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General Solution of the One-Channel-Scattering Singular
Integral Equations
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Integral equations for one-channel scattering are written and solved, starting from dispersion relations
for the generalized Jost function in the momentum k plane. This method is an alternative to the conventional
N/D method, but it allows a simple, physically meaningful generalization to the many-channel case, where
dispersion relations and integral equations can be written for a unique generalized Jost function in the com-
plex plane of a suitable variable which uniformizes all the right-hand cuts of the scattering amplitude. Even
in the pure elastic-scattering case, a unihed treatment is possible, whether the phase shift at inhnity is or
is not an integral multiple of m. In all cases, our singular integral equations are reduced to a FredhoIm-type
i ntegral equation with a Hilbert —Schmidt kernel.

I. INTRODUCTION

'N recent years many authors' ' have made inter-
' - esting investigations devoted to the effect of the
poles situated on diferent Riemann sheets of the ampli-
tude of a multichannel reaction. They were concerned
especially with the simplest case, the two-channel re-
action. An interesting physical result was obtained by
Frazer. ' If the resonance is situated on a suitable, re-
mote Riemann sheet, then the maximum of the cross
section is always shifted to the same energy value,
namely the threshold of the second channel. On the
other hand, all elements of the S matrix can be written
as quotients of the values of a unique Jost function on
various Riemann sheets. ' The above-mentioned facts
justify a more careful investigation of the analytical
properties of this unique Jost function on the whole
Riemann manifold.

To this end, one can write a dispersion relation for the
unique Jost function in the complex plane of a suitable
variable which uniformizes all right-hand-cut Riemann
sheets, and then derive integral equations from the
conditions imposed by unitarity. Of course, the integral
equation for the unique Jost function will be an alterna-
tive to the many-channel X/D method, s s and at the
moment it is diKcult to say what would be the real
advantages of this method.

For the one-channel case, such an integral equation
has already been written. ~ 8 The main diKculty of this
"f/f" method was considered to be the fact that the
integral equation is not of the Fredholm type. For in-
stance, only the case when the iterative series of the
integral equation converges is considered in Ref. 7.

' R. E. Peierls, Proc. Roy. Soc. (London) A253, 16 (1959).
'W. R. Frazer and A. W. Hendry, Phys. Rev. 134, B1307

(1964).' M. Kato, Ann. Phys. (N. Y.) 31, 130 (1965).' K. J. LeCouteur, Proc. Roy. Soc. (London) A256, 115 (1960).' J. B. Hartle and J. R. Taylor, Princeton University (un-
published).

6R. L. Warnock, paper submitted to the Thirteenth Inter-
national Conference on High-Energy Physics, Berkeley, 1966
(unpublished).' V. de Alfaro and T. Regge, Nuovo Cimento 20, 957 (1961).

8 R. Omnhs, Nuovo Cimento 21, 524 (1961).

Since such problems are of capital importance for the
general multichannel case, in the present paper we
focus our attention on the construction and solution of
the integral equation for the one-channel elastic scat-
tering, starting from dispersion relations for the general-
ized Jost function in the complex momentum plane.
%e emphasize that the singular integral equations are
brought to a Fredholm-type form whether the phase
shift at infinity tt(oo) is, or is not, an integral multiple
of m."

As in Ref. 8, we uniformize the right-hand cut of
the scattering amplitude from the s plane, passing
to the k plane, where the S matrix satisles the well-
known reality and unitarity relations (Fig. 1):
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FIG. i. The asymptotic behavior of the S matrix. 8, A, E—
bound-, antibound-, and resonant-state poles. Q—zeros of the S
matrix.

' Here we deal with the simplest case of the scattering of two
spinless particles of equal mass. We take the system of units in
which p, =k=c=1; k denotes the c.m. momentum and s is the
square of the c.m. energy; s =4(k'+1) =4(v+1), v—=k'.» S(co) may differ from the limit of the physical phase shift at
innnity by a multiple of 2r. A discussion about the choice of the
parameter s(~) is given in Sec. IV after Eq. (4.34c).
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FIG. 2. The singularities and the zeros of the Jost function in the
k plane. 8, S, R—output antibound, bound, and resonant zeros
of the Jost function. A, B, E—input antibound, bound, and reso-
nant poles. CDD„—"real" CDD poles. CDD,—"complex" CDD
poles.

Combining these two relations we obtain

S(—k) =S—'(k)

which allows the factorization

S(k) =F(—k)/F(k),

(1 3)

(1.4)

where F(k) will be called the generalized Jost function.
As will emerge clearly from Sec. III, the key to our
method consists in dividing the 5 matrix into two parts

S(k) =Sp(k)S'(k) .

The first factor Ss(k) is a rather arbitrary func-
tion of k, having two cuts, and is chosen to have an
expL&2i8(oo)1 asymptotic behavior, " i.e., the same
asymptotic behavior as the whole 5 matrix. If we now

impose the properties (1.1)—(1.3) on Sp(k) both Ss and
S can be factorized in a way similar to (1.4), i.e.,

Ss(k) = fo(—k)/fs(k) (1 6a)

S'(k) = f(—k)/f(k), (1.6b)

where fs(k) is a known function Lsee Sec. III, Eq.
(3.8a)g having known discontinuities along its two cuts,
while the second Jost factor f(k), related to S'(k), has

only one cut (see Fig. 2). There are no inconveniences
related to the fact that F(k) has two cuts; two cuts are
produced by the factor fs(k). If one wishes to define the
usual D(s) function on its first (second) Riemann sheet
through the values of F(k) in the upper (lower) k half

plane, this D(s) function will exhibit a left-hand cut
even on its first Riemann sheet (in the s plane), owing

to the analytical properties of the known function fs
Of course, D(s) could be defined without this left-hand
cut (by taking another fs(k) with only one cut, in the
lower half plane), but in that case it would be divergent
at inanity, as actually happens in the paper of Atkinson
and Contogouris. "

'I The condition that the phase shift at in6nity must have a
finite limit will be relaxed in a subsequent paper in which the
unequal-mass case will be treated also.

»D. Atkinson and A. Contogouris, Nuovo Cimento 39, 1082
(1965).

In order to establish the physical content of the in-
homogeneous term of our integral equations (the
"physical input"), in Sec. II the poles $Castillejo-
Dalitz —Dyson (CDD) and elementaryf of the Jost
function in the k plane are studied. As will be emphasized
in that section, the CDD poles can be replaced by some
"input" poles —elementary particles —situated either on
the positive imaginary axis or in the lower half k plane.
Therefore, even a resonance can be treated as ele-

mentary, i.e., as an "input force" for our problem.
In Sec. III a Riemann problem is stated for the second

factor f(k) of the generalized Jost function, which leads
to a singular integral equation for this function.

Section IV is devoted to the study of the solution of
this equation. The kernel of this integral equation has a
marginal singularity at infinity and is split into a regular
part and a Dixon kernel. The Dixon equation is then
solved by means of a Mehler transformation. " Al-
though the context is different, we use the same Inethods
as Atkinson and Contogouris" used for their nonrela-
tivistic X(s) equation, and we obtain finally a Fredholm
equation for the Jost factor f(k). This equation is then
solved by the Hilbert —Schmidt method. To ease the
task of the reader, in Appendix A the Phragmen-
Lindelof theorem is stated, while Appendix 8 is de-
voted to a short review of the theory of the singular
integral equations, which is necessary for Sec. III.

II. CDD POLES AND INPUT AND
OUTPUT PARTICLES

The poles of the 5 matrix can be produced either by
the poles of the numerator or by the zeros of the de-
nominator of Eq. (1.4). Particles related to the first
ones will be called input particles, because they cor-
respond to input poles Lsee Eq. (2.3)) for the equations
we shall derive. In contradistinction to the input poles,
the zeros of the Jost function are known only after the
integral equations are solved; therefore, these poles of
the S matrix related to these zeros will be called output
particles. Of course both input and output particles
may be bound, antibound, or resonant states. For in-
stance, the composite bound states of an electron and a
proton (the hydrogen atom) are "output" particles.

We start from the case in which the imaginary part of
the scattering amplitude vanishes quickly enough at
infinity in order to obtain Fredholm E/D equations.
(Of course, S(ao)=1.) The Jost function has in this
case only a negative imaginary cut" and poles related
to elementary particles and CDD poles. Se(k) is taken
identical to 1, i.e., F(k) = f(k) Owing to the r. efiection

'3 V. Ditkin and A. Prudnicov, Integral Transforms and Opera-
tional Calculgs (Pergamon Press, Inc. , New York, 1962).

i4 The usual convention is S(k) =F(k)/J'( —k), i.e., F(k) is de-
fined usually with a positive imaginary cut, but in the present
paper zfe adopt the opposite convention (1.4) which allows a smooth
generalization towards the LeCouteur-Newton function d(s)
=detfD(s)} from the many-channel case (see Ref. 3).
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property

we put

with

y(k) =~-r
' rr(k')dk'

k' —k

(2.1)

(2.2)

a,+ikb;a,+ikb;

(k—d, )(k+d, ) k' —d ' (2.4)

(corresponding to a CDD pole on the right real v=k'
axis), or by a pair of poles located symmetrically on the
imaginary k axis

ir; &'& ir, t'~ —n, (r;t'& —r;t")+ik(r;t'i+r, t")
+ ' = ' ' ' ' '

(2.5)
k —in; k+in, k'+nP

(corresponding to a CDD pole on the lef't real v axis).
Since

~(v) =1+2ip(v) 9'(v)/D(v) j (2.6)

zrj a,+ikb;
+2 +E, (2.3)

i k im—; (k—c,)(k+c,*)

where the quantities o (k'), m;, r;, a, , and b; are real.
A CDD pole on the real axis of the energy plane is

given either by a pair of poles situated on the real k
axis:

From (2.4), (2.5), and (2.9) we see that all the de-
nominators of the CDD terms are functions of k',
and therefore, in the expression f(—k)/f(k) which
defines the S matrix, they disappear.

It is worth while noting that it is always possible to
replace a Jost function f(k) with a complex CDD pole
with a Jost function f(k) exhibiting the same asympto-
tic behavior, but with two real CDD poles instead of the
complex one:

f(k) =«(k') f(k),
(k' —c')(k' —c *')

«(k') =ll
i (k' —d;")(k'—d'")

(2.10a)

(2.10b)

Of course, f(k) and f(k) are equivalent in the sense
that they lead to the same S matrix

S(k) = f(—k)/f(k) =f(—k)/f(k) . (2.11)

Indeed, as was stressed earlier by Atkinson and
Morgan, " the positions of the CDD poles are rather
arbitrary, since they can be shifted by means of a re-
ducible function «(k'); of course, their residues must be
changed correspondingly.

On the other hand, one may use a function «(k') to
move CDD poles into the zeros of the Jost function, in
this way transforming the output particles generated by
CDD poles into input particles.

For instance, if k= im; are output bound or antibound
zeros, then

it follows that

E(k') = Lf(—k) —f(k)]/2ip(k) . (2.7)

«(k') =Q(k' —d')/(k'+m') (2.12)

ResD(s&ie) = a,&id,b, . (2.8b)

Complex CDD poles may also exist, represented by a
quadruplet of symmetrical poles

a t' +zkb t'~ a t"+zkb "
(k c;)(k+c;*) —(k+c;)(k c;*)—

polynomial in k
(2.9)

(k' —c s) (k' —c;*')

If a parameter b; from (2.4) is zero, a pole of the
type in Eq. (2.4) appears only in the D function; if not,
the pole appears in both E and D, and therefore is re-
ducible. The unitarity condition provides a relation be-
tween the residues of X and D:

(s(4 case): For a pole of the type in Eq. (2.5), the
residues of Ã and D are both real and independent:

ResD
~

p „,'= —2n~r~

ResX
~
y=„.~= —(r, &'i+ r; "')( n'+1)' '—(2.8a)

(4(s case): If the CDD is placed on the right-hand
cut Lthe (2.4) case) ResX= —(1/p) Im ResD with

transforms the Jost function f(k) with CDD poles at
k=&d; and zeros at k=im; into the equivalent Jost.
function f(k) =«(k') f(k). Instead of output particles
(zeros) and CDD poles, the new Jost function contains
only the input particle (bound or antibound) poles at
k=——zm

Composite resonances can be treated in a similar way
using the inverse of the function «(k') defined by Eq.
(2.10b), two pairs of CDD poles being necessary in order
to annihilate the pair of complex zeros (output reso-
nances) and to produce an input resonance, i.e., a pair
of complex poles.

To distinguish between the various possibilities which
may occur, we note first that when the cut due to the
potential does not exist, it follows from d'Alembert's
theorem that the number of zeros must exceed the
number of CDD poles (since a rational function has an
equal number of zeros and poles).

This is approximately the case of weak potentials. A
new CDD pair of poles with small residues always
generates a pair of zeros (new output particles) in its
neighborhood. Now, if the residue increases or the po-

r' D. Atkinson and D. Morgan, CERN preprint 65/1343/5—
TH603, 1965 (unpublished).



CIULLI, GHIKA, STIHI, AND VI$INESCU

tential becomes very strong, the zeros can move to the
cut and disappear through it.

Therefore, if such a strong interaction between the
potential and the CDD poles exists, a deficiency of zeros
may occur and one will be forced to maintain the excess
of CDD poles in the transformed Jost function.

lim S(k) =exp)2ih(ao) 1.u, (Rex &0)
(3 1)

A similar result can be obtained for the left half plane
Rek&0, i.e.:

III. SINGULAR INTEGRAL EQUATIONS FOR
THE JOST FUNCTION

As has been stated in Sec. I, the Smatrix as a function
of k has the properties (1.1)—(1.3). Let the S matrix be
bounded at infinity and approach definite, finite limits
along the real axis. For s —+ + eo +is we shall write the S
matrix in the form exp{2i8(co)}, where 8(co) is no
longer a multiple of x, i.e., it is any real number. In
addition, it is an analytic function in the cut k plane
with a finite number of possible poles, so that we can
apply the Phragmen —Lindelof theorem (see Appendix A)
with the result that in the right half plane Rek&0, the
function S(k) has the same value at infinity in any
direction:

A posstble expression fol dp(k) 1s

dp(k) = 8(~){L(ks+1)"s/kj —k '} (3 7)

where the cuts of the square root are shown in Fig. 3(a).
It is important to note that this function makes the
conformal mapping of the cut k plane into the interior
of the circle of radius 8(co) with the center at the origin;
therefore dp(k) is always finite, so that Sp(k) ktzs zzo

esserlti ul siegllurities.
Our purpose is to establish an integral equation for the

function f(k) starting from the input function

8(itc) =S(ztc+e)+S(iK e), (1~&tt( co) (3.g)

which is supposed to be explicitly given. In fact, from
the partial-wave projection of the Laplace transform of
the potential, or from the crossing relation in the Chew-
Mandelstam theory, we get the explicit form of the dis-
continuity co(s) of the scattering amplitude along the
left-hand cut (in the s plane). "Now in the equal-mass
case, if no lighter particle can be exchanged, "the left-
hand cut of the partial amplitude coincides with that
of p(o) =Lv/(o+I) j't'. Thus

(z', (iK) =$1+ 2ip+A (zlc+ e)j+P1 2ip+A (—zlc e)j—
=2-4

i
tt/(tcs —1)'t'

~
po(ig), (3.ga)

lim S(k) = exp L
—2H(~ )j.

0—p co, (Rek &0)
(3 2)

where co is a known function.
Now using (3.3), Eq. (3.8) takes the form

f( z)t e)— —
Sp(ztc+ e)

f(zic+e)

(See Fig. 1.) These results are in accordance with the
properties (1.1)—(1.3) required for S(k).

The above-stated results express the fact that the
discontinuities of the S matrix at infinity on the two
cuts are equal.

In order to have the same asymptotic behavior
for Sp(k) as for S(k), not only on the real axis but
also in any direction at in6nity, we shall take for
Sp(k) the same cuts as for S(k), i.e., the cuts (i,i co) and

( i, io—p) T—he po. les of S(k) will all be left in S'(k).
We write

f(—its+ e)
+Sp(its c) — = 8,(itc) . (3.9)

(ztt e)

But in the k plane, f(k) has only a lower-half-plane
cut, i.e., for 1(~g(eo, f(itt+e)= f(ztc e)= f(z—tc), so
that we obtain

Sp(za —e)
f( zK e) = — — f(—ztc+ e)

Sp(ztc+ e)Sp(k) = expL»dp(k) $, (33)
e(itc)

+ f(hatt) . (3.10)
Sp(itc+ e)

where dp(k) has the same cuts as S(k). Since Sp(k)
satisfies the relations (1.1)—(1.3), the following proper-
ties result for dp(k):

dp( —k) =—dp(+k)
f(k) = 1+t)b(k), (3.11)

Since f(k) can be taken to equal 1 at infinity, we put
it in the form

3.4

d,*(—k*)= —d.(k)

with the asymptotic forms

lim dp(k) =+8(~),
A —+ ~, (Rek &0)

lim dp(k) =—b(co ) .
A ~ , (Re@ &0)

(3.5)

(3.6a)

(3.6b)

I6 Pf course, this is only one of the possible choices. Another
possibility would be to choose, for instance,

Se(k) = (cosh(~)+iL(k'+I)'"/kl sing(ac))
X(cosb(~) i$(k'+I)'l—z/kg sing(~)) '

"A. Martin, in Lectures ort Pizgh Ertergy Physics (Federal
Nuclear Commission of Yugoslavia, 1961);G. F. Chew, S-3/matrix
Theory of Strortg Ertteractiorts (W. A. Benjamin, Inc. , New York,
S96S).

» We shall deal with the general unequal-mass case in a subse-
quent paper.
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where the function g(k) has the cut (—iro, —i) and
contains poles of the type described in Sec. II:

a;+ikb;
+Z

i k i—r/r; i (k—c;)(k+c;*)

-' p'+/

''
Imd

From (3.10) we obtain:

Sp(iK—e)
g( i/—r e—)= — y(—is+ e)

Sp(i@+e)

C(&r) Ct(iz) Sp(i/t e)—
+ y(i/r)+ — —1 . (3.12)

Sp(z/r+ e) Sp(z/r+ e) Sp(M+e)

(a)
+II//" tl

+i it t*+ / /)(//'+ /-

It is now more convenient to make the change of
variable:

which rotates the cut ( i po—, —i) from the k plane into
the cut (—oo, —1) in the z plane. We denote by t the
values of s on this cut and use the same symbols for the
functions in the new s plane. In the s variable, the func-
tion dp(k) defined by (3.7) becomes

-Iv*-
I

z~-f
+f 1 Z~-f

ct)

lvr /[-
(zs 1)t/2)

dp(z) =il -+i I&(")
&z z i

(3.13)

where the cuts of the square root are shown in Fig. 3(b).
Equation (3.12) is equivalent to a Riemann problem

(see APPendix 3) for the oPen contour C—=L—eo, —rs J
in the s plane:

Fro. 3. (a) and (b). The determinations of the
square roots (k'+1)'/z and (z' —1)»z.

z "lnG(-r)
dr . (3.19)

2rri t r(r+z)

with

4+(t)=4(t+s ),

In order to solve it, we introduce the function
0+(t)=G(t)4-(t)+g(t) —~ «&» —1 (3 14)

s ' lnG(t)
r(z) = dt=—

and Explicit evaluation of the integral with G PEqs. (3.1.6),
(3.18a)) given by8 t (t t 8 t
G( ) P(2

Ss (—t) Sp
—

(—t) —48(ee )(rs—1)'/s/r] (rN = integer) (3.20)
where

Ss+(-t)=—Sp(—tWie)

t
( l

(t'—1)"'l
y=exp 21 t

—'ai —l~( ), (3.1»)

es(-t) =—Sp+(—t)+Sp—
(—t)

(»(~)~ l(t' —1)'"I
=2 expl ~(-) l. (3.»b)) )

/The cuts of the square root are shown in Fig. 3(b).$
This Riemann problem can be solved if the free term

g(t) given by Eq. (3.17) is Holder continuous. It results,
therefore, that 6(t) must be also Holder continuous.

yields

~(~) 2~(~)
I'(z) = (m+-,') ln(1+z) — +

4~(") (1 z) 1/s

+ (1—z') '/' arctanl
xs (1+zj

h(-)»(-)= (m+-,') ln(1+z) —— +

28(~) (z'—1)'/'
1ntz+(z —1)'/ j. (3.21)

The functions I'(z) plays an important role in our
theory, since it determines (besides the discontinuity
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and we can verify that I'(z) is zero at z= 0, as expected
from the subtracted form (3.19). We can further verify
that I'(z) has no right-:hand cut in the z plane. Indeed
for 1 ~& z, ln[z+ (z'—1)'~'] has opposite signs if z

lies above or under the real axis, since

[z+(z'—I)'"3 ' -~+'.= [z+(z'—I)'"3 = —~ (3 23)

which compensates the changes of sign of the factor
(z'—I)'~' which multiplies the logarithm, and therefore
no singularities may appear for s&1.

Let us return now to the study of the left-hand cut.
We notice that

y
—z+ (z2 1) 1/2

maps the z cut plane into the upper half-plane of y,
since the imaginary part of the square root (z'—1)'i'
is positive even for Ims(0. Indeed, introducing s= —z
(Imz) 0) one has

~=z+("—»"'= [z—("—»"'~ '= —1/y

and as Imy is positive, Imy will be positive too.
For s&~ —1, y is negative, but it is always situated

above the cut of the logarithm; remembering [see
Eq. (3.23)] that y(z+ie) =y '(z—ie), we obtain

1ny (zowie) =Ar&ln
I y(z ow ie) I . (3.24)

(The cut of the logarithm is taken along the negative
real axis. ) Hence for z& —1

I'(zaire) = (m+-', ) ln
I I+z

I
win (m+-,')

»(-) I("-I)'i'I
ln(l z

I I
(z' 1)' 'I )

I
(z'—I)'i'I 8(oo)

a2ib(~) — +—8(~) . (3.25)

By inspection we see that the discontinuity of I'(z)
for s& —1 is exactly 2+i times

~+l+[»(")/ )[I("—1)"'I/z7

function 8, which contains the physical information)
the form of the kernel of our integral equations. There-
fore, further on, a more extensive study of its proper-
ties is made.

We first note that I"(z) has no pole at the origin.
Indeed, expanding the logarithmic term around s=0
we obtain

28(~) (z'—1)'"
ln[z+ (z'—1)"'j

~(-)»(-)
+ (3.22)

function (Appendix B)

X(z)= exp[I'(z) j(z+1)-", (3.26)

4+(~) 4-(~) g(i)+
X+(t) X-(t) X+(t)

Introducing the function g (z) (Appendix B):
1 -'

g(t) dh

4(z) =
2~i „X+(t)t—z

(3.28)

27rj

0',(r) dr
&(~)S;(.)X+(—.)

27ri

e(r) —eo(r) dr
(3.29)

Sp (r)X+( r) r+z—
the solution of the Riemann problem is

~()=X()[~()+11()j, (3.30)

where II(z) contains the sum of the poles of the Jost
function.

Equation (3.30) is equivalent to the following mar-
ginally singular integral equation for P(z):

X(z) " S(r) dr
e()

2zi r So (r)X+( r) r+z—
X(z) " 8, (r)—80(r) dr

+X(z)II(z) . (3.31)
2z.i i So (r)X+( r) r—+z—

IV. THE SOLUTION OF THE
INTEGRAL EQVATION

We now solve the integral Eq. (3.31).The first step is
to bring the integral equation into a Gnite interval and
to syrnrnetrize its kernel. This is done by the inversion
z-+ 1/x and the introduction of a new function

[e(1/x)j"'
i(*)=

[S0 (1/x)X(1/x)X+( —1/x)g"' x

for which the resulting integral equation with a sym-
metric kernel has the form:

where ~ is an integer which is not yet determined. Using
the function X(z), we can write

X(i+i~) X+(~)
G(&)= =, (—~ &t& —1) (3.27)

X(~—i.) X-(~)

so that Eq. (3.14) becomes

as required by the definition (3.19).
The next step is to introduce the characteristic

i m(x, y)
y(x) =h(x)+ y(y)dy,

o x+y
(4.2)
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(4.3)
,/2LX(1/x) X(1/y) ~I 8(1/x) 8(1/y)~

/ )~1/2t/2Lg+( 1/x)X+((1/ )g,—(1/y) ju(x,y) =

(4 4)
, ~(1/y) —O; (1/»i/2 —1

Ex&

L-@(1/x)Q(1/x) j
)X+( 1/y) y x+y

I(x)=,
X+(—1/x)3'" 2 ' '

and

(4.12)( )p( )gy&~p(x)
Ip(y) g(,,y)pb) ydy

, *+y
~( ) =k(x)+~

The norm of Af((4.5b)

k(*,y)fb)'y '*
0

(t —xA—~—K)4(x) =
or

IAf(x) I'd*=Af(*)II'=M(p, p) p

' i(y)
(4.6b)Aj(*)=- .+y" '

Z(xy) ==ps(xy)-~(") '

~here

I-k(*»j"'LP(y)'"

f(y) Lk(x y)j
~ gx (4.13)

L-so (1/

(410) can be v'r'" "e uationf the integral eq

1

~

Jar peart 0We separate th
(4.2)

Q,nd
the uni«per

lt(x,y)i(y)~y. arz's inequality ~e obtain(46d) Using Sch~a"'

I f(y) I
'k(,y) 'I

( .14)X(, p(y
(4.»)

ik(x,y) lf(y '~ lid,llA/(*)II'~, ( ~

e o erat«A'h' norm of the QP

8

vt/here II II

fgL,2L0, 11. (

(4.15)(y)dy= 'llflf' ~

supllAfll/I
. ,b,„„d,ds;„g Schur's tese prove us g

(4.9
operator

All &~2r. (4 13) vt/e ha&e

IIAfll'/llfll'~ ' (4.16)
20e calcu a e the follo~ing integrals

d d ontinuousfunc
IIAf(x)ll'&

uniformly to
l the equation (4

t R exists and
$n order to so

—i The opera

~e get

= t—

F«
. b,„ndedonL'to' '

(4.7)I) I(IIAII '

1 dy

s (x+y)V'y

2

Denoting

see definition (4.8)j thatThat means see e

4 10) From (4.7) and (4.1 i7 it follovrs that if(0(x, y&~1). ( .arctan
gx x

(4.17)

(4.18)

k(x,y)=(x+y) ',
p(x)=Qx '

the operat

(4.11b)

Ol

R= (I——XA) '= I+XA+VA2 (4.19)

a Sci. Math. Szeged.H, A. Shields, Acta ci.. Halmos, and . , a ci.' A. Brown, P. H
26 12s (i965}'. --t. )"C.Foias (private corn

is bounded on I-'(,
e facts into account,Taking these fac s
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be written in the form

(4.21a)
where

9= RK
f(x) = Rh(x).

(4.21b)

h(x) ={I—XA—K}y(x)
= (I—M) {I—(I—)A)-'K}@(x). (4.20)

Multiplying Eq. (4.20) by R, we obtain

(f —+)4(x)= f(x),

Now, K being Hilbert —Schmidt, if R is bounded, Q will

be Hilbert —Schmidt also. Moreover, Eq. (4.21a) as a
whole will be Hilbert —Schmidt if f(x)QL'[0, 1$. There-
fore, before solving (4.20) it is of interest to calculate X

to see whether it satis6es the boundedness condition for
the resolvent R (i.e., to see whether ~X~ (1/s) and to
determine the index ~ so that f(x) is a square integrable
function on the interval [0,1j.

The constant ) defined by (4.6a) is

1 [Q(1/x) (t(1/y)g'I'[X(1/x)X(1/y) j'I'
hm

27ri [So (1/x)SO (1/y)]'~2[X+( —1/x)X+(—1/y) j'~'

1 np(~)X(+ ~)
2s-i Sp

—(~)X+(—~)
(4.22)

From the definition of the function I'(x) [Eq. (3.21)j,
it follows that [see also Appendix 8, Eq. (816c)j:
lim I'(s) = (m+ i2) ln(1+s) —[28(~ )/s.j lns
g ~OQ

—[28(~ )/s.$ ln2+ (2/s )8(~ ) (4.23)

r(s) =(~+-:)»[Isl—Ij+~~(~+2)z~~+se

(4.4) of A(x) is convergent if

I& [2&(")/~3-2-' (4.29)

(4.30)e&[2S( )/~j —v

But the behavior of the integral in Eq. (4.4) at
the end of the integration path @=0 is of the type
1/x~'I ")~ "+~ ". The square-integrability of h(x)
implies

which is a more stringent condition than (4.29).

)+—~{
the Fq. (4.21), we must have the following behavior at
x=0 for y(x):

The values of (t(s) and So(s) at infinity are
p(x) (x'*') ' with e&0. (4.31)

lim R0(s) =2 cos[2&(~)j,
lim So (s) =exp[+2i&(00)j.

(4.25)

(4.26)

Then, from (3.31) and (4.1), we obtain for the func-
tion p(s) the following behavior:

sm
—(2a( ~)j~) —e (4.32)

Collecting the last results (4.23)-(4.26), we obtain
for A,

g= (—1)~[cos28(~ )/s.j (I=m s) . (—4.27)

For lI(~)Wks, ~)).
~
&1/s as is required by the condi-

tion (4.18).
The last parameter to be determined is n.
As is shown in Appendix 8 for the Riemann problem

with open contours, singularities may occur at the end-
points of the contour. On the other hand, Eq. (4.21a)
is of the Hilbert —Schmidt type when A(x) belongs to the
class L'[0,1j. (R being bounded, if h(x)QL'[0, 1j, then
also l(x)gL'[0, 1$.) This condition can be satisfied by a
convenient choice of the integer K, i.e., of the integer
S=5$ K.

Assuming that

6t(s) —(to(s) —+ Cs " (v& 0), (4.28)
z-+ m

where C is a constant, the integral from the definition

But we have assumed that P(s) —+ 0 when s ~~, »
that

I&~ 28(~)/s. .
Hence, from (4.30) and (4.33),

(4.33)

e= [2lI(~)/s. ], (4.34b)

where the symbol [ ] denotes the greatest integer less
than or equal to 28(00)/s. . In exceptional cases v maybe
2, 3;then e will no longer be unique, and we are led
to a broader choice of characteristic X functions. In
order to avoid unpermitted singularities in the equa-
tions for p(s), produced by the behavior of X(s) at
s= —1 [see Appendix 8, Eq. {826)g we have to choose
g less than 2, i.e., 0~&0. Hence, we have to add to

[28(~)/s.)—v(N &~28(m)/s . (4.34a)

If, as is usually assumed, (t(s) can be expanded into
a 1/s series at infinity, then v is equal to 1 and the rela-
tion (4.34a) takes the form
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Eq. (4.34b) the condition

8(~)(vr/2. (4.34c)

The 1 plane
ThecO i7g+ Jf ~pa-I p/ane

This is possible remembering that 8(oo) is determined by
the phase at inanity only modulo x.

We return to the Hilbert —Schmidt equation (4.21)
The cvtof pe'2'-1

(a)
'fhe V~ inca plone

4 (*)=f(x)+ +(x,y)4 (y)dy (4.35)

with 7(x)= RIt(x).
The explicit form of R can be found by solving the

Dixon equation

(1—XA) f(x) = l't(x) (4.36)

oj

g6~

0

in)'gyration
prie for(4.4p)

which is equivalent to the expression (4.21b) for the
inhomogeneous term of the Hilbert-Schmidt Eq.
(4.21a).

Changing to the variable s=1/x Lh'(s)=h(1/s)/s],
one gets

Pro. 4. The analytic continuation in the X p1ane of the
solution (4.40a) of Eq. (4.36).

H'(fJ, ) =p, tanhsy

and its inverse

According to the argument developed at the begin-
ning of this section, the solution (4.40a) is the unique"f'(r) solution in L'$0, 1]of Eq. (4.36). However, by analytic

f'(s) =h'(s)+X — dr. continuation over the parameter X, we find a whole set of
solutions of Eq. (4.36) which, of course, no longer be-

This equation can be solved by the Mehler trans- long to the L'L0, 1] class but which may present physi-

formation" " cal interest. (There is no apparent reason to avoid such
OO solutions. )

P i+i„(s)&'(s)ds (4.38a) As one sees from the denominator (coshs r—Xrr) of the
integrand in Eq. (4.40a), the point X=1/s. is an "end-
point" singularity for f as a function of P,. Indeed, solv-

00 ing the equation
h'(s) = P N.;„(s)H'(fj)dfJ, , (1&~Re.(+~) (4.38b) cosh%'To —XÃ =0

& (4.4Ob)

together with the Cauchy integral for I.egendre
functions

cosh' p
"P;+;„(s')

P-:+'.(s) = ds', (——',(Imp( —',) .
vr t s'+s

(4.38c)

The Mehler transform of the Eq. (4.32) has the
simple algebraic form

X'(p) =H'(p)+ (Xs./cosh~@) X'(p), (4.39)

i.e., X'(p) =H'(p)t1 Xrr/cos—br'] ' which can be in-
verted by (4.38). Returning to the x variable we obtain

T tanhxz
f(x) = Rk(x) =

o o 1—(Xs/cosh'-r)

we find for the position of the pole of the integrand

r„=(1/s) luge&+ (z'&P—1)t~P]+2rzj,

where both determinations of the square root are to be
taken into account.

If now, for instance, X varies along the path Cq

LFig. 4(a)] from a physical value X& to the physical
value 4 (—1/s. (Xt,p(1/s), the pole

ro ——(1/~) in'. ),+(s &go—1)t~&]

varies along the curve C, t Fig. 4(c)] from rot to rpp,

both situated on the imaginary axis. Deforming the
integration path of (4.40a) correspondingly, we get,
besides the integral along the positive real axis, the
residue of the pole To, i.e.,

Similarly

R(x,y) = RK(x,y) = 7 tanhmT

1—(Xm/cosh' r)

P ~;,(1/x)P;+;, (1/x')
X h(x')drdx'. (4.4Oa)

A(1/x)P y+;„(1/x),

' (rp sinhros)P ~;„(1/x)
li(x)dx.

But from (4.38c) we see that

(4.40c)

P;+,,(1/x)P ~;„(1/x') M(x', y) —X
X- drdx'. (4.41)

P;+;„(1/x) ' P k+iio(1/x')
dx ~

x'(x'+x)
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so that (4.40c) is a solution of the homogeneous part of solution a term:
Eq. (4.36) if ~Imago~ (2. Of course, as

z) s ——', +[Im o[

this solution behaves like x ~ ' "~ for x —+0 and
therefore is no longer of the class L'[0,1].

The general solution of our integral equation is then

y(x)+ A,y(x)

where AI&(x) satisfies the equation

62y(x) =P q;(x);
X,—1

e(1/x) X(1/x)
q;(x)R

s,—(1/x)x+( —1/x))

AII(1/x)
X Ch. (4.47)

Hence [see also (4.21a) and (4.1)]:
(I—Q) Dig(x) =const(1/x)P ~;,(1/x) . (4.21b)

f(k) = I+—y(k)+ Ay( k)+a,y( k)

I~,gq, (x) = q, (x). (4.42)

As is known, the kernel Q' of the integral equation

(4.35) can be expanded into the form:

@(h,y) =2 q"(h) q'(y)/~' (4.43)

so that the solution of the equation (4.35) takes the
Gnal form:

The integral Eq. (4.21) for P(x) will be solved by
means of the Hilbert —Schmidt method.

Q being a Hilbert —Schmidt operator, it has eigen-
values X; ' and eigenfunctions q; which can be com-
puted by a computer for each particular 0', (t) from the
equations:

V. SUMMARY AND CONCLUSIONS

In this paper we have first written dispersion rela-
tions and integral equations for the Jost function in the
complex plane of the variable k, which has the property
of uniforrnizing the two Riemann sheets of the elastic
scattering amplitude.

Finally, the Jost function has been written in terms of
the eigensolutions of a Fredholm equation with a
Hilbert —Schmidt kernel, depending on the actual form of
ar(s), the left-hand discontinuity of the amplitude.

For practical purposes, we summarize here the main
steps of this work:

First, the S matrix was written for the general case
when the phase shift at infinity"

@(h)=2 [~'&'/P '—1)]q"(h) (4 44)
8(~ )= arc sin[co( —~ )]'/2 (modulo vr)

is not a multiple of x.
where

I

f(x) q, (x)Ch.
e

(4.45)

zrj a,+ikb;
AII(k) =Q — +P (4.46)

i k im; '—(k c,)(k+c;*)—
introduced in the equations, one has to add to the old

The inhomogeneous term of Eq. (4.21b) for hip(x) is

no longer of the class L'[0,1],so that the usual Hilbert-
Schmidt procedure cannot be applied. However, our
belief is that for a wide class of potentials, the Legendre
polynomials E=;+,,(I/x) can be expanded in terms of the
eigenfunctions of the kernel g.

The advantage of the Hilbert —Schmidt method con-

sists in the considerably smaller computer time required
for the calculations. Indeed, a new CDD pole does not
change the eigenfunctions q, (x), for they depend only on
the left-hand discontinuity of the amplitude, via Eq.
(4.42). Once the q;(x) are known, for each new input
particle or CDD pole

S(k) = exp[2ido(k)][f( —k)/f(k)],

where the auxiliary phase do(k) is defined in (3.7).
Then, f(k) was written —see (3.11) and (4.1)—in the

forIIl

f(x) =1+x
So (1/x)X(1/x)X+( —1/x)- '/'

0',(1/x)

Xj(h), h=i/k,

where P is the solution (4.44) of the Hilbert —Schmidt
equation (4.35)—see also Eqs. (4.40a) and (4.41).

The quantities h, Jtt/I, and X which appear in these
formulas are defined in (4.4), (4.3), and (4.27), re-
spectively, by means of the auxiliary functions So
[Eq. (3.18a)] and X [Eq. (3.26)]. The index e is
evaluated in Eq. (4.34a)—(4.34c).

For the equal-mass case we have just studied, where
lighter particle exchange does not exist, the whole
physical input in our equations is given by the known
function S(k) =S+(k)+S (k), defined on the left-hand
cut of the s plane [for the connection between 8(k)
and w(k), see Eq. (3.8a)], together with the mero-
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morphic function II(k) [Eqs. (4.4) and (2.3)). The
function II represents the contribution to the scat-
tering process from the actual elementary particles
(not from composite particles) and from the CDD poles.

As was discussed in Sec. II, if a sufficient number of
composite particles exists, the CDD poles can be re-
placed by some new elementary-particle poles. If this
condition is not fulfilled, some of the CDD poles will re-
main and must be taken into account in the input II
function.

The method presented here can be extended easily to
the many-channel case, where a generalized Jost func-
tion exists' and the elements of the S matrix are given
by the ratios of the values of the Jost function on its
various Riemann sheets.

Now, in the complex plane of a suitably chosen varia-
ble all the right-hand cuts of the scattering amplitude
are uniformized, and therefore only the left-hand cuts
will remain. A Riemann problem analogous to (3.14)
can be stated. The corresponding integral equations for
the generalized many-channel Jost function will be
regularized in a subsequent paper.
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APPENDIX A. PHRAGMCN-LINDELOF THEOREM

In the following we prove the relations (3.1) and
(3.2) using the Phragmen —Lindelof theorem. This
theorem may be stated as follows.

Let the function f(s) be analytic and regular in the
domain D confined between two rays I'& and I'2 which
form an angle with the vertex at the origin. Further, let
f(s) be bounded in the sector D:

If(s) I
&C.

We denote by E;, i= 1, 2 the set of limit points of
f(s) when s —+~ along the ray I';. The sets E; contain
either only one point, or a continuum. Then, either:
(1) the sets Et and E2 have a common point, or (2) one
of them encircles the second set.

In particular, if there exist Gnite limits u~ and a2

when s~~ along I'~ and I'2, then a~ ——a2 ——u, and
f(s) ~ a uniformly in D when s +r-o. Consequently, if
f(s) has only one cut and remains bounded at infinity,
then if we take I'~ and I'2 on opposite sides of the cut, aq

being equal to u&, the discontinuity tends to zero uni-
formly when s —+~.

We apply the theorem for the S matrix in the sector
D= (—ir/—2+e, ir/2 —e). In this domain, the S matrix
has no cuts and has only a finite number of poles.
From (1.2) we obtain that the S matrix has the same
limit exp[2ib(~)$ along the rays Pt and P2 which de-
fine the sector D.

In order to apply the theorem, it is necessary to sub-
tract the poles. But the poles' contribution tends to
zero when IsI ~~, so that

lim [S(k)—poles)
k-+ ~, k+D

lim S(k)=exp[2i8(oo)j. (A1)k~ os, kPD

APPENDIX 8: CAUCHY SINGULAR INTEGRAL
EQUATIONS AND THE RIEMANN PROBLEM

We summarize here the main facts from the theory of
singular linear integral equations. Now, a Cauchy singu-
lar integral equation being given, one can always separ-
ate its kernel (2iri) 'H(t, t')/(t' —t) into a pure Cauchy
kernel (2iri) 'H(t, t)/(t' —t) and a regular one, E(t,t')
= (2iri) '(H(t, t') —H (t, t) )/(t' —t). Therefore, as is known,
the initial Cauchy singular linear integral equation is
equivalent to a Riemann problem whose coefFicient
G(t) [see Eq. (B1)] is equal" to [1—H(t, t)j—', the
inhomogeneous term g(t) being built from the regular
part of the integral equation together with its inhomo-
geneous term.

The Cauchy and regularized equations having been
thoroughly studied in Secs. III and IV, we deal here only
with the Riemann problem: first in its classical form,
for closed contours, then, in a slightly generalized
version (allowing poles) for open contours.

Let us begin with the Riemann problem stated for a
c1.osed contour C separating the domains D and D
(D+ is defined on the left when going along C counter-
clockwise; further, the origin is supposed to be in D").
The Riemann problem is the following

Given two functions G(t) and g(t) deftned on C, satis
fying Holder's condition, to ftnd two functions P+(s)
and $ (s) which are holorttorphic in D+ and D respec
timely, such that o~ C me have:

4+(t) = G(t)4 (t)+g(t) (B1)

To solve this problem, we first define ~, the index of

"It is supposed that t contains an infinitesimal part which
places @(t) on the left boundary of the contour. If not, the principal
value of the integral is understood, and one goes to the auxiliary
function p defined by @+(t) p(t) = y(t), Pg+(t)+p—(t)]/2
=(2iri) '(PJ' Prp(t')/(t' t)ddt' The Rieman—n prob. lem for p(t)
has a coefficient 0 equal to PH(t, t)+2j/$H(t, t) —2).

2' F. D. Gakhov, Eraevye Zadatchi (G.I.P.M.L., Moscow, 1963).
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a=6/2zi, 6= d lnG(r). (82) r(z) =
27ri

the function G(t), with the help of the variation of G(t) and we can simply write
argG(t) on C:

lnG(r)
87 .

The contour C being closed, x is an integer.
In contrast with lnG(t), In[t "G(t)j is a one-valued

function on C, so that we can define the functions

The characteristic function X(z) is defined by

X(z)=g(z —bi, )-"&exp[r(z) j. (810)

and

r(z) =
2xz

ln[r "G(r)j
--cfg (83)

Writing
1 g(r) dr

@(z)=
2zi o X+(r) r—z

(811)

X+(z)=expr+(z), X—(z)=s-"expr-(z) (84)

which are, respectively, holomorphic in D+ and D .
Here r+(z) are the values of I'(z) for z&D+.

Noting that

we observe, as for the closed-contour case, that the func-
tion p/X —N no longer has discontinuities along the
contours C~. Thus

4(z) =X(z)[+(z)+11(z)+6'-(z)j, (812)
X+ t X—

t =3"exp r+ I —r &)
where II(z) contains the poles of C{z), and (P„(z) is a

=i"exp In[i "G(t))=—G(t) (85) polynomial. If none of the contours C& goes to infinity,
then r(~)=0 and

and writing g(t)/X+(I) =4+(I)—4 (I), where

1 g(r) dr
%(z)=

2s.i o X+(r) r z—
Eq. (81) may be transformed into the equality

(86)

[4+(~)/X+(~)j—++(&)= [4 (&)/X (&)j—+ (&) (8&)

The left-hand side of (87) represents the limit value
on C of a holomorphic function in D+, while the right-
hand side is the boundary value of a function having in
D at most a z-order pole at infinity [owing to the
z-order zero of X (s) at z= oo $.

Equation (87) tells us that there is no discontinuity
along C, and therefore both its sides represent the same
function (P„(z) analytical in D+UD, having at most a
z-order pole at infinity (i.e., 6'„ is a polynomial of
degree ~).

Hence, the general solution of (81) is

4'(z) =X'(z)[+'(z)+&.(z)j (Bg)

%e deal with the case of open contours, also allowing
the function g(z) to have poles of given positions and
residues. The contour C is open and is supposed to con-
sist of the uncrossed curves Ci (C=UgCi). The argu-
ment runs along the same lines as for the closed-contour
case, with the only difference that we have to be careful
about the possible singularities at the end points of the
segments Cq. Of course, the two domains D+ and D
lose their meaning, but the Riemann problem can still be
stated in the form (Bl), where P+(z) and P (z) (as well
as X+ and X, and 4+ and ~, etc.) are now the bound-
ary values on C of the same analytic function p(z).

Since the contour C is not closed, we no longer have
troubles with the multivalued property of the phase of

X(z) —- (1/z)*"'
(z~ ao)

(813)

The resulting degree of the function g(z) at infinity is
therefore z—gi, zi.

In order to establish the main difference between the
open-contour case and the closed-contour one, we have
to examine the possible singularities of the function
$(z) at the end points aq, bi, of the segments Ci, .

Indeed, a function f(z) defined by the integral

1 ' ~(z')
f(z) = dz'

2xz Q

(814)

has a behavior at one of the end points which depends
strongly on that of o (s').

Denoting by so either u or b, then, if

o (z) const&& (s zp)—
(s-+2,0}

(815a)

f(z) &const (z—zo) &,
(s-+so) 2z s&num'

for 0(Rey(1, (815b)

const
f(z) ~ ln(z —zo), for 7=0. (815c)

2m

o(z) constzr '
(3-+ ao)

(816a)

it follows that (the upper sign corresponds to a —& oo

When one of the limits of the integral (814) tends to
infinity, then, if
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while the lower one to b~ ~)

const 1'
f(z)

(g-+ oo) 27ri s
for y =0. (816c)

With these results in mind, we can now study the
singularities of g(z) at the end points u/„b/, of the con-
tours CA, , when they are 6nite.

We write

InG(u/, )= i8(u/)+Inp(u„),

where 8(u~) is almost arbitrary (it is fixed up to a multi-
ple 2)2 of 22r).

From (317) and (815c) we obtain the behavior of the
function I'(s) for z —+ u/„and hence, of the function X(z)
defined by (810):

f(z) W const- z&
—',

(g-+ oo) 2$ Sln7l ')t'

for 0&Rey(1, (816b)

X(z) ~ (z b~)e(4)/2w (322)

The rest of the argument is the same as for the end
point u/„and we have only to replace 8(u/, ) by 0'(b/, ).

If one of the points u/, goes to infinity, then I'(z) is
defined. with a subtraction —see (3.19)—and from
(816c) and (810) we obtain

In the first case, P(z) would behave either like
(z u—/, )& (from the term X%), or like (s—u/, )
(from the term XII). The strongest singularity will
dominate.

In the second case, P(z) behaves like (z—u/, )
Now, a few words about the singularity at the second

end point b/, . Assuming 8(u/, ) fixed, the phase of G(t) at
t= b/, is given by 8(u/)+t)/„where 5/, is the variation of
argG(t) along C/, . Defining

O(b/, ) = 8(u/, )+t)./, 22rz—/„(821)
the behavior of X(z) in the neighborhood of b/, will be

u)
—8 (aa) /2~ (818) X(z) z+(e(~d/2~] —z~/

(I-+gg ~ oo)
(823)

(We have neglected here an oscillating factor. )
As for %(z), if the coefficient g(s) behaves like (z—u/, )&

in the neighborhood of u/„we have to choose 8(u/, )
so that g(r)/X+(r) is integrable, i.e., Re(q+8(ua)/22r)
must be greater than —1.

Two cases may occur:

In Sec. III, in the particular case of I'(z) given by
Eq. (3.21), it results that

8(—~ ) = (22/2+1)2r —48(~ ),
~(--.-2) =4)("), (324)
0(—1)= (22/2+1) 2r—22r/(—= (2N+ I)2r .

(1)

and then

—1(Re{q+$8(u/, )/2n. g) &0 (819a) Therefore, the behavior of the characteristic function
X(z) at s= —~ ands= —1 is

and then

@(z) (z u )g+L8(aa)-2~).

0(Re{q+ [8(u/)/22rj)

%'(z)~constant.

(819b)

(820b)

X(z) ~ ze/2~ —c—z(m+t —N(oo)/w)

(g-+oo)

and correspondingly

X(z) (z+1)8/2~ (z+1)~+~

(325)

(326)


