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Matrix elements of the equal-time commutators of an octet of vector current densities are considered in
the inlnite-momentum limit. As a consequence of locality, the Fourier transforms of these matrix elements
are polynomials in the components of the momentum transfer. The resulting superconvergent sum rules are
saturated with the octet and the decimet of baryons, and are evaluated at the double pole due to vector
mesons. A consistent set of approximate equations for vector-meson-baryon couplings is obtained. This
set has a unique nontrivial solution for the coupling constants. Together with a meson pole model for the
electromagnetic form factors of baryons, these couplings give rise to relations for the form factors which
are in good agreement with experiments. They are also consistent with the results obtained on the basis of
collinear U(6) symmetry.

I. INTRODUCTION

''N two recent papers' ' we have given a brief de-
- - scription of approximate relations between vector-
meson —baryon couplings which follow from the satura-
tion of a specific set of superconvergent sum rules. These
sum rules are consequences of the locality (microscope
causality) of vector current densities and specific
assumptions about the boundedness of the Fourier
transforms of current commutators. They do ttot depertd

irt arty toay uport the validity of a currertt algebra.
Our boundedness assumption is indirect. It is con-

tained in the assumption that in those matrix elements
of vector current-density commutators at equal times,
which correspond to non-elastic amplitudes, we can in-
terchange the sum over intermediate states and the
in6nite-momentum limit. The resulting set of sum rules
is then saturated by the octet and the decimet of bary-
ons and evaluated at the vector-meson pole. 4

In this paper, we give a detailed derivation of our set
of equations, and we discuss the solution. We obtain
unique results for vector-meson —baryon couplings.
Within the framework of a meson pole —dominance

*A report of the results of this paper has been presented at the
13th International Conference on High-Energy Physics, Berkeley,
California, 1966. Work supported in part by the U. S. Atomic
Energy Commission.' R. Oehme, Phys. Letters 21, 567 (1966).' R. Oehme, Phys. Letters 22, 206 (1966).

3 Superconvergent sum rules have also been discussed independ-
ently by other authors, mainly by considering explicitly the high-
energy behavior of scattering amplitudes. V. de Alfaro, S. Fubini,
G. Furlan, and G. Rossetti, Phys. Letters 21, 576 (1966); I. G.
Aznayryan and L. D. Soloviev, Dubna Report No. E-2544, 1966
(unpublished).

4 Our method is, of course, general. It can be used in many other
cases. The meson matrix elements of the equal-time commutators of
vector densities are being considered by G. Venturi, University
of Chicago. The equal-time commutators of axial-vector densities
are also of interest. However, there is no reason to expect that it is
always sufhcient to use only the octet and the decimet of baryons
in the saturation of the superconvergent sum rules (Ref. 1). Cer-
tainly, an in6nite number of particles with unlimited spin is
needed for the saturation of the full set of nonforward relations. It
may also be of interest to consider the application of our method to
anticommutation relations of fermion current densities at equal
times, and to boson-fermion commutators.

model, these couplings give rise to expressions for the
electromagnetic form factors of baryons which are in
good agreement with experiment, and which are con-
sistent with the results obtained on the basis of collinear
U(6).s

2. SUPERCONVERGENT SUM RULES

Let us consider a commutator of vector current densi-
ties like

I:I"-(*),I' t (*')j.,=.. . (&)

where i and j are isospin or SU(3) indices. As a conse-
quence of microscopic causality (locality), this equal-
time commutator is given by a polynomial in the deriva-
tives of 8(x—x') with q-number coeKcients. Hence it
follows that a matrix element like

E 't(p p' q) = d4x e "'8(scs)

X(p'ILV; (*/2), &,p(—*/2) jI p) (2)

is a polynomial in the components of q with coefficients
depending upon p, p', and spin matrices. ' Of course,
this polynomial is such that it reQects the covariance
of E tt. In Eq. (2), and in the following equations, we
generally suppress the spin indices.

Besides the matrix elements (2), we consider also
the "absorptive" amplitude

A tetr(p, p'q)= d4xe "*

X(p'IL&;. (~/2), &;p(—*/2) jIp). (3)

We can introduce a complete set of intermediate states

R. Oehme, in Preledesin Theore&'cal Physics, edited by A. de
Shalit, H. Feshbach, and L. Van Hove (North-Holland Publishing
Company, Amsterdam, 1966), p. 143; R. Oehme, in IJzgh-Energy
Physics and Elementary Particles (International Atomic Energy
Agency, Vienna, 1965), p. 533. These articles contain further
references.

R. Oehme, Phys. Rev. 100, 1503 (1955).
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~
rt,P„) and write A ]2 in the form

A e*'(P,P'; q) =22r Q' (b(S—m„2) [2P„plV(22)
)n)

&& (P'I I"-(0) I ~,P-) &~,p- I
I' e(0) I P)j..=:(~')+.

i—](I m—„')[2p„pN(22) (p'
~ V;p(0) ~

N,p„)

&(,P-I l"-(0) IP)j..=: .+. —.}, (4)
d v a(,,] (v, g) =polynomial in (1, (8)

where a~;;~ etc. are invariant coefficients which are still
matrices in spin space. Taking the limit y ~~ inside
the integral in Eq. (6), and keeping track of normaliza-
tion factors p /2m, we find from the leading term in y
the relations

where
s= —[ (p+p )+q]'
I=—[2 (P+P') —qt',

where the variable v is given by

v=——2p q= s—s. (9)

QO

&-e"(P,p'; q)=-
—2Ã 0

ds 2(s+I 2(p+1]')+aj2) '"

oo

&&~-e"(P,p', q) —— d~ l(g+[l (1+9')—(ll') '"
2Ã 0

&&~-e"(P,P;q), (6)
—q fixed

where s and I are defined in Eq. (5).2
We are interested in the infinite-momentum limit'

of E p, and since it is not our purpose here to give a
general discussion, we consider only the case p=p',
which is relevant for this paper. We write

P = (u+V e., i[(1]+re.)'+m'3'")

and make the assumption that the limit y —+~ can be
interchanged with the integral in Eq. (6), but o22ly for
those amPlitudes which corresPo22d to 22o22elastic Processes
This assumption implies a certain boundedness for
the amplitude A p, which is related to the degree of
singularity of the commutator on the light cone, and
hence also to the degree of the polynomial in q. A de-
tailed discussion of these connections is outside the
scope of this paper.

Indicating i+-+ j odd amplitudes by [ij], we write

+as" =pape(2(ag]+papeb(~ p]+' ' ' )''
' Note that we can also write the formal relation

1 +"
40 &.p" (p,p', v) =&.2" (p,p', «).

7l (o

A priori, the integration over qo does not correspond to an integral
over the total energy variable of the absorptive amplitude for
fixed values of k', k", {p—p')', where q= ~ {k+k') and P+k =p'+k'.
Rather, as in Eq. {6),we have considered q fixed. These differences
are eliminated in the infinite-momentum limit.' S. Fubini and G. Furlan, Physics 1, 229 {1965);R. F. Dashen
and M. Gell-Mann, Phys. Rev. Letters 17, 340 (1966);R. Oehme,
Phys. Rev. 143, 1138 (1966).

and $(22) is a normalization factor which appears be-
cause we use a covariant normalization of states. The
prime on the sum in Eq. (4) indicates that the total
momentum y„ is kept fixed. Performing an analogous
decomposition in Eq. (2), we see that E e can be written
in a forma/ way as an integral over the absorptive
amplitude A p'.

«', ] '"'(q') —= dv (2(v]("](v q )

=polynomial in q'. (11)

Here we can reinterpret q' as the square of the four-
momentum transfer q', because q2

—+ (e, .q) =0 in the
infinite-momentum limit y —+~ with fixed v and q'.
It is reasonable to assume that the functions u("](q2)
are analytic and can be continued from real q'&0 to
q'&0. Since we also assume that the currents V; are
coupled to the corresponding vector-meson fields, we
expect poles at q'= —p'. For the purpose of this paper,
we consider an octet of degenerate vector mesons and
we are interested in the homogeneous relations for the
residue of the corresponding double poles which follow
from Eq. (11). If we truncate the sum rules (9) by
using a limited set of single baryon states, then we ob-
tain from the residue a set of relations between the
vector-meson —baryon coupling constants. Of course, we
can also take into account the meson mass splitting and
obtain correspondingly generalized relations.

By extracting a residue like

q2 ~ p2

(q2+]22) 2(2(, ,
]
(n) (q2) 0 (12)

we are effectively dealing with superconvergent dis-
persion relations for the corresponding amplitudes
describing vector-meson —baryon scattering. Our use of
amplitudes in the infinite-momentum limit corresponds
to the selection of a specific class of these dispersion
formulas. There may be other sum rules which have
convergence properties corresponding to those selected
by our prescription, but for the purpose of saturation
with single-particle states, the use of the infinite-
momentum limit seems to be preferable. Nonelastic
i+-+j even amplitudes will be included in Sec. 6.

Ke can assume e, q=0 without loss of generality.
The absorptive amplitude (3) has the symmetry

~-e"(P q) = ~e-"—(P —q) (10)

and hence the integral in Eq. (8) is an even function of
q. If we expand a~;,j with respect to a complete set of
spin matrices, then the integrals (8) of the invariant
coeKcients c&"~ are functions of q', for which we obtain
relations of the form
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~a &~a

~(q') — Gdr(q') 44(P) (13)
i2m

P*(p')
I
V. l&(p)&= d(p')(6-dD" (q')

+iy.qd( m+m) 'Dmr(q—')+P qp(m*+m) 'D4" (q')

and
+q.qp(m*+m) —'D4r(q') )N(p), (14)

V *(p')
I V-l&*(p)&(1+q/4 *')

=~d(p')»(q')—
2m* 2m*

~a N a gPgPd

+ 0 (q') — 0 (q') (p), (13)
2nze 2m* 4m*2

with P=p+p', q=p —p', and r = e d, 4Psq~y4y4. We
note that the assumption of a conserved vector current
implies

m*—ns
Di'(q')+D~'(q')+ D4'(q')

m*+m
g2

D4r(q') =0.
(m'+m)'

Actually, in place of the complicated expression (14),
we use later the generalized M1 form

q2
—1

(~*(p')lv-I~(p)&= I 1+ -
I

4mm)

Xn" (q') e.»4Pdq, ~4(P')N(P), («)

which, for nz=m*, corresponds to

I
1+ I

Di'(q') = —D4'(q2) =D4"(q') = —D4'(q'),
t'

4m~)
(17)

3. SATURATION

In this section we consider the sum rules (11) for the
octet and the decimet of baryons, assuming that we can
restrict the sum over intermediate states to this same
set of particles. In order to simplify the calculations, we
assume here SU(3) invariance, and later we will also
use a common mass for all baryons.

'We write the relevant vertices in the general form

P(p')
I v-liq(p)&=11+

I
~(p')( qm ) 1

4m')

At Grst, we take the matrix elements of the equal-
time commutator (1) with respect to octet states of
momentum p=(p, ipe) and insert the octet and the
decimet as intermediate states with p„=(p&q, ip„p),
p q=0. Taking the limit lpl~~, we obtain then the
equations'

fg f (q2)+G d(q2) j2+q2[G f (q2)+Q d(q2) j2

4 q2
D'(q') =1+, (1g)

9 4m2

G r(4q )4+ 1G d'( q2)+ q2 [G f'(q2)+kg d'(q )4j

g+— D'(q') = 1+ (19)
18 4m2

[Gz'(q') —Gz'(q') g'+ q'[G~'(q') —G~'(q') 1'

q9+- —D'(q') =1+" (2o&
9 4m2

where the dots indicate a homogeneous polynomial in
q'. With the M1-type amplitude (16) and m=m*, the
function D(q') is given by

D(q') =D~'(q').

We note here that the right-hand sides of Eqs.
(18)—(20) would be given by 1+q'/4m2 if we used the
SU(3) density algebra

[V; (x),V; (x')j„=„=if,; V (x)6(x—x'), (21)

instead of only the general causality condition.
In order to have a saturation of our set of sum rules

(11),we must also consider the decimet-octet and deci-
met-decimet matrix elements of the commutators (1)
which are odd in the SU(3) indices i, j.Again we have
an octet and a decimet as intermediate states. Since we
want to have simple equations, we omit terms which
are of higher order in q'/4m', and consequently also
the quadrupole form factors appearing in the vertex
(15). With these approximations, we find from the
10-8 matrix elements the relations'

q'D~'(q')[ ~'(q')+G~" (q') —( / )&~(q')3=o+ "
q'Di'(q')[G~'(q') —G~d(q')+ s&~(q') j=0+" (22)

whree the dots again indicate a homogeneous polynomial
in q'. Correspondingly, the 10-10 matrix elements give
rise to the formulas

g
2(q2)+ 1q2+ 2(q2)+ [D v(q2) j2 1+.. .

6 4m2

(23)

1
q2P&2(q2) [D&r(q2)]2 —0+. . .

4 4ns2
See, for example, R. H. Dalitz and D. G. Sutherland, Phys.

Rev. 146, 1180 (1966).

1 gand which turns out to be consistent with our equations, yy 2(qu)+ q2~ 2(q2)+ [D,v(q~))2
as well as with the empirical dominance of the M1 9 184~2
amplitude. ' and

(24)
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The last equation (24) corresponds to a ~AJ. (=2
matrix element, whereas all other relations are b,J,=O.
Because of our restriction to i~ j-odd amplitudes, we
find no matrix elements with

~
&J,

~

= 1.

4. VECTOR-MESON-BARYON COUPLINGS the important relation

gM /gM'=2 ~ (31)

relations (28) and (29) are consistent with this solution
if yg = i and g~ ——i.Hence we And for the vector-meson-

baryon colptsngs

As discussed in Sec. 2, we now evaluate our set of
equations between form factors at the double pole
q'= —p' corresponding to the vector-meson octet. ' 2 We
may write

(32)gM"= (1/y)gg',

(33)dq= 4mgM".
We also have

graf "X '
Gg, M' "(q') = p +I gM , ('q ')

q2+ p2

(34)hE gE y h2lf gM

The expressions (31)—(33) are consistent with the
results obtained for the vector-meson —baryon couplings

(25) from collinear U(6) symmetry or from the "dissociated
quark model, "which describes hadrons as if they were

loosely bound systems of quarks.

dye
Dt'(q') = +~(q'),

q2+a2

hE, M~@
&g.M(q') = +o(q'),

q2+~2 5. ELECTROMAGNETIC FORM FACTORS

h=gg /gg PM=gM lgM ~

functions p g and Q are regular at q2 +2 Of special interest is the use of the results (31)—(34)

and where X is a common factor. Introducing the ratios in connection with the assumption of meson pole dotli
nance for the form factors. We obtain then the familiar
relations"

p
a=asagM'/g g',

2m

(26) Gg" (q') =o, GM'(q')IGM'(q') =2

which imply

and
kg=kg/g g', gM=I IM/g g',

we can write the relations for the residue in the form

Gg" (q') =0 GM" (q')/GM" (q') = —as «c (36)
r

It follows from the assumption of pole dominance that

(37)G "(q')IG "(q') =I2 /22N

and from Eq. (32) we find the formulas
(1+$g)2 —(4/9) a2 (1+$M)2+ (4/9) p =0

(1+s&g') ( /9)—a'(1+skM') (1/18—)~'=o (27)

These are the expressions obtained from Eqs. (18)—(20).
Furthermore we ind

(38)p„=2222/p

6(rs') = 4 s/2~)'. (39)

5L2a(1+)M) —52)Mj=0,

~L2a(1—kM)+ 21Mj=0 Dt (q ) =42gGM" (q') (4o)
and

This relation also corresponds to the collinear U(6) re-
sult. " At q'=0, we have Dtv(0) = 2'„. In view of the
crudeness of our model, the results (35)-(40) are in
good agreement with experiments. Finally, we note the
approximate equalities

gg' —', S~'——,'S'=0,
2)g2 —(7/9) rIM' (1/18)52=—0, (29)

from Eqs. (22) and (23)—(24), respectively.
We are interested only in nontrivial solutions of these

equations for which 8/0. From Eqs. (27) alone we can
then express a', fM, and 5 in terms of pg, and find, for
example

&g(q') =Gg"(q') ) &M (q') =GM'(q') (41)

for the form factors of X+*.They follow from Eq. (34)
and the pole-dominance assumption.

We note especially the result (39) which, as we have
pointed out in Ref. i, is quite different from what we
would obtain on the basis of the SU(3) density algebra.
With the density algebra, we would have relations

3—2$g 3—2)M
$M or kg=3

6+5)g 6+5)M
(30)

as a relation between the electric and the magnetic d/f
ratios. The additional requirement that the two equa-
tions (28) be compatible with each other implies, how-

ever, that )M=as, and hence kg=0, 5=4, a'=1. The

'o P. G. O. Freund and R. Oehme, Phys. Rev. Letters 14, 1085
(1965); K. J. Bsrnes, P. Carruthers, and F. von Hippel, 2b2d. 14,
82 (1965)."R.Oehme, Phys. Letters 19, 518 (1965).

For the form factor of the (M —1)-type decimet-octet
vertex, we have

(28)
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corresponding to Eqs. (18)—(24), but with specified
right-hand sides. For the electromagnetic form factors
of the nucleons, we would obtain the relation

g2

PG~~ (qs) )s+est'G~v (qs) $s = 1+
4m'

(42)

Evaluating this formula near q'=0, we find

l(')=l(./2 )' (43)

where p*= (V2/3)Dry(0) is the transition moment. The
relation (45) is rather unsatisfactory, which may indi-
cate that contributions from higher resonances are not
negligible. It could also mean that the density commuta-
tion relation (21) is not valid. For instance, there may be
gradient terms which imply a term proportional to q2

on the right-hand side of Eq. (18).
On the other hand, if we follow the rules described in

this paper, evaluate Eq. (18) at the quadratic meson
pole, and use a pole model in order to extrapolate to
q'=0, then we find instead of Eq. (45) the relation

which is a special case of our Eqs. (35)—(39),"and which

"The relation —,'(rv') = (v,„/2m)' can also be obtained from com-
mutation relations for the densities of the space components
V;„a=1,2, 3, provided Schwinger gradient terms are ignored in
these relations LR. F. Dashen and M. Gell-Mann, Phys. Letters
17, 142 (1965); 3; W. Lee, Phys. Rev. Letters 14, 676 (1965)7.
if, in the quark model, the Schwinger terms are eliminated by
proper symmetrizatIon, one finds again a relation corresponding
to Eq. (43) LC. Bouchiat and Ph. Meyer, Orsay Report No.
TH/143 (to be published)g."

¹ Cabibbo and L. A. Radicati, Phys. Letters 19, 697 (1966).
'4 A relation similar to Eq. (46) has been obtained by S. Fubini

and G. Segre, Nuovo Cimento (to be published).

instead of the more satisfactory equation (39)." The
latter relation follows from Eq. (42) if it is evaluated
at the vector-meson pole and if we use the pole model
for the extrapolations to q'=0.

The factor -', appearing in Eq. (43) is, of course, re-
lated to the corresponding factor in the Cabibbo
Radicati" sum rule

1 p„—l((.')—( -'))+-
2 2rl i

2o t~s(s) o s)s(s) =0. (44)
S—5$

This sum rule is obtained from the SV(2) density alge-
bra. If truncated, it corresponds to our Eq. (18), with
the term 1+j'/4m' on the right-hand side, and the
whole equation being evaluated near q'=0. It is then
of the form

1 p, „—p
' p*—l ((.')—( .'))+- + =o, (45)

2 2m 2m

is more satisfactory than Eq. (45). Furthermore, it
does not depend upon the validity of a current algebra.

dv ai,,l(v, q) =0, (47)

simply because al, , }(v,q) is odd under crossing (v~ —v).
Here we indicate s ~j even amplitudes by {ij}.Since

~i' l(,q) = —~i', l(—v, —q), (48)

only terms which are odd in q can give rise to a sum
rule. We have two such sum rules resulting from the
8-10matrix elements of the commutator with ~DJ'.

~

=1.
Omitting, as before, terms of higher order in q'/4m',
these relations are

where the dots indicate again a homogeneous poly-
nomial. Equations (49) imply

and
sI.(1+~ ) —~ )=0,

5L(1—~~) —&~j=o
(50)

for the residue of the vector-meson double pole. Hence
we find that also the i ~ j ever sum rules are consistent
with our solutions as given in Eqs. (31)—(34).
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"More detailed calculations are being performed by G. Venturi,
University of Chicago. They show that our results remain un-
changed if all q'/4m' terms are included.

6. DISCUSSIONS AND CONCLUSIONS

Granting the approximations we have made, especi-
ally in neglecting terms of higher order in q'/4m' in
Eqs. (22)—(24),"we see that there emerges a consistent
set of equations between the couplings of the vector
mesons to the octet and the decimet of baryons. Es-
sentially, these equations have a unique nontrivial
solution. They have been obtained by the saturation
of those sum rules which are obtained in the infinite-
momentum limit, and which are odd under the inter--
change of the 5U (3) indices. These sum rules are actually
integrals over the absorptive parts of nonelastic ampli-
tudes for vector-meson —baryon scattering. We cannot
expect similar superconvergence properties for i ~ j
ever amplitudes as a group, since this group contains
also elastic amplitudes. If we nevertheless consider the
i+-+ j ever sum iules in our particular case, we And
that for most of the amplitudes we have formally


