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The most general free Geld which transforms locally under Lorentz transformations according to a unitary
representation of the homogeneous Lorentz group is constructed. Such a Geld is a linear combination of
annihilation and creation operators for particles belonging to an infinite tower of irreducible multiplets of
the Poincare group. Diferent spin multiplets in the tower may have diBerent masses, and appear with ar-
bitrary spiri-dependent and mass-dependent weight factors in the Geld expansion. It is shown that the require-
ment of causal (anti-)commutation relations for these Gelds can be satisfied simply if one assumes Bose
statistics for the particles in the towers for both integer and half-odd-integer spin. However, by a judicious
use of the Gelfand matrices (generalized Dirac matrices) the causality condition can also be satisGed using
Fermi statistics. Such Fermi Gelds are constructed for two particular unitary representations —one of integer
and one of half-odd-integer spin. These generalized Fermi fields still do not enable one to construct an index-
invariant theory consistent with the unitarity of the S matrix which incorporates particles satisfying Fermi
statistics. Thus the incompatibility for an index-invariant causal theory between unitarity and Fermi
statistics, which was established in a previous paper under more restrictive assumptions, remains valid for
these more general Gelds.

I. INTRODUCTION
' 'N two previous papers' ' we have constructed local'
- ~ field operators which transform as representations
of the homogeneous Lorentz group L. The particle
multiplets corresponding to these fields could contain
either a finite or infinite number of different spins. In I
we discussed the well-known result that if the fields
transform as finite-dimensional representations of L
it is impossible to construct an index-invariant theory
(defined in I) which is consistent with the unitarity of
the S matrix. In II we established two theorems. Firstly,
we showed that by constructing fields which transform
as unitary representations of L, one cue construct a
theory which is index invariant and is consistent with
the unitarity of the S matrix. Secondly, such a theory
was shown to be causal only if all of the particles
(whether of integral of half-integral spin) obeyed Bose
statistics. In Sec. II we construct the most general
local field which transforms as a unitary representation
of L. The field contains particles of different mass as.
well as spin. The different spin multiplets may occur

,
*Research sponsored in part by the U. S. Air Force OfBce of

Scientific Research through the European Once of Aerospace
Research, U. S. Air Force.

$ Supported in part by the National Science Foundation.' G. Feldman and P. T. Matthews, Ann. Phys. (N. Y.) 40, 19
(1966), hereafter referred to as I.' G. Feldman and P. T. Matthews, Phys. Rev. 151, 1176 (1966),
hereafter referred to as II.

38y a local Geld operator we mean one which has simple
Poincare transformation properties. Thus if P (x) is a local field,
under a pure Lorentz transformation, P, (x) -+S @Ps(x'), where
S p is a matrix (independent of x and x') in some "spinor" space
(finite or infinite dimensional) and x' is connected to x by the
usual equations of a Lorentz transformation. Under space-time
translation, g (x) -+f (x+l). We distinguish a local Geld from a
causal Geld which is deGued below. to satisfy causal (anti-)com-
mutation relations.

with arbitrary mass- and spin-dependent weight factors
in the field expansion.

In Sec. III we summarize some general properties of
the homogeneous Lorentz group. In particular, we
introduce the generalized unitary Dirac matrices found

by Gelfand.
In Sec. IV we examine the implications of the require-

rnent that the fields satisfy causal (anti-)commutation
relations. In general it is a simple matter to satisfy the
causality condition if the particles satisfy Bose statistics.
This leads to fields satisfying causal commutation
relations. By exploiting the extra generality of the
fields considered here, it is shown that for two particular
unitary towers —one of integer, one of half-odd-integer
spin —one can choose weight factors for the diferent
spins in the field expansion in such a way as to introduce
the Gelfand matrices. This device leads to particles
satisfying Fermi statistics and corresponding fields
satisfying causal anticommutation relations. These
explicit constructions of Fermi or Bose fields for either
integer of half-integer spin are in marked contrast to
the conventional Pauli relation between spin and
statistics for local causal fields which transform as finite
representations of the homogeneous Lorentz group.

To conclude Sec. IV we consider whether these
unitary Fermi fields can be used to construct index-
invariant theories which are consistent with the
unitarity of the S matrix. It is shown that they cannot.
There is in fact a very direct convict between the
unitarity condition, which requires the sum over spinors
be unity, and causality with Fermi statistics, which
forces the same sum to be an odd function of the
momentum. Thus, these general fields do not alter the
conclusion of the causality theorem, established in II
under more restrictive assumptions.
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II. MULTIMASS FIELDS

In this section we develop local rnultimass field

operators, ' following closely the procedures of I and II
(but changing the notation somewhat).

The infinitesimal generators of the Poincare group are
the usual translation and rotation operators4

Pls& JII,v ~ (2.1)

The single-particle states belong to the irreducible
unitary representations labeled by mass m and spin s
and the components can be labeled by a four-velocity
e„and spin component s3, where

(2.2)

Thus we shall write the states as

m)$; Q„,$3

such that
and

a(m, s; u, ss))p ——0,

at(m, s; u,ss))p=
~
m, s; u„,ss).

(2.12)

(2.13)

relations of the Poincare algebra, it can easily be shown

that the states defined in (2.9) do indeed satisfy

Eq. (2.4). Note that the boost operator does not depend
upon m but only on I„,so that the same boost operator
can be used to produce states of a definite velocity,
even though their masses are different. Accordingly, as
already implied by Eqs. (2.7) and (2.11) we shall

assume that our states ~m, s; u„,ss) can be somereducible

representation of the Poincare group and thus one
containing different masses m and different spins s. All

the members of this reducible representation have in

common only the velocity I„.
As usual, we assume the existence of a lowest energy

state, )p, the vacuum, and introduce annihilation and
creation operators such that

and

where

P„t m, s; u„,ss) =mu„~ m, s; u„,ss),

W'~ m, s; u„,ss) = —m's(s+1) ~m, s; u„,ss), (2.5)

It must then follow' from (2.7) that

La(m, s; u, ss),at(m', s'; u', ss') j+(2sr)8(up)8(u' —1)
= (2sr)4b'(u —u')b „,b„.b, .„, (2.14)

pip &pv)tpP J (2 6)

Since the eigenvalues of P„ form a continuous set we

normalize the states (2.3) to a b function, and, in fact,
, we write' U(u)—=exp( —irf K), (2.15)

A pure Lorentz transformation can be specified by
a, four-velocity tt„(where s'= 1). It was demonstrated'
in I that under such a transformation,

(m', s up, ss )m s up ss)(2sr)8(up)b(u' —1)
= (27r)'b(u u')b b,—.8„„.

We define
(2 7)

U(s)a(m, s; u, ss) U '(e)

=P(m, s,ss
~
D '(u, s)

~
m, s,ss')a(m, s; u', sp'), (2.16)

Ej=—Joj ~ (2.3)
where

83

Then the boost operator is the pure Lorentz transforrna-
tion which transforms rest states to moving states, and D(u u) =exP(ie ' K) exP( —irf'K) exP(—ie' K) (2 17)

we may write and

~m, s; u„,ss)=X exp( —is(u) K) )m, s,ss), (2.9) cosh[rfl =up, sinhlrfl =
I vl

where
cosh/ R) =up, sinh/ E/ = /u/, (2.10)

4 We use the notation p, , v=0, 1, 2, 3 and i, j=1, 2, 3, with the
metric g„„such that gpp= —gii= —g22= —g33 i. The commuta-
tion relations satisfied by E„and J„„have been written down
many times. See, e.g., I, Eqs. (2.1) to (2.3).

One can normalize diferent irreducible representations (i.e.,
those with different m and s) arbitrarily. Thus we could multiply
the right side of (2.7) by f(m, s), an arbitrary (positive) function
of m and s. However, since these states are to be identified with
physical states, the normalization factor must be introduced at
some stage in calculating probabilities and is most conveniently
done at this stage. However, this freedom of normalization will be
exploited when we introduce fields below.

s Thus the true "rest states" are fthm ~m, s,ss) and not
~ m, s,ss).

and the unit vectors e(u) and 8 are equal. For later
convenience we have chosen the states ~m, s,sp) to be
normalized such that

(m &$ &Ss ~m&$&ss)=b~~~b~~~b~sgs~. (2.11)

Accordingly, the factor 1V in (2.9) must be chosen' con-
sistent with (2.7). Using only the commutation

g=gq

e'= e(u'),

(2.18)

(2.19)

where 8 is a spin-Rip matrix defined by (2.45) of I.
Under a translation U(l) specified by a four-vector l„,

7The ~ in Eq. (2.14) will refer to the anticommutator or
commutator, respectively, i.e., to fermions or bosons. In this
paper we will not consider the possibility of the particles obeying
parastatistics.

Equation (2,16) is the same as (2.22) of I, incorporating our new
notation. It is important to remember that the operator D(Np)
is an operator in the little group and thus, when operating on a
rest frame state (m, s,sp), cannot change the mass m or spin s.

and I„' is the four-velocity obtained from N„by the
Lorentz transformation specified by v„.

Similarly, as in (2.46) of I we can write

U(e)at(m, s; u,s,) U '(e)

=Q(m, s,ss~B 'D '8~m, s,ss')at(m, s;u', sp'), (2.20)
S3'
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we have
U(l)aU '(l)=e *»'t"a,

U(l)atU '(f—) =e'o t"at.

(2.21)

(2.22)

Just as in the single-mass case, we introduce anti-
particle operators b(m, s; N, ss) and auxiliary operators
associated with them. Thus,

In terms of these operators, a and at, one can define an
auxiliary operator (see I) with simple transformation
properties under all the Poincare transformations:

A."(N, x)

g(o. ; u~ exp[ is—(zt) K j~a; p)
m, S, S3 P

X(o",P~m, s,ss)f(s)e ' "'*a(m,s; N, sz)

—= P to &'&(m, u, s,ss)f(s)e '""ea(m', s; I, s), (2.23)
tS, S,S3

where ~o; ct) is some representation of the auxiliary
group which we shall take to be the homogeneous
I.orentz group L. These states will be discussed in
more detail in Sec. III. Here, let us note that 0- labels
some irreducible' representation of L and n the compo-
nents. The weight factor" f(s) is some arbitrary function
of s. The factor m (') is a generalized spinor and hence
(o; ot

~
m, s,ss) is a constant spinor.

From the transformation properties (2.16) and (2.21)
one can immediately deduce that

U(e)A '&(Qx)U '(e)

=P(tr
& n~ exp(irt K)

~

o. ; P)A e&'&(zt', x'), (2.24)

U(l)A &o&(N x)U '(l)=A "(I,x+1). (2.25)

The auxiliary operator A &'(zt, x) defined here differs
from the operator A (p) defined in I and II. In I and
II we consider only those physical states ~m, s; N, ss)
which were irreducible representations of the Poincare
group and thus were states all of the same single mass m.
Thus, if instead of (2.23) we had defined an operator
A &r&(zz) without the factor e ' "'* we would have
found that A '&(zz) did not have simple translation
properties. However, for the special case, when all the
states in

~
sm, s )azre restricted to have the same mass,

say M, we can define an A '& (zt) and we will have

A.&o& (N,x) =A. '&(N)e '~" * -'(2. .26)

' The rest'riction that ( o; n) transform as an irreducible represen-
tation of L will imply some restriction on what physical states we
are combining in our reducible Poincare representation, ~m, s,s~).
As we shall see in Sec. III, the component label o. stands for j and
j3, the spin magnitude and spin component labeling a representa-
tion of L. In an irreducible representation 0. of L a particular j
appears no more than once and the value of 0. determines which
j's do occur, and only j's diGering by integers can occur. These
restrictions on j imply a restriction on which s appears in

~ m, s,se)
since we must have (o;tt~m, s,se)oeO. However, we will find it
useful at times to introduce other auxiliary operators, such as
A (')(N, x), where v labels a different irreducible representation of
L but with the same spin content as the «r representation.

' More generally, we can have an f(m, s) rather than f(s). How-
ever, in all of our subsequent work we shall always choose m =m (s).
In previous discussions this factor j(s) has been tacitly assumed
to be unity.

where g(s) is some arbitrary function of s; and m runs
over the same values as ns but refers to an antiparticle
state. 8 &'&(N,x) transforms in the. same way as
A ' '(N, x) under all Poincare transformations. It is
then possible to define a local field

it &'&(x)—= [A (zt,x)+23 (N,x)j

X (2zr)0(Np)l&(N' —1) —. (2.28)
(2zr)4

It follows that

U()~-&'(*)U-'()

and

=Z(a;~~exp(zrf K)~~;P)4&z"(*')~ (229)

U(i)&P "(*)U (i)=4' "(*+i) (2.30)

showing that P &'& (x) is a local field.
In contrast to the single-mass case, f & &(x) will, in

general, not satisfy any equation of motion —not even a
Klein-Gordon equation.

Before going on to examine whether these fields can
be made to satisfy causal (anti-)commutation relations,
we shall find it useful to review some important features
of the homogeneous Lorentz group L.

III. THE HOMOGENEOUS LORENTZ GROUP I
In this section we review some of the properties of the

homogeneous Lorentz algebra and its representations.
Most of the material can be found (with some nota-
tional changes) in the books by Gelfand, Minlos, and
Shapiro" and Naimark. '

The infinitesimal generators of L are the operators
J„„.If we define

and

I~i 2&ijkjjk )

+i ~oi )

(3.1)

(3 2)

the commutation relations are

[J;,J,j=is;;sJs,
[J,,E,5=is,;gCs,

[I&.„E,j= i e,s7,Js—
(3.3)

(3.4)

(3.5)

"I.M. Gelfand, R. A. Minlos, and Z; Ya. Shapiro, Representa-
tions of the Rotation and Lorents Groups (Pergamon Press, Inc. ,
New York, 1963).

"M. A. Naimark, Lznear Representatt'ons oj the Lorents Groztp
(Pergamon Press, Inc. , New York, 1964).

8 &'&(zt,x)= p p(o, &r[exp[—is(N) K]~o, p)
eS,S,SI P

X(o;P ~

8
~
m, s,ss)g(s) e+'m"'*bt(rrt, s; N, sz), (2.2'1)
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(kp, c)—=o, (3.6)

All of the irreducible representations of this group
are specified by two parameters

It is easy to see that if we have a representation of
J; and E; which we label by 0 we can find another
representation, which we label i and call the conjugate
representation, such that

where ko is either an integer or half an odd integer, and
c is any complex number. These parameters are related
to the values of the Casimir operators in this representa-
tion. The Casimir operators are

If we write
o = (kp, —c) = (—kp, c) .

&a; ~l&'l~; p)=—(~')-s,

(3.19)

(3.20)

J'—Ks and J K.

Let a state be labeled

then, we shall have"
'L ~ )

&
' IR'I '; p) = —(—1)"'+"'(*)-p,

-=(j,~), p=(j',j'),
(3.21)

(3.22)
where 0. specifies a representation and 0. labels the
component. Then

and
(J'—K') lo", cr)= (k '+c' —1) lo" cr) (3 9)

J Klo", cr)= ikpafa—, ac). (3.10)

The components a of a given representation are
specified by two parameters

I jg= j, for j an integer

=j—ts, for j half an odd integer. (3.23)

From (3.19) we immediately deduce that the rep-
resentations (O,c) and (kp, 0) are self-conjugate. (See
Ref. 11, pp. 193-4.) No half-integer finite-dimensional
representation is self-conjugate. Thus, for example, if

(j,js)—=~, (3.11) g ~ 0 (3.24)

which are both either integers or half-odd integers
depending on ko',

(the usual undotted and dotted representations for spin
—',), then we have

j&ja&j,—and j& Ikpl.

These states satisfy the equations

(3.12)
and

&-;-I~;I.; p) =—(-;). ,

(o , acfK;Io,"p)= ', z(o.c),p, -
(3.25)

(3.26)

J'l~ ~)=j(j+1)l~ ~)

~pl crier)= lalcri cr). (3.14)

Since the operators J; commute with Js they will

only connect states of the same j (but possibly with
different js). The operators Zc do not commute with
Js and will therefore connect states with different j as
well as j3.

The representation specified by (—kp, —c) is equiv-
alent to (kp, c). (See Ref. 11, p. 194.) The finite dimen-
sional representations are nonunitary and are given by

lal = Ik, l+~, (3.15)

where e is a positive integer. In this case, the possible
values of j reach a maximum

RK~+Z;R= 0. (3.28)

From these relations one can immediately deduce that
(see Ref. 11, p. 216)

R fo", cr)= (—1)f» fc'r; cr). (3.29)

Thus, an irreducible representation of the group I.(+)R
will contain the two irreducible representations a. and
0 of L. For self-conjugate representations

where the o.; are the usual Pauli matrices and the cr, p
run over the two values of js in these representations. '4

We shall also be interested in including the parity
operation R in specifying our physical states and thus
also our auxiliary states. This satisfies the -following
commutation relations:

(3.27)
and-

The unitary representations are given by Rlo;cr)=a( —1)filo;cr). (3.30)
kp ——0, ~-,', ~1 ~,

(the principal series) (3.17)
c pure imaginary,

k0=0,
(the supplementary series) (3.18)

0& lal &1.
In both these cases

j= fkpl, Ikpl+1, Ikpl+2, ~ ~,

and there is no maximum value.

In addition to the representation of the generators
Z; given formally by (3.20) it is convenient to introduce
a set of vectors ls) which span the space of a given

~~ By redefining the set of basis vectors in the 0 representation
Gelfand is able to absorb the factor (—1) l&1+i&'l into the new set
of vectors /see Ref. 11,p. 193, but see also the results of changing
(kp, a) to (kp, —a) in Eqs. (13) to (16),pp. 193&).It is convenient
to keep this factor explicit, especially when we come to discuss
the parity operator.

'4 In these representations only one value of j (namely, .-',) can
occur. See Eq. (3.16).
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representation. Thus we may write (3.20) as

c "—=c,=(~+-',)c,

For the cases (3.39) and (3.40) one hnds (Ref. 11, pp.
351—2)

g&o", n
~
Z;

~
o; P&(a; P ( s) =P (Ir) t&(0. ; P ( s). (3.31) 42

P P

The label s is really a shorthand for two indices s and $3,
the spin and spin component. We can choose the
vectors such that

and for case (3.41)

c; '=c,''=c, =(J+-;)c, (3.43)

(o', n~s&—=(a", g, gp~ssp&=At &8;,8;„„ (3.32) and, of course,

where X('& is an arbitrary phase factor. The components
of these vectors, (a", n~s& may be identifted with the
"constant spinors" introduced in (2.23). This follows
since the states

~
p&p, s,sp& are the rest-frame states of the

Poincarh group, the Casimir operator W'~ is proportional
to J' in the rest frame, and sp is the eigenvalue of Jp in
the rest frame.

In our attempts in Sec. IV to construct causal Gelds
we shall Gnd it useful to introduce a set of matrices

&a'nIl'. Ia'&) (3.33)

which were erst introduced in Ref. 11 and by Naimark. 'p

These are a set of matrices which "transform as a
four-vector. " More specifically, if A i'&(N, x) is an
operator which transforms as given by (2.24) and if
B&~'&~(w,y) transforms as

U(v)B& '&
(w,y)U '(v)

=g 8t"& & (w' y')(o'; P ~
exp ( ip K)—l

o' i n) ~ (334)
P

then

C' =C.~~=0.j j (3.44)

such that

or more precisely

$)$3—:s

1'oI )= (s+-')
I )

(3.46)

(3.47)

Z(;nil'pl;&3)(;mls)=(s+p)( nls& (348)

The matrix Fp boosts in the following way:

g(o;n[exp( ia—K) (o.; &&&o; &(1'p)a", y&

X(a';y(exp(ia K)~o', P&

=(a;n)r„(a', P&N~, (3.45)

where the relation between a and I„is given by (2.10).
Equations (3.42) and (3.43) can be summarized in

the following way.'For the self-conjugate representa-
tions, there is a complete set of vectors

2 8" (wy)(a';nor. ~a;P&As"(I,*) (335) so that
a, P

transforms as a four-vector density under the Lorentz
transformation U(v). Also "

These matrices F„have been shown to have the
property that Q(o;n(I'I~a;P&wpi'&(N, s)=(s+-,')w '&(N)s), (3.50)

&a'i',i p'll'pla;i, i p)=C~' ~ji'~ianna,

and that Cj
' divers from zero only if

o' = (kp, c )= (kp+1 c),
or

(3.36)
where by (2.23)

w t'& (N, s) =P(a , n
~
exp( "—ia K)

~

o", P)(o; P ~
s). (3.51)

(3.52)
such that

a =(kp c)=(kp~ c~1) ~ (33g) For the non-self-conjugate case (3.41), there is a

n Sec. IV we shall restrict the discussion to unitary comp e e se o vec ors,

representations o and o' and also either to the self-

conjugate representations

o=(0,-', )=o=o' (3.39)

(the self-conjugate integer spin representation),

o.= (-', ,0) =o =o.' (3.40) or explicitly,

(the self-conjugate half-odd-integer spin representation),

or to the half-odd-integer spin representation

o = (~~,c), c pure imaginary

1'ols) = (s+l) ls&,

1'pl I)= —(s+l) ls&

(3.53)

(3.54)

and
a=a'=(-p c)=(p -c)

(3.41) ~' We write F„e&=Fe. Also, the m (') are just the quantities
introduced in (2.23).
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and

Z(. -I& I';»(';tel &=-(+-.)(-;-I &,

2(';-Ii.l-;»(-;~I )=-(+!)(; I &.
(3.56)

P

Now

(-;.I~.l';»=Z((-;-I )(+-:)( I';»

and similarly for

and

—(~ ale&(s+2)(sl~;»}

(~ nli'elo»

»=2(( I &(+l)( I »

and similarly for
—(o; al s) (s+-', )(s I ~;»}, (3.58)

(~ nli'oln 0&

It is worth mentioning that for the Dirac representa-
tion, "i.e., when

(3.59)

0'=(T = (3.60)

the matrix I'0 is just the unit matrix in the mixed 0-0.

representation (ye in the Weyl representation) and
Eqs. (3.55) and (3.56) reduce to

IV. CAUSAL FIELDS

In this section we examine the possibility of construct-
ing causal fields from the local fields defined by Kq.
(2.28).

We say a field f ' &(x) is causal if, together with its
Hermitian conjugate, it satisfies (anti-)commutation
relations. That is, we examine whether it is possible that

g.i &(x), Pp& &(y)'j =0 for (x—y)'(0. (4.1)

The & refers to anticommutation and commutation
relations, respectively. We examine an expression of the
type (4.1) because we have in mind theories of the very
general kind considered by Weinberg. '~ They are
those theories whose single-particle states are given in
terms of creation and annihilation operators out of
which the fields of (2.28) are constructed. A Hermitian
interaction Lagrangian is constructed from these free
fields and the S-matrix operator is assumed to be of
the Dyson form involving a time-ordered product. For
this operator to be Lorentz invariant it is necessary
that the fields satisfy relations of the type (4.1). If in
addition, we insist on reaction symmetry we must
also introduce' operators f &

'& (x) and show in addition
to (4.1) that

l4 "(x)4p"'(y)t3 =o «r (x-y)'&0

(o, nls)=(o;als),
(o; n

I s) = —(o, n
I

N&.
(3 61) From Eqs. (2.28), (2.27), (2.23), and (2.14) we

have

L4-"(*)4 "(y)'3 = ((tr ) n
I exp (—ie K) I

o" v&(o" p I
m s»& I f(s) I

'e ' *" t* »(m'„s ss I
o. ; 5)

'Vs~)~s~s

X(o; 5
I exp (ie Kt)

I
o", »+(o; n

I
exp ( ie K)—I

o", y&(o; y I
8

I
m„sss& I g (s) I

'e'" " t* s&

X(sn, ,sssIB 'Io", B&(o; BIexp(ie. Kt) Io; P)}(2sr)8(ue)8(u' 1)d4u/—(2sr)4, (4 3)

where the alternative sign on the right arises from the
assumption of anticommutation or commutation rela-
tions for the single-particle operators.

In writing (4.3) we have already assumed that m
will be some function of s (perhaps a constant). For
finite-dimensional representations K= —E~. It has been
shown by Weinberg'7 that for the representations
(&kp, ke+ 1) the expression (4.3) satisfies the condition

"This representation is of course not unitary, but it does have
the important property 0. Qo. =cr'."S. steinberg, Phys. Rev. 133, 31318 (1964).' One must show that the reaction operation does in fact
produce f (+(x) from P (')(x). 'The reflection operator R has the
property that Ro(m, l,s,ss)R '=&(—1)'o(m, —u, s, ss), where
by —I we mean (up, —u) and where the & takes into account a
possible intrinsic parity. Operating on Kq. (2.28) and making use
of Eqs. (3.21), (3.29), and (3.32) one can deduce that RP ( ) (x)R '
=(—1)&P (+(—x), where by —x we mean (xp, —x). One also
deduces that (o", aIm, s,ss)=+(o. ; n(m, s,sa), where the & refer to
the intrinsic parity of the particles in the reducible representation
) m~s)ss)

(4.1) only iP
I f(s) I'=

I g(s) I' (4.4)

and we assume the usual connection between spin and
statistics (the integer spin representations obey Bose
statistics —commutation relations —and the half-odd-
integral spin obey Fermi statistics —anticommutation
relations). Here, we would like to examine what restric-
tions, if any, are forced by causality for unitary rep-
resentations" r. In these cases,

(4 5)

The field and the representations defined by Eq.
(2.28) are quite general. In order to make our points,

For these zepresentati'ons (+kp, kp+ 1), there is one value ofj and therefore of s. Thus the s dependence of m, and f(s) is
irrelevant.

2p It is clear that for nonunitarity infinite-dimensional represen-
tations we will have enough freedom to find fields which satisfy
any kind of statistics for any spins.
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it will only be necessary to examine certain special and introduce a dummy variable ns. Then
cases. To show that (4.3) is causal we must cast it in
the form" L0-(*),A(r)'j

8-"(x)4s"(X)'j+=f-s(8) (e '"" ' "'
O, a P,m o-, e

—'& &
—»

—&* " (*—»)2e.f&(Np)fi(Ns —1), (4.6)
(2sr)4 a(o;(rIP(p, m) Io;P)e'"'( ")}

where
()=()/—r)x„, (4.7)

d'P (IIm

X(2~)e(pp)&(ps —m'), (4.15)
(2pr)4 m'

and the crucial feature is the relative minus sign
between the positive- and negative-frequency terms.
In (4.3) such a minus sign occurs naturally for the case
of Bose statistics directly from the commutation of the
single-particle operators. The main problem will be to
find some field for which a minus sign will appear for
Fermi statistics.

Case (a)

I f(s) I
= Ig(s) I'=const,

m, =const.

This is the case discussed in II; namely,
out of which an index-invariant S matrix
with unitarity) can be constructed.

Using (3.32) we may write

P (o; y I m, s,sp)(m, s,sp I o; 8)
8, 83

(4.8)

(4.9)

those fields
(consistent

= g (~; yIBIm, s,ss)(m, s,ssIB 'Io, l))
8, 83

(4 1o)

X (2+)(&(Np)f)(us —1) |& p. (4.11)
(2sr)4

Thus, the fields are causal only if we assume that all
of the particles are bosons. This is true for any unitary
representation o. (whether one containing integer or
half-integer spins).

Using (4.5), (4.8), (4.9), and (4.10), we have im-
mediately" that

(g)(x) p (/)(y)tj (e
—imu ~ (s v)~sirens ~ (x-—s))

where

E(P„,m) =—P(—p„, m) (4.18)

to hold. This is the relation that is required in order to
cast (4.15) into the form (4.6) for the case of Fermi
statistics. Again, as in case (a), causality requires that
all of our particles must be bosons, if 0. labels a unitary
representation.

Case (c). Gelfand Equations

Gelfand" has shown that if we introduce, in addition
to f ('&(x), the field f ("&(x), where o' is given by
Eqs. (3.37) and (3.38), one can find an equation of
motion connecting the two helds. For simplicity let us
look at those representations given by Eqs. (3.39),
(3.40), or (3.41). In these cases o'=o. If, for' the self-
conjugate case (3.39) or (3.40), we restrict the rest
states to satisfy (3.47) and thus (3.48), one can check,
using the boost property (3.45), that if

m. =«/(s+-,'), (4.19)

E(p,m)= P exp( —is K)I o;y)(r(;yI m„s,s )s
Pi~s8~83

Xf')(m m,)(—m, )s,ssI o; b)(o i ()
I exp(is K), (4.16)

and

P(p,m) = P exp( ie —K) Io", y)(o", ALIBI m„s,ss)
+,5,S, 83

Xb(m m.—)(m„s,ssIB 'Io,'f' )()o5Ie px(i aK). (4.17)

These operators P (p,m) and P (p,m) in unitary
representations 0 are projection operators'3 and there-
fore it is impossible for the relation

Case (b)

If(s) I'= Ig(s) I'=1

m, ~const.

where ~ is a constant and

(4.12)
then

(4.13)

g(s) =o, (4.20)

(o, nIir8
I
o ) P))I()(') (x)=(oI ('&(x), (4.21)

In each term in (4.3) in the sum over s and ss we
make a change of variable to

(4.14) Since g(s) =0, there are no antiparticles.

(4.22)

"This is not sufficient, since only if f s(B) is a polynomial in
8 can we be sure that (4.6) vanishes for spacelike distances.

~ We have put j f(s) ('= ]g (s) ['= 1 and m, =m.

~' These operators must be divided by a normalization factor
to make them rojection operators. Thus if we define Q= D/b(0)gXg. .s(m, s,ss S(m —. m, )(m,s,ss(, then indeed Q'=Q,



G. FELD MAN AN D P. T. MATTHEWS

I f(s) I'= jg(s) I'=const, (4.24)

we have a special example of case (b) which implies only
Bose statistics is consistent with causality. For other
choices of f(s) and g(s) we cannot discuss directly the
causality of the (anti-) commutators. However, in
Refs. 11 and 12 there is a discussion of a problem
related to the spin-statistics question. Out of those

For the non-self -con jugate representations one Gnds

i(&r; n
I
ra

I &r; p)p&&&'& (~)=~.&.&(x),

i(&r n
I
I'&l

I
o '

P)4 &&"(~)=4' '"(*)
(4.23)

provided that the states Im, s,ss) and jm, s,ss) satisfy
Eqs: (3.53) and (3.54) and thus (3.55) and (3.56),
and again if m, is r'estricted by (4.19). In this case,
we do have antiparticles and their parities must be
opposite. (See Ref. 18.}We now go on to discuss the
causality of these fields. For the self-conjugate case it is
clear that since there are no antiparticles we cannot have
a causal field no matter what statistics we assume for
the particles. For the non-self-conjugate representa-
tions, if we take

Case (d). An Example of a Fermi Field

Let us assume that o- is one of the self-conjugate
representations (0,—', ) or (rs,0). These are the cases for
which

(4.25)

In the expansions (2.28), (2.27), and (2.23) for P & & (x),
let

and

This gives

I f(s) I

' =
I g (s) I

' =s+ l,

m, =m= const.

(4.26)

(4.27)

fields which satisfy "Gelfand equations, " these authors
have constructed "energy" and "charge" functions and

- have discussed the positive definiteness of these
quantities for all representations of the Lorentz group.
If we assume'4 that Bose systems must have positive
definite energy but nonpositive definite charge and
Fermi systems have positive definite charge but non-
positive definite energy, then only Bose systems exist
for unitary representations which satisfy Gelfand
equations. (See Naimark, "p. 404.)

o& &(g)ppp& &(y)tg+ g Q((o"injexp( ie. K) joi y)(o~ yjm s s,)(s+sr)(m~s~s, jo i 8)
e, e3 y, 5

)&(&r; 5jexp(ia K)jo",p)e ' "'&»+(o;njexp( —ie K) jo; y)(o; yjBjm, s,ss)

d4N

)&(5+sr)(ms ssjB 'Io
y I&)(ri bjexp(+is K) I&ri p)e' '&»}(2')e(us)5(us —1) . (4 28)

(2n )'
Now, using (3.49) and (3.45) we have

d I
I

ii,.&.&(&),y, & &b)tj,= ((&r; njrujo; p)o *- &-»~-(o;njrujo;p)o&-" &-»)(2~)0(u,)S(us —1) (4.29)
(2x)4

d4N
=—(&r njir&&jo", p) (e '"~'&~»We'""'&~»)(2ir)e(us)8(u' —1)

m (2')4
(4.30)

Accordingly, we will have a causal Geld if we assume
that the particles obey Fermi statistics. Since the
representation r is self-conjugate, we can choose the
intrinsic parity of the antiparticle state to be either
the same or opposite that of the particle I

see Eq.
(3.30)g. We have in this category towers of both integer

I (O, rs)g and half-odd-integer sPin L(s&0)$. For
I f(s) Ii

= jg(s) I'=1 these representations are included under
case (a). Hence we have explicit examples of fields
corresponding to unitary towers which can be con-
structed to satisfy either Bose or Fermi statistics for
both integer and half-integer spin. This new freedom has
arisen very directly from the inclusion of nontrivial
weight factors in the Geld expansion, and the properties
of the Gelf and matrices.

Notice that the Fermi fields of this type do not
satisfy any Gelfand equation, since in the first place
all masses are equal. Even if we introduce a Gelf and

J.= e'(&&.c)—(~A')o. (4.32)

For Bose statistics this leads to a "charge" operator
very similar to that for a single component (non-
Hermitian) scalar iield with particles (created by at)

'4 These energy and charge functions are c-number functions
constructed from functions which satisfy the Gelfand equations.
For the Gnite-dimensional representations they are the usual
quantities constructed by means of a Lagrangian. For example,
for the Dirac representation the "charge" is J'iptfd'x and the
energy is if (pt S~rp a,pter)dsx—

mass spectrum (4.19), then the positive-frequency part
of the field satisfies (4.21), while the negative-frequency
part (referring to the particles created by bt) satisfies

(iI'&i+a)P& & (x)=0 (4.31)

A consequence of this is that for both Fermi and Bose
statistics the only conserved current which can be
formed is
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and antiparticles (created. by bt) of opposite charge.
However, for Fermi statistics the charge is proportional
to (2s+I) for particles of spin s, and of the same
magnitude and sign for the antiparticles.

Let us Gnally consider the implications of these
unitary Fermi fields for the causality theorem (theorem
II of II).This is, in fact, still valid because we now show
that a theory constructed from such a Geld will not
simultaneously satisfy index invariance and give rise
to a unitary S matrix. Thus the crucial term

Q (o", y ~
m, s,sq) (s+ is)(m, s,sa) 0", 5), (4.33)

8, 83

which occurs in (4.28) and gives rise to the odd function
of N, I'N, in (4.29), will also occur in the unitarity sum
in II. Thus, Eq. (3./) of II will in this case be re-
placed by

(a ', u
~
exp (—ie K)

~

0", y)(0; y ~
nz, s,sg) (s+-', )

+,8,8, 83

)&(m,s,sa~0; 8)(0; 8~ exp(ie K) (0;P)

and thus the unitarity condition destroys the index
invariance.

V. CONCLUSIONS

We have constructed, out of free-particIe annihilation
and creation operators, local 6elds which transform as
unitary representations of the homogeneous Lorentz
group L. The most general Geld need not satisfy any
equation of motion. In fact, the 6eld may contain
particle operators associated vrith different spins and
diferent masses. For GeMs which are irreducible
representations, each spin value associated vrith a
particle can occur no more than once. When we examine

the possibility of constructing causal fields Pi.e., those
that obey causal (anti-)commutation relationsj which
are unitary representations of L, we 6nd that there is
no connection between spin and statistics. If we
consider those unitary 6elds vrhich satisfy Gelfand
equations or whose spin-dependent weight factors f(s)
and g(s) are constants, then we find that we can
construct only Bose Gelds. However, for particular
self-conjugate representations, (0,-', ) or (-', ,0), and for a
suitable choice of f(s) and g(s) one can construct a
Fermi Geld.

Our interest in these generalized Gelds was aroused
originally by the problem of constructing index-invar-
iant theories t'such as U(i2) and SL(6,c)g which are both
causal and consistent with unitarity. %'e have shown
that index-invariant theories cannot be constructed
using the unitary Fermi fields developed above. Our
results thus do not contradict the unitarity and causality
theorems stated in II, although these vrere established
for less general 6elds than those considered above.

It may vrell be that these very general Gelds bear
little relation to the physical vrorld. They should at
least provide axiomatic Geld theorists vrith much food
for thought. In particular, the results established above,
using the heuristic methods of Dirac, Wigner, Pock,
Pauli, and Heisenberg may no doubt be rewritten with
greatly increased rigor using a more conventional
mathematical formalism. In addition, one must discover
whether a "CET theorem" can be proved if theories
are constructed out of these unitary Gelds rather than
the conventional Gnite-dimensional Gelds.

ACKNOWLEDGMENTS

We wish to thank Dr. C. Fronsdal for many stimulat-
ing discussions. One of the authors (G F )wo.ul.d like
to thank the other for the hospitality of Imperial
College, vrhere most of this vrork was carried out.


