferent resonances, M~ high
above the threshold ms+tls, and Ms low with respect to
the threshold mt+ms, i.e., for a given Mi, one chooses
Ms below the value gs of Eq. (1) and Fig. 4. This

+i=+(Ml)= (M s+tmss yg, s)(2tls) —1 (4)

E& is the energy of the decaying particle M& viewed from
the rest frame of the decay product m&.

The results of this analysis are contained in Fig. 4,
where the minimum values are the respective thresholds
and the maximum values are given by Eqs. (1) to (4).
The dashed line for s&s, corresponds to the particle
m3 moving in the wrong direction, the dashed line for
8'&8'm, ' to the particle ma not having enough ve-
locity to catch up.

The original Peierls mechanism (Mt=Ms) gives
singularities in 8' on the vrrong sheet, because M~' is
larger than s, i.e., Fig. 2 cannot be interpreted as a
classical process.

FIG. 5. The modified
Peierls mechanism (Mt
&M2, M2 close to
threshold): M~ is axed,
the singularity in W' is
on the correct sheet, but
we shall find no peak.

K%(
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might possibly account for the E*(1688).Kacser' con-
sidered the E's system with Mi =E*and Ms ——"*(1533),
but concluded that the effect would be rather too small
to be observable at present.

A related possibility is shown in Fig. 6: One works
without the resonance Ms and keeps s 6xed expers
merttally (at a low value). According to Kacser' this
should be called triangle mechanism rather than Peierls
mechanism. Such peaks in W' have been calculated by
Aitchison" for the Nmx system vrith M&=E* and
rescattering between the two s's (Fig. 6). It has been
suggested by Kacser and Aitchison" that such peaks
could be studied more easily in nuclear physics where
the statistics are better. They considered, e.g. , the nnp
system with Mi ——Li'* (16.81 MeV) and rescattering
betvreen the two n particles, and they made calculations
suggesting that 25% effects would occur.

FIG. 4. The triangle singularity
in W' as a function of s and vice
versa. Full line: The singularity is
on the physical boundary.

2A

2
Wmax

2
W

smin smox
=s~M 2

choice makes the rescattering process classically pos-
sible, and the lower one of the tvro triangle singularities
will lie on the physical boundary.

It turns out that the interval s;„&M2'&s, is quite
narrovr in most cases, particularly for three-meson
systems. This makes it dificult to find physical examples.

An example is the EE7r system shown in Fig. 5, with
Mi ——E*(891)and Ms=EX(1025, I=1)."Although Mi
is fairly high above the threshold (E+s.)=630 MeV,
gs,„is only 1030 MeV, which is close to the threshold
(E+E)=990 MeV, and Ms must lie in this narrow
interval (990, 1030). Figure 4 tells us that because the
experimental value M~=1025 MeV is near the upper
end of this narrovr -interval, 8' will be very close to
W; =(E*+Z)=1385 MeV. It was suggested that
this singularity in W could produce the EE7r peak" at
1420 MeV, named the E meson.

Another example, discussed by Aitchison, ~ is the Sex
system with Mt= p, Ms=tV*(1238). He thought this

' Kacser (Ref. 3) uses (as we do) the term "generalized Peierls
mechanism" for 3f1&M~. He then distinguishes between the two
possibilities that (i) the singularities are on the wrong sheet as in
the original version, or (ii) one of the singularities is on the correct
sheet. For this second possibility, we use the term "modified
Peierls mechanism. "

'0 R. Armenteros et al. , Phys. Letters 17, 344 (1965)."P. Baillon et al. , CERN Report, 1966 (unpublished)."I.J. R. Aitchison, Phys. Rev. 133, 81257 (1964).

4. The Irtverted Peierls Mechanism

In the modified Peierls mechanism, s is fixed at M2'
and one looks for a peak in 8"; in the inverted Peierls
mechanism, one fixes Ws (by taking a weak or strong
decay or an experiment at fixed beam energy) and looks
for a peak in s, which might simulate a tvro-body reso-
nance. One assumes as input a nonresonant rescattering
of the particles mi and ms (point vertex or scattering
length approximation). Of course, in both mechanisms
the peak is supposed to occur at that lV' or s where the
triangle singularity lies on the physical boundary.

An example is the study of the di-pion in the He'mx
final state at lovr energies. This is where the ABC
resonance was discovered, "and Anisovich and Dakhno"
used the triangle diagram (Fig. 7) to explain the ex-

pepk if' W2?

fixed
xperimentally

Fxo. 6. The modified Peierls mechanism with s fixed experimen-
tally at a low value: The singularity in W~ is on the correct
sheet, but we shall find no peak.

"C. Kacser and I. J. R. Aitchison, Rev. Mod. Phys. 37, 350
(&965).

'4 N. E. Booth, A. Abashian, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1.961).

"V. V. Anisovich and L. G. Dakhno, Phys. Letters 10, 221
(1964); Zh. Eksperim. i Teor. Fiz. 46, 1152 (1964) /English
transl. : Soviet Phys. —JETP 19, 779 (1964)j.
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perimental mm peak without assuming any structure in
the ex interaction.

Analogous effects have been calculated for the di-pion
in the Xvrw final state with M'=IV*(1238) in Refs. 12
and 15 and have been compared with experiment in
Ref. 15. Striking peaks were computed by Chang
and Tuan' for the Em in the Ex final state with
M,= *(1530).On the other hand, Bronzans studied the
EEw final state with M'=Ã*(1238) numerically and
did not get an observable peak. Peaks in nuclear physics
experiments are discussed in Ref. 13 using a variation
of Fig. 6 where one fixes 8"and looks for a peak in s.

Because the inverted mechanism assumes no 3f~

resonance, one must take two rescattering diagrams
instead of one: Both decay products of M & may rescatter
with mi, at least if 8" is fixed at a low value. For high
S' none of the two decay products is able to catch up
with m&, for intermediate values of S",only the lighter
one. We shall keep this in mind, but discuss explicitly
only one of the two analogous diagrams.

5. The 8"eak Peierls Mechanism

The original Peierls mechanism produced singularities
on the wrong sheet, but it predicted many of the
resonances and the predicted energies were suggestive.
The modified mechanism produces singularities close to
the physical boundary, but it is dificult to find examples
where M~ is high enough and 3f2 low enough.

It was suggested by Low" that one could do without
an M2 resonance, but instead take a large scattering
length for the rescattering. This corresponds to a nearby
pole (bound state or virtual state), whose existence
must first be established. This is again essentially the
modified mechanism with the diGerence that the pole
M2 is now below threshold.

On the other hand, Month" proposed that one does
not need any M~ pole as input in the s channel in order
to produce a peak in 8".He argues that a resonance 3f2,

W2

fixed

FIG. 8. The resonance-pro-
duction graph.

"Y.F. Chang and S. F. Tuan, Phys. Rev. 136, 8741 (1964)."F.K. Low (unpublished).
' M. Month, Phys. Letters 18, 357 (1965).

eok in

ABC 7

Fn. 7. The inverted Peierls mechanism: W' is fixed at a low
value, the singularity in s is on the correct sheet, but we shall find
no peak. 23~=excited state of baryon number 3.

whatever its mass, can produce a peak only in the
narrow interval (W;„s,W,„'). If one assumes no
structure in the s channel and lets M& vary over all

energies, one averages over the peaks in the narrow
interval and this might produce a peak again. The first
objection is that the inverted argument would hold as
well, and one could now produce a peak in both vari-
ables, t/t/' and s, with only M~ as input, while before one
needed a pole in one variable in order to produce a
logarithmic singularity in the other variable. The second
objection concerns the type of singularity produced: In
the modified Peierls mechanism, a pole in s produces the
triangle singularity in W, which is of the type (lnW),
i.e., it is infinite. In Months proposal, on the other
hand, one must integrate the transition rate over s, and
the end point of the integration at s;„=threshold
produces a singularity in t/V at 8', on the physical
boundary. But this singularity now is of the type
(W lnW) and therefore finite.

6. The Formula for the Triangle Singularities

Let us now turn to some mathematical detail and
calculate the singular energies. Consider first the modi-
fied Peierls mechanism where s is fixed at M2', and put
all particles on their mass shell. 8' is the invariant mass
of M» and m~, and the energies and momenta of both
particles are easily calculated in the rest frame of m3.

E(Mg) = (MP+ms' —ms')/2ms,

p(M, ) = (1/2m, )[M '—(m.+ms)']»
X[MP—(ms —ms)'Jt' (6)

(5)

E(m,) = (Ms' —mP —ms')/2ms,

p(m&) = (1/2ms) [Mss —(m'+ms)'$"'
X[MP—(m~ —ms) ] (8)

W'=MP+mP+2E(M~)E(m~) (+)2P(Mg)P(m&). (9)

One sees from Fig. 4 and from the space-time picture
that one must choose the lower root.

An analogous formula holds for the i.nverted mech-
anism. The explicit formula (9), with (5) to (8) inserted,
is quite complicated, but fortunately it is needed only
for exact numerical calculations. For a qualitative dis-
cussion one can more easily use the space-time picture
or follow the singularities on the Mandelstam-Dalitz
plot. (See the end of the next section. )

7. Classical Rescattering on the Bandits Prot

In order to become familiar with the patterns on the
Dalitz plot, we first study the classical case, where all
internal particles are on the mass shell and travel a long
distance between successive interactions at the vertices.
Besides the invariants s, t, and u, it is helpful to also use
the pair of variables (t,s'), where s& is the cosine of the
decay angle 0~ of the resonance at t=M~', measured in
the rest frame of M' (Fig. 3). We convince ourselves
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that s is linear in z& (for fixed t) by calculating s in the
rest frame of M&. Therefore, s&= &1 is on the boundary
of the Dalitz plot and this corresponds to collinear
events, i.e., all vectors are parallel in the overall rest
frame.

If we have resonance production without rescattering
(Fig. 8), we know that the event must lie somewhere on
the band t=M&' in Fig. 9. Exactly where it lies depends
on the decay angle: If 0~ is x, then m~ moves forward
(Fig. 3), its kinetic energy T& assumes its maximum, the
invariant mass s of mi and m3 assumes its minimum (for
t fixed at MP), and the event lies at the point A.

Now we turn to rescattering: m3 moves backward,
and if it can catch up with m&, these two particles will

rescatter elastically. Their invariant-mass s will stay
unchanged and the event on the Dalitz plot will be
displaced along the dashed line. It will be displaced
domnzvard along the dashed rescattering band, because
rescattering increases the kinetic energy of m& and de-
creases the invariant mass t of m~ and m3. Moving events
downward is possible only if the point A is above the
point C. At C, s assumes its minimum value, m~ and m3

Sb SgI /

FIG. 9. Rescattering in
the XKx system: N&=E*,
m] Xp 182 jl p 883 Ei

FIG. 10. The triangle singu-
larities in the s plane as functions
of the real parameter g '.

=Sb(W~)

=Sg (W~)

between C and E (in Figs. 9 and 10) which represents a
singularity on the correct sheet.

Are s, and s~ above or below the real axis? We have
seen that they occur where the resonance band t=M'
—i%I' crosses the boundary of the Dalitz plot. Be-
tween C and E and between F and G, we find that
(Bs/Bt) is positive along the boundary, so the singularity
in s is below the axis. Vice versa for the boundary be-
tween E and G and between C and F.

B. EBects of the Triangle Singularities:
The Fundamental Equation

The modified and the inverted Peierls mechanisms do
not produce peaks, even if the singularity is just below
the physical boundary.

In order to prove our statement, we observe that
along with the triangle amplitude A&'& of Fig. 11(a) we
should also consider the resonance production (or pri-
mary interaction) amplitude A&"& of Fig. 11(b). The
triangle amplitude A&') represents a rescattering cor-
rection to the resonance production amplitude A&"&, and
both must be added together coherently. Convenient.
variables for this purpose are s and s„ the cosine of the
"decay" angle of the s system in its own rest frame, i.e.,
the angle between m~ and m2 in the rest frame of s. The
invariant mass distribution R(s) is the sum of the
distributions in the partial waves,

R(s) = r g (21+1)
~
A i (s)

~

',
L=O

(10)

are at relative rest, and m3 just barely manages to catch
up with mj. If A is below C, rescattering is impossible.

At the point B, it is the particle m2 which moves
backwards and can catch up with m& if its velocity is
high enough, i.e., if B is above D. Rescattering displaces
the event downwards on the plot along the dotted line of
constant N.

From this Dalitz plot we can read off the motion of
the singularities (of the triangle amplitude) in the s
plane under a variation of W' (see Fig. 10). We have
seen that the singularity si, (i.e., the rescattering band)
appears at the point where the resonance band leaves
the Dalitz plot. At the other end of the resonance band
s=s, and rescattering between m~ and ms is never
possible. Therefore, the singularity s, must always be on
the wrong sheet.

When W2= (Mi+mi)', the resonance band touches
the Dalitz plot at E, and the two singularities s and s~
coincide (apart from the small imaginary parts). Upon
increasing 8"' they move apart until sb reaches its
threshold value so at C. After that, s, and sy both in-
crease (Fig. 10). Note that it is only the short piece

W

W2

s,r&

FIG. 11. (a) The triangle amplitude A(') (rescattering ampli-
tude). No structure assumed for the elastic (m1,m3) amplitude.
(b) The resonance production amplitude A(").

where r is the width of the Dalitz plot at a given s. The
different partial waves add incoherently because the
Legendre polynomials P&(s,) are an orthogonal system
on the Dalitz plot (for every fixed s). The partial-wave
amplitude A ~ is the sum of the triangle amplitude A ~("

and the resonance production amplitude A ~("),

A i(s) =A i'"'(s)+A i&'& (s) .

The crucial observation is that Ag("& cannot be con-
sidered as a background term because it also has
singularities, indeed singularities of exactly the same
form and at exactly the same energy as A &(".The only
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M(2-

I

sb
I

sa

R (s) =No. of events

phase space

Fro. 12. (a) Dahtz
plot for the Feynman
diagrams shown in Figs.
11(a) and 11(b). (b) The
corresponding invariant-
mass distribution.

In the modiied Peierls mechanism we have resonant
rescattering, i.e., the triangle amplitude is multiplied by
a resonance factor with peak at s= M2'. To get the total
transition rate, we have to integrate over the invariant-
mass plot. The triangle diagram (with resonant rescat-
tering) by itself has two peaks: the rescattering peak at
s=sq and the resonance peak at s=3f~'. For one par-
ticular total energy 8"=8 &, the two peaks coincide and
one would expect a peak in the total transition rate.
However, if we take the sum of the two diagrams A("
and A("), -both peaks are absent in the invariant-mass
plot. Therefore, no special effect occurs for 8'=lVg
when the two singularities coincide, and the modified
Peierls mechanism also does not work.

We conclude that the singular part of the rescattering
amplitude LFig. 11(a)g has exactly the effects that are
expected classically:

ij

sb so

diGerence is that A ~'") has both singularities s and s ~ on
the physical boundary, while A &"& has the one with the
higher energy, s„on another Riemann sheet.

If we denote the singular part of a function A by A,
the fundamental result, which shall be proved in part C
of this section, is

A~~"&+Ay&'&=Sg~'"& for s sq, (12)

where S~ is the elastic (mi, m3) scattering matrix, and s q

is the lower of the two singular points of A ~("~. The eGect
of the rescattering diagram is therefore nothing more
than a multiplication of the singularity from the reso-
nance-production diagram by a phase factor S&.

Let us describe what happens on the Dalitz plot in
Fig. 12(a) (for fixed W'). The resonance production
diagram A &"& of Fig. 11(b) produces by means of its pole
the usual resonance band at )=M~'. The corresponding
invariant-mass distribution in s (a projection of the
Dalitz plot) is shown in Fig. 12(b) and, as we expect, it
is a step function with singularities at s and s~. The
partial-wave contributions behave like

~
ln(s —s,) ~

' near
s„ like

~
ln(s —sq) ~' near sq and are peaked at s, and sb

for low partial waves.
The rescattering diagram (triangle diagram) has a

logarithmic singularity at s=s&, which produces the
rescattering band in Fig. 12 (a) (vertical, dashed band).
One might think that its projection into the invariant-
mass plot would produce a peak. That this is not the
case can be seen from Eqs. (10) and (12):The inclusion
of the triangle diagram does not change the invariant
mass plot at s ~, therefor the inverted Peierls mechanism
does not work.

( A '"&
~

' produces the horizontal band, the interference
term 2Re(A&"&A&'&*) removes events from the overlap
region with the vertical band, and

~

A & '&
~

2 puts the same
number of events back on the Dalitz plot in the form of
a weak vertical band.

(1) It does not change the total number of events on
the Dalitz plot, i.e., the total transition rate is not
enhanced at the singular energy (no modified Peierls
mechanism).

(2) It shifts the events on the Dalitz plot around in a
very special way: The invariant mass of the rescattered
particles stays unchanged. Therefore, there will be no
peak in the projection of the Dalitz plot (no inverted
Peierls mechanism).

(3) It produces a weak rescattering band on the
Dalitz plot; however, as stated under (2), the projection
of this band does not give a peak if we project the entire
Dalitz plot, since the same number of events is missing
from the overlap region. This rescattering band is an
observable effect of the triangle diagram, and it has been
detected in nuclear physics by J. Lang et al." Their
three-body system is C", p, n; Mi=N"* (3.56 MeV)
and the rescattered pair is (p,n). The effect is barely
observable, and the peak is about 100 times smaller
than the true S"*resonance peak and about four times
smaller than the background. Theory and experiment
are in rough agreement. "

It is not surprising that we arrive at these classical
results when we consider the singular part of Feynman
diagrams, because singularities arise when all particles
are on their mass shells and can travel in6nitely far
between successive interactions.

The situation is basically different, if a stable particle
such as the deuteron appears in the 6nal state as the
particle Ã2, because the diagram A&"& is absent (if the
deuteron is detected), or it is not added coherently (if
the deuteron is not detected). If the deuteron appears in
initial and Anal states, then one needs, a separate
discussion.

Let us now discuss two objections to the conclusion
that no peaks will be produced in the total transition
rates and in the invariant-mass plots.

~9 J. Lang et al. , Phys. Letters 15, 248 (1965}.
2O J. Lang et al. , Fuel. Phys 88, 576 (1966}.
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(a) We have not discussed the regular part of the
triangle amplitude. It cannot be neglected, particularly
since the logarithmic singularity is a weak one. It is well
possible that this regular part shows bumps. However,
there is no reason why such a bump should appear close
to the triangle singularity sb.

(b) It has been suggested that the interference term
between the singular part of A&') and some background
(or the regular parts of A&'& and A&"&) would give an
effect. However, exactly the same small effect will also
be produced without even including the rescattering
diagram: interference between the singular part of A&"~

and, e.g. , some smooth s-wave background. Such effects
modify the step function of Fig. 12(b) a little bit, by
superimposing a weak peak or dip, but they have
nothing to do with rescattering.

We have discussed a final-state interaction which
cannot produce peaks. On the other hand, the most
basic 6nal-state interaction gives very important peaks,
the resonances themselves. In our framework, this
interaction is described by the Feynman diagram, Fig.
11(b), which produces a peak in the (ms, ms) system and
is not a rescattering effect, but rather a two-body decay
into M» and mi. The theorem of Coleman and Norton
and the corresponding picture of a classical rescattering
process does not make statements about Fig. 11(b). In
this sense, it is still true that rescattering effects do not
enhance.

But in another sense, rescattering effects do enhance:
Figure 11(b) represents the sum over in6nitely many
complicated rescattering diagrams, each of which fails
to produce a singularity in the physical region. But the
sum is singular, and the singularity is the 3f~-resonance
pole.

This resonance pole is a truly dynamical effect, and
the corresponding peak can be calculated neither by
perturbation theory nor by a dispersion theory of 6nal-
state interactions. 4 What can be calculated in these two
theories is the manifestation of one resonance pole in
different 6nal states, e.g., the manifestation of the S*in
the photoproduction of a x. The fact that truly dy-
namical effects are not calculated, but are a phenome-
nological input, is implied by the resonance propagator
in Fig. 11(b).

A similar reasoning applies to the question of whether
multiple rescattering graphs )Fig. 16(c)j can change our
conclusions. One such graph by itself will always be
regular on the physical boundary, because it cannot be
interpreted as a classical process. But can these graphs
sum to a singularity, e.g., to a three-body resonance
pole P This is possible; but again, this would be a truly
dynamical effect and could not be calculated in the
usual dispersion theory of 6nal-state interactions. On
the other hand, Hwa' discussed such dynamical effects,
and he suggested that the triangle singularities which
are on the wrong sheet might induce a true resonance

pole on the correct sheet at a nearby energy. In this

case, the triangle singularity would work as a kind of
force. Gyuk. and Tuan2' came to the conclusion that this
works for baryonic three-body systems, while Tuan"
found that it does not work for mesonic systems. Such
effects are truly dynamical effects (the induced singu-
larities are not given by algebraic formulas), while the
effects discussed in this paper are kinematical ones (the
triangle singularities are given by an algebraic formula).
Another distinction is that Hwa tries to generate (true)
resonances, while we have discussed attempts to simm-

late resonances. Thus our discussion does not bear upon
Hwa's proposal. Other dynamical calculations have
been performed in the Lee model and the static model. "

C. Proof of the Fundamental Equation

The fundamental equation (12) will erst be derived
for the lowest order perturbation graph (the triangle

graph), where the rescattering vertex is replaced by a
point. This Feynman graph contains an unstable in-
ternal line, but Aitchison and Kacser'4 have shown that
such a diagram has a well-defined meaning. It is treated
by replacing Feynman's ic in the corresponding de-
nominator by i3EI", which removes an eventual singu-
larity from the physical boundary by a small distance.

There are two methods to discuss and evaluate a
Feynman amplitude: One is to introduce Feynman
parameters and to integrate the internal momenta first.
The other one is to use Cutkosky's rule" and to write
the amplitude as a dispersion integral. (This is a mathe-
matical trick within the framework of perturbation
theory and must be distinguished from dispersion
theory. ) In both methods it is not possible to perform
the last integration using the commonly known func-
tions of mathematical physics. "However, the second
method has several advantages: The in.tegrand has a
direct physical meaning. It allows a recursive discussion
of singularities: The leading singularities of a compli-
cated diagram are the singularities of a simpler diagram.
Dispersion integrals also exhibit explicitly singularities
and the complete sheet structure. Finally they lend
themselves easily to approximation methods.

We shall concentrate on the inverted mechanism and
derive the dispersion representation in s for Gxed W'.
(This is equivalent to the dispersion representation in
8"' for fixed s, because both are derived from the same
Feynman integral. )

"I.P. Gyuk and S.F. Tuan, Nuovo Cimento 32, 227 (1964).
~ S. I.Tuan, Phys. Letters 11, 248 (1964).
~ R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963); &.

d'Espagnat and F. M. Renard, Nuovo Cimento 30, 536 (1963);
T. L. Trueman, Phys. Rev. 137, 81566 (1965);I.J. R. Aitchison,
Nuovo Cimento 34, 508 (1964);P. K. Srivastava, Phys. Rev. 131,
461 (1963).

~I. J. R. Aitchison and C. Kacser, Phys. Rev. 133, 31239
(1964).

s' R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
26 A. C. T. Wu, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 33, No. 3 (1961) has shown how to express the triangle
amplitude in terms of Spence functions.
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singularity on the first sheet and we can write the
dispersion integral

"intermediate state"

Fie. 13. Cutkosky's rule.

'final state'

p( &) —vA 0(7')A 0(e~) (14)

Ao'") is the s-wave projection of the resonance-produc-
tion amplitude, and Ao(") is, in general, the Feynman
amplitude for the rescattering blob; in our case of a
point interaction, it is g/16m. .

We have arrived at the simple and important result
that the discontinuity function (spectral function) of
the triangle diagram is proportional to the amplitude of
a simpler diagram, A 0("), which by itself also contributes
to the process. "The resonance production amplitude
Ao'") already contains all the kinematics of the triangle
amplitude (except for the threshold at so, which is
introduced by the factor &), and the discussion of
triangle singularities reduces to the discussion of the
simple pole term representing the resonance band on the
Dalitz plot.

Let us assume for the moment that the triangle
singularities lie on the second sheet. Then so is the only

'7 This has already been noted by J. S. Ball, K. R. Frazer, and
M. Nauenberg, Phys. Rev. 128, 478 (1962).

The threshold singularity so——(m&+ma)' appears at
the lowest s value which allows the internal m~ and m3

to be on their mass shells simultaneously. Other normal
thresholds, e.g., W'= (M&+m&)', do not appear since the
two external lines 8' and m2 are kept at fixed masses.
The pseudothreshold in s at (m& —m3)' is not a singu-
larity on the first sheet, because it is the highest value at
which particles m~ and m3 can be on their mass shells,
with one of them going backwards in time. Also, the
external thresholds s= (W&m2)' are not singularities on
the first sheet for our amplitudes. The only other
singularities which have a chance of being on the first
sheet are the triangle singularities. They are most easily
discussed by erst determining the discontinuity across
the threshold cut starting at so= (m&+ma)'. This dis-
continuity is given by Cutkosky's rule~5: One puts the
two lines which cause the singularity on their mass
shells, i.e., one replaces the two propagators by—27ri5(p' —m'). This corresponds to cutting the dia-
gram as shown in Fig. 13.To integrate the 6 functions,
we introduce their arguments as new variables. The
Jacobian is just the density & =2q/gs of intermediate
states. The discontinuity is therefore the product of v

with the two simpler amplitudes in Fig. 13.

A ' "(s+ie) —A &" (s—ie) =
2ip "&,

where the integration goes to ~, although the physical
region only extends from so= (m&+m3) to s& ——(W—m2)'.
This dispersion integral cannot be integrated explicitly
using the commonly known functions of mathematical
physics, "but it has the great advantage of exhibiting
directly the complete sheet structure of A('): The func-
tion on the first sheet, A'(s), is regular apart from so.
The function on the second sheet, A", is given by the
downward analytic continuation of Eq. (14).

Azr Ar 2ip. (16)

Let us now check whether the position of the triangle
singularities in the dispersion representation agrees
with the prescription of Coleman and Norton. We have
seen (Fig. 10) that for W' not far above threshold s, is
above and s~ below the real axis. The tentative dis-
persion integral implies that the triangle singularities
are at the same place in the second sheet. This means
that s &, but not s„ is on the physical boundary of Ao"),
as required by the theorem of Coleman and Norton. The
dispersion integral is therefore correct.

As we increase H/', s ~ moves around so and gets above
the real axis. It will then be near the wrong boundary of
the physical sheet and therefore far away from the
physical region. "

We now complete the proof of the fundamental
equation (12):The singularities of the triangle ampli-
tude A(') on the physical boundary are given by the
singularities of the resonance-production amplitude A(")

below the axis (more exactly, below the contour of
integration) as shown by Eq. (17). At st, we have

A. '"= 2ip=2i&AO&"&AD&"& = (50—1)AO&"&,

which gives Eq. (12) immediately.
Let us now derive the fundamental equation in the

framework of dispersion theory. We assume that the
primary production is dominated by the resonance-
production graph of Fig. 11(b) and that after the pri-

"As we increase W2 still more, the singularity s of the spectral
function crosses the real axis above sp and comes to lie below the
axis. We can handle this in two ways. Either we let the singularity
push down the contour in the dispersion integral, or we keep the
path along the real axis and get an extra term. But in that case, the
dispersion integral represents a function with the singularity s on
the second sheet below the real axis, while A(') has the singularity
s on the erst sheet below the real axis. The new term (which arose
when we deformed the path of integration back to the real axis)
will have the same structure on both sheets and it will cancel the
singularity s of the dispersion integral on the second sheet and
add the same singularity on the Grst sheet.

Therefore the singularities of A' are the singularities
of 2ip.

Acr =2zp.
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mary production only particles m& and m3 interact,
while ms escapes. (One should add the amplitude for the
case where m~ and m2 interact, while m3 escapes. For
brevity, we shall omit this term. ) We write down elastic
unitarity in the (1, 3) system and we obtain for the
discontinuity across the right-hand cut

3A &/2i = vA tA &'"&*. (19)

The discontinuity of the Born term A &&'& LFig. 11(b)j
approximates the discontinuity across the "left-hand"
cut. However, note that our "left-hand" cut has moved
to the right so that it connects the two triangle singu-
larities s and sb, and thereforeit overlaps the right-hand
cut (RHC). The Omnes-Muskhelishvili solution"' to
this problem is

1

m D)&"' p, Hg s' —s

ds
vAt&"&/beet&+, (20)

D (el)

and its three terms correspond to the three diagrams
shown in Fig. 14.The singular part of Eq. (20) near s b is

2 t&——"&+2ivA &"&A t& "& =Si"&2&~ "& (21)

which is again the fundamental equation.

/2

where r(s) is the phase-space factor of the three-body
final state for a fixed s, i.e., it is the width of the Dalitz
plot for that s value:

r=4pq= t(s, s=+1)—t(s, s= —1),

t'(st —s)(s2—s) 't2

2q= (s—sp)'I'
s

(26)

(27)

sp= (mt+ms), si= (W—m2)', s2= (W+m2)'. (28)

We now discuss the analytic structure of A0&") in the s
plane. n is linear and therefore regular in s, while r has
square-root branch points whenever it is zero or infinite.
This happens at the thresholds so, s~, s2, and at s=0. If
we are on the main branch of the logarithm, we have

FIG. 14. Graphs which correspond to the Omnhs-Mushkelishvili
solution. The first graph represents the input (Born term), the
other two arise from unitarity m the (1,3) channel.

D. Kinematics and Analytic Structure of
the Born Amplitude

1 n+r
—ln =even function of r,
r n —r

(29)

4

2t= p m, s—s+4pqs, (23)

where m; stands for the four external lines of Fig. 11(b).
Introducing the abbreviations

4

n —S+2~22 Q m, 2

r= 4pq, —

we get for the s-wave projection of A("):

1 n+r

r o.—r

(24)

(25)

9 N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
hoB, Ltd. , Groningen, The Netherlands, 1953);R. Omnes, Nuovo
Cimento 8, 316 (1958); sce also Ref. 4.

In order to introduce notation, "fill in details for part
C, and to prepare for part E, we now discuss the Born
amplitude Ao("'. For simplicity of notation, we treat the
case where the two particles in the s channel have equal
mass. We work in the rest frame of s Lsee Fig. 11(b)],p
is the momentum of 8' and m2, while &q are the mo-
menta of m~ and m3. The resonance production ampli-
tude A&") is

A & "& = 1/(Mrs —t), (22)

where the two coupling constants, which are common to
all our amplitudes, are left out. In terms of the new
variables s and s, =cos(pq), we have

and r' in turn has no singularities at the thresholds.
Therefore, the partial-wave amplitude Ao'") is regular
(in the first sheet) at all thresholds (m, &mb)2 of the
initial and final states. At s=0, r goes to infinity like a
square root, the argument of the logarithm is —1, and
the imaginary part of the logarithm together with 1/r
contributes a square-root branch point. On the other
hand, the real part of the logarithm together with 1/r is
regular again. For p= (g/167r) vA p&

"&, the situation is just
the opposite: The imaginary part of the logarithm gives
a regular contribution to p, while the real part con-
tributes the branch point.

The leading singularities of A p~ "& arise when (n+r) or
(n —r) vanishes. For real s, the vanishing of (n+r) or
(n r) means that t—he resonance band intersects the
boundary of the Dalitz-Mandelstam plot for that value
of s. This happens at most at two real points and the
energies are the Peierls energies. For complex s, the
Mandelstam-Dalitz plot is not useful. But we see from
(24) and (27) that s(n+r) (n —r) is a quadratic func-
tion in s, which does not vanish at s= 0, and therefore
(n+r)(n r)=0 has e—xactly two solutions which must
be the two Peierls energies, s, and s b.

Although Ao&"' looks quite complicated, if we insert
the expressions for n and r, its analytic properties are
very simple: On the physical sheet it has two logarithmic
branch points at s and s b, but it is regular everywhere
else except at s =0 and at infinity, where it behaves like
(lns)/s. On the other sheets (with respect to s, and s b) it
has all threshold singularities.
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t /Sp
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qb

phys. boundary

qo q(e

-I /Sp
II

Fxo. 15. Singularities of p and the points q1 and q2.

A =ip, (30)

where it is to be understood that the cuts of the p go
from sp to the right and from s=0 to the left. A is the
odd part of A&') in the q plane. Let us now determine the
even part.

Since A&'& is given by a dispersion integral, it is
regular in the erst energy sheet, which is the upper half

E. An Explicit Exyression for the Triangle Amplitude

Up to now, we have discussed the singular part of the
triangle amplitude. Now we want to And a convenient
expression for the entire amplitude, which is needed for
comparison with experiment (e.g. , the observation of
the rescattering band in Ref. 19).

The triangle amplitude can be integrated" in terms of
Spence functions. However, they are not tabulated, and
so this means replacing one integral representation (the
dispersion integral) by others (the ones for the Spence
functions).

To take the dispersion integral, Eq. (15), directly to
the computer" is not economical because the integrand
is singular at s'=s, if we take s in the physical region.
Moreover, the spectral function is singular at s and sg,
while the integral is singular only at s ~. This means that
the peak at s must disappear in the process of numerical
integration by means of an exact cancellation between
contributions from the principle value of the integral
and from the spectral function. We want to find a new
representation, where these two unpleasant features are
eliminated, and a discussion in the physical region
becomes easy.

Cauchy integrals can be integrated easily in the
following sense: We can write down immediately a
function which has the proper discontinuity across the
cut. However, this function will usually have unwanted
singularities in the 6rst sheet, which must be subtracted.
This subtraction is nontrivial and leads to background
terms in the form of dispersion integrals along distant
cuts. These terms can be approximated easily.

In our case, we have a two-particle unitarity integral,
and therefore the spectral function p behaves like a
square root at threshold, i.e., it is an odd function of the
momentum q=-,'(s—sp)'". Otherwise it is regular in s
along the path of integration, since the triangle singu-
larities have been removed from the real axis by the ie's.
The function with the proper discontinuity, 2ip, across
the cut from sp to po is (because of the square-root
behavior)

i i 1+g
Ap= ln

(»—s)'" (»—s)'" 1—g
(31)

with g meromorphic and /1 except for the following
prescriptions:

(i) at s=s. :g=+1, at s=sp. g= —1,
(ii) at s =sp'. g= even in q,
(iii) at s=sq'. g= (s—si)''X (regular function), at

s=sp'. g= (s—s)"'X (regular function); determines As
uniquely:

(s—») (u.+1 p)+(s.—») (»
—

S p)
A p

—— —ln, (32)
( —.)(f.+u )—(.— )(P—u.)

S = (»—s)'"(»—s)'", p-=S (s.). (33)

A p subtracts most of the unwanted singularities of
A in the first sheet. It remains to subtract the unwanted
left-hand cut of A, which starts at s=0.

8A,/2i=Rep (—Qp(s(0). (34)

Note that p is essentially lnL(n+r)/(n —r)g and that the
argument of the logarithm is real and negative to the
left of s= 0. This discontinuity cannot be subtracted by
means of a function in closed form. Therefore we
subtract it in the form of the dispersion integral A~:

1 ' Rep (s')

I
7l oo $ —$

(35)

This looks very much like the original expression for
A&'& in Eq. (15). The important improvement is that
A7 is a dispersion integral over the distant interval

of the momentum plane. However, since A =ip is odd
in q, it has logarithmic singularities at %q, and &q & and
square-root singularities at q= + (—sp)'I'/2 correspond-
ing to s=0 (Fig. 15). We now like to subtract all those
singularities which are in the upper half plane (of
Fig. 15) without introducing new singularities (at the
points sq and sp). This is, of course, impossible since it
would mean an explicit integration of the amplitude.
What we can do, however, is to subtract the triangle
singularities in the first sheet and not yet bother with
the singularity at s=0. This means that we subtract a
function A p which

(i) has the same triangle singularities as A in the
upper half plane, i.e., at +q, = (s,—sp)'~'/2 and at
—

g p= —(s p
—sp)'"/2 (see Fig. 15);

(ii) is regular at threshold, i.e., even in q;
(iii) is regular everywhere else, in particular at sz

and sp, but we do not require that it also (iv) subtract
the singularity at q=+-,'imp, which corresponds to
s=0 in the first sheet.

The Ansatz
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FzG. 16. Graphs for Gnal-state inter-
actions: (a) resonance production
graph, its interference terms are dis-
cussed in Sec. III; (b) triangle graph,
discussed in Sec. II; (c).higher order
rescattering correction, does not lead
to singularities on the physical
boundary.

s= (—eo, 0), and its spectral function is finite, real, and
positive, with one maximum between the two end-point
zeros. In the physical region, A~ contributes a real,
small, and monotonically decreasing background which
is easily evaluated numerically by hand. The full
triangle amplitude A&'& is A —Ap —A~. This has to be
contrasted with the numerical integration of the full
amplitude by Aitchison" and by Chang and Tuan, "and
with the proposal of Aitchison and Kacser30 to take the
explicit expression for the nonrelativistic triangle ampli-
tude and to simply guess what the relativistic generaliza-
tion could be.

3

s+t+u= W'+ P m,s. (36)

We shall explain Grst why one might expect inter-
ference effects to produce peaks:

"I.J.R. Aitchison and C. Kacser, Phys. Rev. 142, 1104 (1966).

III. INTERFERENCE OF RESONANCE BANDS

After having seen that triangle singularities do not
produce peaks, we now look at an entirely different
mechanism, which also deals with Gnal-state inter-
actions: production of peaks by interference of over-
lapping resonance bands. We shall get a negative result
again.

In this article we search for peaks produced by 6nal-
state interactions and assume that the singularities on
the physical boundary will be the same in a theory of
strong interactions as in perturbation theory. We dis-
cuss all graphs which lead to singularities close to the
physical boundary, and which therefore correspond to
classical processes in space-time (theorem of Coleman
and Norton). ' There are only two classes of such graphs,
the resonance production graphs [Fig. 16(a)j, which
will be discussed in this section, and the rescattering (or
triangle) graphs [Fig. 16(b)g, which have been dis-
cussed in Sec. II. The higher-order rescattering cor-
rections [Fig. 16(c)g cannot be interpreted as classical
processes. (For conunents about an infinite sum of such
diagrams, see the end of part IIB.) One resonance
graph by itself leads to no surprising effects: It produces
the resonance band on the Dalitz plot and a woolly cusp
threshold in the total rate. However, it has been sug-
gested that the interference of two (or more) bands
gives interesting peaks. These peaks are conveniently
discussed in terms of the kinematic relation

(a) Overlap of three res-ortance bands at orte point. When
a resonance exists in all three pairs (at sg, tg, ug, re-
spectively), formula (36) suggests a three-body peak for
that total energy lV&', which allows all three pairs to
resonate simultaneously» '~:

Wp' sir+——4+u~ Pm—rs. (37)

sI = WIp trt uo+Q tl—,s. — (3S)

The situation on the Dalitz plot and the peak expected
from our oversimplified model are shown in Fig. 17.

(c) Threshold for overlappitsg resonattces. Assume again
that a resonance exists in two of the pairs. When the
overlap region moves into (out of) the Dalitz plot, a

FIG. 17. Interference of two reso-
nance bands producing a peak in the
third pair. We shall show that such a
peak does not occur in the limit of
sharp resonances. R(s)' I

I II

I2 '~pgy l

3~ G. Goldhaber, Lectures ze Theoretical Physics (University of
Colorado Press, Boulder, Colorado, 1965), Vol. VII 8, p. 343.

We demonstrate this situation on the Dalitz plot using
a simple and often used, but misleading, approximation
which consists of replacing the Breit-signer resonance
bands by homogeneous bands of the width I' and the
constant amplitude iMI'. Outside the bands, the ampli-
tude is zero.

All three pairs resonating simultaneously means that
all three bands overlap in one region and produce there
a density of events 9 times higher than one resonance
band by itself. This tremendous cluster of events on the
Dalitz plot, which only appears at the total energy lV~',
is supposed to generate a peak in the total number of
events on the Dalitz plot as a function of 8".

(b) Irtterference of ttoo resottance -battds producing a
peak iu the third pair. If a resonance exists in only two
of the three pairs, and the total energy is 6xed at 5'z'
by nature (decay of a resonance, weak decay) or by the
experiment (production process at fixed beam energy,

pp annihilation at rest), then one might expect a peak
for that energy s& of the third pair which allows the two
other pairs to resonate simultaneously» ":



CH RI STOP H SCHM I D

sharp increase (decrease) of the total rate as a function
of s could be expected at Wi, (W ').

3

~a, b ~R+NB+~msx, min P iivP ~

Chang" found that such a peak occurs for the overlap
of p bands in the 37t- system and suggested that it might
explain the A~.

We note that the total energy 8', b', at which these
interference shoulders should appear, are exactly the
Peierls energies and that s;„is not the threshold value
so ——(mi+m3)', but rather the lowest s value for which
overlap of the t and u bands inside the 6alitz plot is
possible. This coincides with so if the two resonances are
the same.

I et us now see why interference effects cannot pro-
duce peaks of the type described above.

(a) Overlap of three resonance bands at orle point
A peak in the total rate could arise only from inter-
ference terms like

2 Re jA t(t)A 2*(N) fdtdN, (40)

which do not even contain the information that a third
resonance exists. The energy which allows all three pairs
to resonate simultaneously cannot be a special point for
this term. In other words, interference is a bilinear effect
and is not affected by the overlap of three bands.

(b) Interfereriee of two resortalee bards does sot pro
duce a peak in the third pair. The contribution of the
interference term to the invariant-mass distribution in
the third pair is

2 Re dt A t(t)A 2*(N),

where I depends on t and s. If the diameter of the
overlap region is much smaller than the diameter of the
Dalitz plot, then we can replace the limits of integration
in Eq. (41), i.e., the boundaries of the Dalitz plot, by
&~. We insert Breit-Wigner resonance amplitudes in
Eq. (41),

2 Re dt
iM11 $ Nm I+iM21 2

(42)

i

and see that the expression vanishes, because we can
close and contract the contour in the upper half plane.

The exact result for a finite ratio of a Dalitz plot to
overlap region shows how destructive interference be-

"N. P. Chang, Phys. Rev. Letters 14, 806 (1965).
"This argument has been communicated to A. H. Rosenfeld,

who was kind enough to include it in his review in Proceedings of
the Oxford International Conference on Elementary Particles,
Oxford, England, 1965 (Rutherford High Energy Laboratory,
Chilton, Berkshire, England, 1966).

comes effective, as soon as the Dalitz plot becomes
larger than the overlap region. The interference peak
becomes smaller, until constructive and destructive
interference cancel exactly for an infinitely large Dalitz
plot or for infinitely sharp resonances.

(c) Threshold for overlapping resonances. In order to
determine the effect of the overlap region moving into
the Dalitz plot, its boundary is approximated by a
straight line. This is a good approximation if the
diameter of the Dalitz plot is much larger than the
diameter of the overlap region.

The derivative of the total interference rate is pro-
portional to the expression (41) with one important
difference: There we integrated over a strip keeping s
constant; now we integrate over a strip parallel to the
boundary of the Dalitz plot. If dt/dN, (0 along the
interesting part of the boundary, then we get the same
result as before, zero. But on the two arcs with dt/dg) 0
the expression does not vanish. This is the same set of
kinematical conditions as the ones under which the
generalized Peierls singularity is near the physical
boundary and not on the other sheet. We note that
interference between two identical resonances (Mt ——M2,
m& = rl&), so-called symmetrization, '4 corresponds to the
elastic Peierls case and produces no shoulders in the
total rate. On the other hand, if we consider interference
between two different resonances, M~&3f2, an eGect is
possible, but we do not know the relative, constant
coefficient between the two amplitudes, because we do
not know the numerator functions (in the 1V/D
expression).

We can understand cancellation of interference effects
if we recall that in optics interference does not create or
destroy energy, it merely redistributes it. Similarly here,
the total number of events on an infinite Dalitz plot is
not changed by interference effects." These effects
merely redistribute events. Or, in other words, con-
structive interference is necessarily accompanied by
destructive interference in an area not far away. If this
other area happens to be outside the Dalitz plot, then
and only then will the interference term give an effect.

In case (b), we had cancellation after integrating over
a strip. This shows that interference shifts events around
in a very special way: s (see Fig. 17) remains unchanged.

We do not claim that there is no effect at ali'in the
cases (b) and (c). Rather. , we have shown that the ex-
pected effects are absent in erst order in I'/d, where d is
the diameter of the Dalitz plot.

We have not discussed the case of more than three
particles in the final state, "where general statements
become more dificult.

'4 C. Bouchiat and G. Flamand, Nuovo Cimento 23, 13 I'1962).
3' The total number of interference events on an infinite Dalitz

plot is logarithmically divergent. However, we have only used the
derivative of the total interference rate, which is convergent.

"G. Goldhaber, in Proceedings of the Second Coral GaMes
Conference on Symmetry Principles at High Energy, edited by
B.Kuryunoglu, A. Perlmutter, and I. Sakmar (W. H. Freeman and
Company, San Francisco, California, 1966).
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A method of carrying out bootstrap calculations is described in which analyticity properties enter in-

directly. There are two main features: the use of a nonlinear Bethe-Salpeter equation which automatical]y
maintains the symmetry properties of amplitudes, and the use of crossing symmetry in the construction
of effective propagators. Two illustrative examples are considered. One is a simplified nonlinear equation
for the familiar static model of baryon-meson interactions. The other is a model for interactions mediated

by vector mesons.

I. INTRODUCTION

'HE idea that the low-energy dynamics of hadrons
is primarily governed by crossing symmetry

is based on pioneering work by Chew, Low, and
Mandelstam (CLM).' ' In applying this principle, they
developed an approximation scheme based on ana-

lyticity properties of the 5 matrix, practical exploitation
of which requires a drastic truncation of the number of
channels which are considered explicitly ("elastic
unitarity, "or various refinements). Since fluctuation in
the number of particles is also an intrinsic feature of
quantum field theory, it is not surprising that difhculties
often appear when this feature is artificially sup-
pressed. '4 For this reason, there is interest in Gnding

ways to implement the CLM principle which do not
involve the CLM approximation. It is natural to
consider, for this purpose, more old-fashioned methods
of field theory —so called "off-mass-shell" techniques—
which, by incorporating more detailed information
about the variation of fields at nearby space-time points,
automatically take better account of fluctuations in the
number of quanta. '

The CLM principle involves the crossing symmetry
of four-line diagrams; the effective potential acting
between two particles is associated with exchange of

* Supported, in part, by the U. S. Atomic Energy Commission.
' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
~ S. Mandelstam, Phys. Rev. 112, 1344 (1958).G. F. Chew and

S. Mandelstam, ibid. 119, 476 (1960).
3 R. F. Sawyer, Phys. Rev. 142, 991 (1966).
4 R. E. Cutkosky, in Particle Symmetries (1965 Brandeis Uni-

versity Summer Institute in Theoretical Physics, Vol. II), edited
by M. Chreticn and S. Deser, )Gordon and Breach, Science
Publishers, Inc. , New York, (1966)j, p. 9I.

' The usefulness of the field idea in self-consistent models has
been emphasized by J.Schwinger, Phys. Today 19, No. 6, 27 {1966).

particles which arise as bound or resonant states in
crossed channels, thereby giving rise to the cooperative
features of hadron dynamics. Another aspect of crossing
symmetry appears in three-line diagrams (which may
also be considered as subsections of more complicated
processes): The value of the vertex part must not
depend on whether a given particle is outgoing or in-
coming. While this "vertex symmetry" does not directly
influence the cooperative phenomena, it must be in-
trinsic to any valid calculational scheme. It is obvious
that vertex symmetry is not compatible with any
scheme in which the total number of particles which
are considered to exist at any given time is arbitrarily
limited.

It has been suggested that a calculational method
with manifest vertex symmetry can be based on the
Bethe-Salpeter (B-S) equation. ' So far, this method has
been used only in a rather simplified approximation, '
and there may be some doubts as to how the method
could be extended to higher orders of approximation.
The purpose of this paper is to discuss such an exten-
sion, but for the sake of readability, we shall concen-
trate on the next order of approximation. The main
problem concerning still higher orders of approximation
appears to be how to decide which of several possible
routes it would be most expeditious to follow.

The assumptions on which the procedure rests are as
follows: We assume that some underlying local field
theory exists and has the analyticity properties sug-
gested by the regularized perturbation expansion.

' R. K. Cutkosky and M. Leon, Phys. Rev. 135, 81445 (1964).
R. E. Cutkosky and M. Leon, Phys. Rev. 138, 8667 (1965).
K. Y. Lin and R. E. Cutkosky, Phys. Rev. 140, B205 (1965);

K. Y. Lin, Carnegie Institute of Technology dissertation, 1966
(unpublished).


