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In this paper we outline a method which allows one, in principle, to measure {E;(x&,t)E, (xs $)EQ (x3 j)
XE& (x4,t)) {in general, x&oexs/xs&xi), for stationary quasimonochromatic light propagating principally
in. the forward direction. The procedure makes use of the properties of nonlinear dielectrics in a sequence of
interference experiments. No correlation of photoelectron currents is used, and as a special case the con-
tracted moment (~ E;(x&,t) ~'~ Es(xs, j) [') measured by Hanbury Brown and Twiss could be obtained in this
manner. It is shown that it should be possible to measure the full fourth-order coherence function in the
laboratory for laser light, using presently obtainable intensity levels.

1. INTRODUCTION

HE coherence theory of electromagnetic radiation
was originally concerned with the classical second-

order coherence function 8;;(xt,xs, r) = (E;(xt, t+r)Ej*
&&(xst)) (see Wolf). ' LHere E;(x,t) is the electric Geld

at point x, the bracket denotes a time average, and E;
is an analytic signal. g This theory has been extended in
recent years in two principal ways. The classical theory
been formulated to include study of nth-order time-
averaged coherence functions and has been generalized
to treat nonstationarity effects by replacing the time
average by an ensemble average. (See Beran and
Parrent' and Mandel and Wolf' for original references. )
It also has been pointed out that conceptually the clas-
sical statistical problem may be generally treated by
specifying the probability density functional associated
with E;(x,t) (see Beran and Parrent. )' The second de-
velopment of coherence theory has been to make it an
explicitly quantum theory by de6ning all eth-order
coherence functions in terms of operators associated
with E,(x,t). This has been done principally by Glau-
ber. '"'Other work in this direction is we11 summarized
in Glauber'~ and Mandel and Wolf. '

%hi].e the formal theoretical aspects of coherence
theory were readily generalized, measurement of theo-
retically de6ned coherence functions has lagged. For
most coherence functions that have been dehned not
even conceptual measurements of general applicability
have been outlined. In fact, the measurement of the

*The work done at the University of Pennsylvania was sup-
ported by the Army Research Once, Durham, North Carolina,
Contract: DA-30-31-124(D)-340. Permanent address oi J.De&elis:
Merrimack College, North Andover, Massachusetts.

' E. Wolf, Proc. Royal Soc. (London), 230, 246 (1955).' M. Beran and G. B. Parrent, Jr., Theory of Partial Coherence
(Prenctice-Hall, Inc. , Englewood ClijIs, New Jersey, 1964), Chap.
13.

s L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
s R. Glauber, (a) Phys. Rev. Letters 10, 8 (1963); (b) Phys.

Rev. 130, 2529 (1963); (c) 131,2766 (1963); (d) in Qnanjnm Opjics
and E/ectronics: The 1964 I-es Pouches Lectures, edited by C.
DeWitt et al. (Gordon and Breach Science Publishers, Inc., New
York, 1965).

second-order coherence function 8;s(xr, xs, r) has only
been shown to be possible under very restricted condi-
tions. The Hanbury Brown and Twiss experiment (see
Hanbury Brown and Twiss)' which ideally measures
(~ E,(xr, t+ r) (

'( Ej(xs,i)
~
'), is also very restricted in the

class of 6elds that may be studied.
From a classical point of view there is, of course, no

conceptual dBBculty in measuring any order coherence
function. One simply assumes that E,(x,t) may be
measured at all positions and times for all members of
an ensemble and any averages desired may then be cal-
culated. Quantum mechanically, we know, however,
that except for highly degenerate signals, this type of
point measurement has no meaning even in an approxi-
mate sense. If one seeks methods of measurement ap-
propriate to more general radiation. 6elds, it is not the
measurement of E;(x,t) on which we must focus our
attention but either on measurement of local spatial
and time averages of E;(x,t) or on a more direct meas-
urement of the coherence functions themselves. In either
case considerable care must be taken in interpreting the
measurement and a detailed speci6cation of the meas-
urement procedure must be given for every theoretically
dined coherence function one choses to measure. Ex-
perience has shown that it is a nontrivial problem to
specify a measurement procedure even conceptually and
that most procedures are suitable only under very re-
stricted conditions.

In this paper we will focus our attention on a measure-
ment procedure for the stationary fourth-order coher-
ence function'

Lijsl (xl&xs, xs, x4, 'fs, rs, r4)42&

(E'(xl i)Ej(xs 1+Ts)Es (xs, i+vs)E&*(X4, t+r4))

' R. Hanbury Brown and R. Twiss, Proc. Royal Soc. (London)
242, 300 (1957};243, 291 (1957},' The notation

&iisi"'&(xi, tg, xs js xl js X4 j4)
= (E;*(xi,4)E,*(xs,ts) Ee(xs,ji)K(x4, t i) )

is also used in the literature.
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using nonlinear dielectrics in a sequence of interference
experiments. As in the second-order case, only intensity
measurements will be necessary. Since local instantane-
ous measurement of the field is not required, a classical
analysis of the measurement procedure will be given. A
full quantum-mechanical analysis would perhaps be
more satisfactory, but as the reader will see, this would
entail the solution of the many-body interaction of 6eld
and matter in a nonlinear dielectric; a problem that has
not yet been treated in the literature. '

The measurement procedure for L;;2&"(xr,x2,x3,x4,
T2 T3 T4) will be limited to quasimonochromatic Gelds
that have a narrow angular spread about a particular
direction. As a result of the small angular spread as-
sumption, the vector nature of the electric field will not
be considered explicitly and E,(x,t) will be replaced by
the scalar function V(x, t), Further, since the Geld will
be assumed to be quasimonochromatic, we will set
v 2= ra= r4= 0. From the analysis it should be clear how
one may extend the procedure and measure higher order
coherence functions subject to the same restrictions.

In the final section of this paper we will show that it
should be possible to measure the fourth-order coher-
ence function in the laboratory for laser light using
presently obtainable intensity levels. As a special case,
this measurement could be used to measure the con-
tracted moment considered by Hanbury Brown and
Twiss.

2. PROCEDURE FOR MEASUREMENT OF
FOURTH-ORDER COHERENCE FUNCTIONS

2.1 De6nitions and the Scalar Ayyroximation

In general we would like to consider the coherence
function

L4jkl (X1 X2 X3 x4 T2 T3 T4)r .. 42f

=(E,(xr, t)E;(x2, t+r2)E2~(x3, t+r3)E1~(x4, t+r4)).
The measurement procedure we will describe, however,
is limited to Gelds propagating with a narrow angular
spread about a principal direction. In this case the di-
vergence condition associated with Maxwell's equa-
tions is satis6ed to a good approximation, and we need
consider only polarization effects in a plane perpendicu-
lar to the mean propagation direction. To simplify the
discussion further and with no real loss of generality,
we will consider the light polarized in a single direction.
(By the use of rotators, polarization eGects may easily
by included. ) We thus may replace the vector function
E;(x,t) by the scalar function V(x, t) and consider the
coherence function

2.2 Outline of Ezyeriment

To measure the four-point coherence function for
radiation with small angular spread we set up a screen
with four small pinholes. (Refer to Fig. 1.) As we just
stated we call the polarized 6elds emerging from these
holes, V(xr, f), , V(x4, t); V(xr, t) is an analytic signal.
The holes at P; in screen A are taken to have diameters
large compared to the mean wavelength, $,= (c/v), but
to be small enough so that the Geld does not vary sig-
nificantly over the hole.

The fields are collimated by lenses when they emerge
from the holes and by the use of mirrors V~ and V2

LV,—= V(x;,t)] are combined to yield n1V1+n2V2, and
V3 and V4 are combined to yield n3V3+(24V4. ((11V2

+a3V3 and n2V2+n4V4 could, for example, have been
formed instead, of course, and we shall discuss this
question of different pairing later. ) &x1V1+n2V2 and a3V3
+n4V4 are then passed through nonlinear dielectrics.

V; is taken in our analysis to be a quasimonochro-
matic signal with mean frequency f . The nonlinear
dielectric is chosen to produce from the quasimono-
chromatic signal n1V1+n2V2 (or V3+ V4) a weak quasi-
monochrornatic signal with mean frequency 2v. It also
passes the original signal. The filters placed before the
holes P~ and P6 filter out the original signals with mean
frequency P. The 6nal stage of the procedure is to allow
the various quasimonochromatic signals with mean fre-
quency 2f to pass through the holes P5 and P6 in ap-

!
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In addition to the restriction to fields with narrow
angular spread, we will also restrict our attention to
fields that are quasimonochromatic and hence may
choose r2 ——va ——v4 ——0. In the quasimonochromatic case
the only important fourth-order coherence function is,
as we point out in the next section, L4'. For complete-
ness, however, we note that we may define coherence
functions of the form L4&(p&4), where p denotes the
number of terms that are conjugated. For example

L (xlyx2px3'x4j T2pr3pr4)
r 40f

= (V(X1,t) V(X2 f+T2) V(X3, 3+r 3) V(X4, t+ r4)) .

L (X1)X2)X3)x4j T2)rg)T4)
= (V(x1,&) V(x2, &+T2)V*(x3, &+T3)V*(x4, &+T4)). P

V(x, t)
0

i
Pa

Filter

' We are presently studying the Heisenberg equations of motion
for a system of many-level atoms coupled to many modes of the
electromagnetic Geld and hope to present a quantum analysis for
this model in a future paper. FIG. 1. Schematic diagram of experiment.
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propriate combinations and produce an interference
pattern on screen C. From the interference pattern on
C, we determine the four-point coherence function, L42

The coherence function we wish to measure is

L (xi x2,x2, X4,
' 0,0,0)

= (V(xi, t) V(x2, t) V*(x2,t) V*(x4,t)). (1)

and k=22rv/c. Since V"(t) is real, we have V*"(v)
= V'(—v). We now assume

P()=x ()v'()
+ 2 x (' ' '+ '= )V"(')V'(") (6)

v'+v" =v

—PL+PNL
For a quasimonochromatic signal we may write

V(x, t) = exp( —22rivt+iks) U(x, t), (2)
We will consider only nonlinear dielectrics where X~ and
X~~ are real. The summation is over all combinations
such that v'+v"= v. Thus Eq. (5) becomes

'|r2Vr(V)+kD2(p) Vr(V) — 4)r Q k2

where U(x, t) varies slowly in time, in times of the order
1/v. In this case L'v =0 if p= 1 or 3. The quantities L'
and L44 may be shown to equal zero in general (see
Beran and Corson). ' Thus, only L"need be considered.
Further 7.2= 7-3= v 4 may be set equal to zero since their
effect is only to produce oscillating terms of the form
exp( —22riv2. ~) if 2; is chosen such that 2.,&&(1/Lb). Here
(hv is the characteristic frequency spread of the quasi-
monochromatic signal. ) If the condition r,«(1/Dv),
and an associated condition requiring that path length
differences between x, and x; be much less than c/Av,
are not met, the quasimonochromatic approximation
loses its utility. We consider here only such cases where
it is appropriate to set ~2=7.3= r4=0.

If Eq. (2) is substituted into Eq. (1), we have

XXNL(v', v"; v'+v" = v) V'(v') V"(v"), (7)
where

kD'(v) =k'(v) (1y4~xL(v))

For a nonlinear dielectric, the term on the right-hand
side of Eq. (7) is generally small compared to kD'(P)
X V'(v). The effect of the nonlinearity may thus be
found using a perturbation procedure. Neglecting the
nonlinear term we find that the plane-wave solution of
Eq. (7) in an infinite medium is

Vo'(v) =W(v) t:"D(")' (8)
where W(v) is an arbitrary complex function chosen so
that W*(v)=W(—v). We note that kD(v)= —kD( v).

The first-order perturbation is accomplished by re-
placing V"(v) in the right-hand side of Eq. (7) by
V,'(v). This gives

L4'(xi, x2,x3 x4 0,0,0)
= (U(xi, t) U(x2, t)U*(x2, t) U*(x4,t)). (3)

V V"(v)+kD (v) V"(v) =—4)r
v'+v" =v

XXNL(v', v"; v'+v"=v) Vt)"(v') Vt)"(v") . (9)

The particular solution of Eq. (9) is

'' v. ()=-4- Z k""(", -; +"=)
1 82V" 4X82P

+2vr +
C2 @2 Q2g~2

v'+v" =v

2.3 Propagation in a Nonlinear Dielectric

Consider now what happens when a signal passes
through the nonlinear dielectric. The wave equation
governing the propagation of polarized radiation within
a dielectric may be written in the phenomenological
form

where

V2V +O'V = 4~k2P—
V () fV (t)'e' '=4k'"'

(5)

P(v) = p(t,)e' '"'dt
t

8 M. Beran and P. Corson, J. Math. Phys. 6, 271 (1965).
9N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc. ,

New York, 1965).
"This entire formalism may be extended to use the analytic

where P is the polarization induced by the incident
Geld. The polarization is made up of two parts for the
dielectric we wish to consider; a linear part denoted by
PL, and a nonlinear part denoted by PNL. (See Bloem-
bergen. ') To posit a relation between P and V", we
first take the Fourier transform of both sides of Eq. (4)
We have then'

v (~)= Vr(p)(v 2zivvdp—

W(V)~ikt) (v) z 2ziv tdv

" k'xNL(v', v", v'+v"=v)W(v')W(v")—4m.

kD'(v'+ v")—(k D(v')+kD(v"))'

Xexp(i f kD(v')+kD(v") jz 22rivt) dv'dv", (1—1)
signal representation and the interaction problem may be treated
in the language of coherence theory. This is done by Beran and
DeVelis, J. Opt. Soc. Am. 57, 186 (1967).

W(pt) W(vrt) tv([))D(v')+kt) (v")]z

X . (10)
kD (p +p ) (kD(p )+kD(v ))

Taking the inverse Fourier transform of V'(P) we
have, including the incident wave,
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where we have now changed

v'+v" =v

to a double integral over v' and v".
In the quasimonochromatic approximation, we de-

mand that W(v) be essentially nonzero in the following
regions:

v&hv, —v&Av, (12)

X~(p) =Xi(P) (14)

when in Eq. (13) v' and v" have the same sign. With
these assumptions, we may write

V"(t) = V '(t)+ V""'(t)+V'"(t) (15)

where Vs"(t) is a term with frequencies in the neighbor-
hood of P, V" '(t) is a term with frequencies in the
neighborhood of 0, and V""(t) is a term with frequencies
in the neighborhood of 2P. The form of V'"(t) is

V'"(t) = B(r,r; 2—v)2 Re
X(exp[i2(kt&(P)s —2trPt)$(U(t))2}, (16)

where

U(t) W(P+gv)ei&ttkt&&v)z2zttvt&d-(tttv)

tttkt&(P) =—6k L1+42rXz(P)]'
To the approximation we have considered we may

assume that a quasimonochromatic signal of mean fer-
quency v,

V r(t) =2 ReLeit»&v&z —2zvt&U(t) j,
propagating in an infinite media generates a quasi-
monochromatic signal of average frequency 2v and a
spectrum of waves with average frequency near zero.

V""(t) is not, however, the most general solution since
Eq. (10) is only the particular solution for Eq. (9). The
complete solution for frequencies in the neighborhood of
2v requires an additional term of the form

V r(p) —A (p)eikD(viz

where A(v) must be determined by the boundary con-
ditions. For the experiment we wish to perform, we as-
sume that the nonlinear dielectric is an infinite slab
bounded by two planes s=2~ and z=s~', 2~&a~. The
boundary condition is that V(t) must be continuous at
the plane z=st ('see Bloembergen). ' This condition de-

where ~ttv/P~&(1 We .now assume that over the range
Av,

X~z(v', v"; v'+v")

kD (v +v ) (kD(v )+kt&(v ))
X~z(P,P; 2v) B(P,v; 2r)

(13)
kn2(2P) —(2k~(v))2

and

mands that there be a reQected wave at s=z~. If for
convenience we set s~ ——0 and consider the case when

1—4kt&'(P)/k»2(2P) «1,
we may meet this condition if

43rsx~z(v', v"; v'+v" =v) W(v') W(v")Z, , „, „, (19)
"+"'=. k»2(v'+v") —Lkr&(v')+kr&(v")$2

If VJr"(v)+Uv"(v) replaces Vv"(v) in Eq. (11), we
have for V""(t), replacing Eq. (16)

V""(t)= B(r,—r; 2r)2 Re( I 1 e"—ikt&&'"& '"D&"&&5

X a&2 &kn&v) z—2zvt&(U(t))2} (20)

To maximize V""(t) we choose ss such that Lk2&(2P)—2kD (t&)js2——2r." Assuming this is done, we have
6nally

V'"(t) = B(v,r; 2—P)4Re)eislkn&" &z~ 2z" tl( U(t)) 2j (21)

For s) s2 we have thus (assuming negligible reflection
of the primary wave at s2)

V(t) = ate'&"z 2z "U(t)+1OW-frequenCy termS

+ase" &"' 'z"'&l U(t))' (22)
where

U(t) W(p+ft p)ei&ttkg 2zrzvt&d(tt p)

and
a~ and a2 are real constants. In this quasimonochro-
matic approximation V(t) is the analytic signal associ-
ated with the real 6eld when s&22. We shall discuss the
order of magnitude of ai and a2 in the last section of this
paper .

2.4 Measurement of L '(x»x»x3txt z 0,0,0)

Referring to Fig. 1, we see that the signal crtVt+ersV2
enters a nonlinear dielectric. The signal leaving the
dielectric is

V(t) =a,e' "-'-' (~,U, (t)+~2U2(t))
+low frequency terms

+a,e"&'* 'zv'&$n U— t(t)+&22U2(t)$'. (23)

The signal then passes, through a alter which passes
oaly the 2v terms. The signal leaving I'5 is

V(ps t) asei2&kz —2zvt&Ltr Ul(t)+&22U2(t))2. (24)

Similarly, the signal leaving I'6 is

V(Es, t) =ase'""' 2z""Lc33U3(t)+n4U4(t)$2 (25)

The Young's interference experiment performed be-
tween the planes 8 and C allow one to calculate, in
principle, the complex quantity (see Beran and

"Footnote added zn proof In Reran and . Develis /Ref. 10
Eq. (24lj, this condition is incorrectly stated. It should read as
presented here. Hence in Kq. (25) of that paper 0, =4.
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Parrent) 2

I'(P3,P3) = (V(P3,t) V*(P4,t))
I22 I nl n3 (U1U3 U1U3 )

+2ai'n3n4(U1U3*U1U4*&

+n1'n4'(U1U4*U1U4*)

+2nin2n3'(U1U3*U2U3*)

+4ala2n3n4(U1U3 U2U4

+2nin2n42(U1U4*U2U4~&

+n22n32(U2U3*U2U3*&

+2n2'n3n4(U2U3*U2U4*)

+n22n42(U2U4*U2U4*) j. (26)

Similarly, the signal emerging from I'6 is

2+ U' U' ~2i(kz—2mPt)

Performing the interference experiment now yields
directly

I.4'(xi, x,,x3,x, ; 0,0,0)= (U,(t)U, (t) U,*(t)U4*(t) ) .
In practice we would ordinarly measure only the

visibility of the fringes on plane C. This measurement
yieMs a quantity proportional to

I (U (t) U.(t) U *(t)«*(t)&l

C&I U (t) I'I U «) I'&&I U (t) I
'I «(t) I'&3'"

If the path lengths 3f~F5 and &BI'5 are chosen to differ
from the path length M2P3 by the distance 'A/2, then
the signal emerging from P~ is

2~ U' U' ~2i(kz—2mÃt)

Vgx, ,t)

V&x, ,t).V(x,,t)

V(x,t)

V{x,t)

Vox t)+ V(x„,t)

V Px,,t)

I 2

M,

M
3
I

252-2TA}
2 1 2

r

21(}IZ 2IFV}}

2 3 4
r

Ps

ti

X

FIG. 2. Alternative experimental arrangement.

If the real and imaginary parts of I'(P3,P3) can be meas-
ured then by appropriately choosing the o., any of the
functions (U~U;*U3Ut~& may be determined if nine (or
less) experiments are performed. In particular, we may
thus ie principle Gnd

L '(xi, x2zx3t X4,
. 0,0,0)= (U1(t) U2(t) U3*(t)U4*(t)) .

As a practical matter the measurement of the phase
of I'(P3,P3) has only rarely been accomplished. With an
eye toward a practical measurement, we will now out-
line a slightly different measurement which should allow
the measurement of

I
(U1U2U3~U4*&

I
reasonably di-

rectly. Instead of using one nonlinear dielectric for each
pair of points, we now use three. See Fig. 2.

The signal emerging from the first nonlinear dielec-
tric, after 6ltering, is

g U '2ei2(kz —2+yt)

The signal emerging from the second dielectric is

tt (U 2+2U U +U 2)et2(kz 2zzrt)—

and the signal emerging from the third dielectric is

g U 2gi2(kz —2m vt)

To find
I (Ui(t) U2(t) U3*(t)U4*(t) ) I

from 733, we need
»iy measure &I Ui(t) I'I U2(t) I'& and &I U3(t) I'I U4(t) I'&
the intensity of the radiation emerging from I'5 and I'6
respectively. This latter measurement gives, in fact,
the same result as that obtained in a Hanbury Brown-
Twiss experiment.

We note 6nally that in addition to determining

&U (t) U (t) U *(t)«*(t))
we couM also have found

ol
(U, (t)U, (t) U,*(t)U,*(t))

(U, (t) U, (t) U,*(t)U,*(t))

3. FEASIBILITY OF LABORATORY MEASURE-
MENT OF

I ( Ui(t) U2(t') U3*(t) U4*(t)) I

In this section we shall show, by an order of magni-
tude calculation, that

I (Ui(t) U2(t) U3*(t) U4~(t) & I may
be measured in the laboratory using a high-power con-
tinuous laser. We shall begin by dipicting the most un-
favorable situation and show how this may be improved
upon.

We shall measure this function for radiation emerging
from a steadystate laser delivering about 0.1 W/cm'
in the red. We shall assume that the four holes pictured
in Fig. 1 are each 0.01 cm' in area. Thus, the power
passing through each hole is 10 W . We suppose that
as a result of the splitting and reQection by the mirrors
we lose a factor of 10 Thus, the power of the radiation
entering the dielectrics in Fig. 2 is 10 4%. We further
assume that the collimator spreads the beam over an
area of 0.1 cm2 so that the f}ux is 10 3 W/cm2

The conversion of this primary power into the second
harmonic is very low if no special care is taken. An
order of magnitude estimate (Bloembergen2 shows
that

I
P~~I /P~I is of the order of a

I &I/I &.4.-.1, where
n is a factor due to mismatch. I El is the magnitude of
the electric Geld and I E,t;, I

is the magnitude of an
atomic Geld. If we take IZ,t, ;, I

=3X103 V/cm and

by using different pairings of the radiations leaving
screen A. In general, these functions are all expected to
yield different values.
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)n( =3X10' then )P~L)/(PL) =10 ".Thus, the Qux

leaving the nonlinear dielectric is of the order of 10 "
W/crn'. Assuming another factor of 10 loss resulting
from reflection and recombination of the beams this
means we have 10 Ir W/cm' entering the hole P4 (or
Ps) .For holes 0.01 cm' in area this gives an output of
10 "W for each hole.

We need not, however, work with this low a power
level. The factor, 0., can be considerably increased by
phase matching. To obtain better phase matching
Lessentially bringing k D'(2 )t4—kD'(t) closer to zero)
it is only necessary to have the incoming wave impinge
on the crystal at a slight angle. Since the primary and
second harmonic waves then travel at slightly different
angles in the crystal, it is possible to bring about a high

degree of matching. In fact, Terhune, Maker, and
Savage" have converted about 20'Po of the primary en-

ergy into the second harmonic.
The theoretical analysis given in the previous section

is predicated on the fact that the energy in the second
harmonic is small compared to the energy in the pri-
mary wave. Thus, we do not desire too high a degree of
phase matching. For purpose of this experiment we will
assume it possible to obtain su6icient phase matching to
insure that PNL/PL=10 ". In this case we would ex-
pect 10 ' W to emerge from the I'5 or I'6. For this
power it is possible to determine the coherence between
the radiations leaving I'~ and I'6 using photodetectors.

'~ R. Terhune, R. Maker, and C. Savage, Appl. Phys. Letters
2, 54 (1963).

PH YSI GAL REVIEW VOLUME 154, NUM BER 5 25 FEBRUARY 1967

Gravitational Field Equations for Sources with Axial Symmetry and
Angular Momentum*
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The investigation of stationary axially symmetric gravity Gelds leads to a reduced system involving two
Geld variables which describe the "Newtonian" and the "rotation" part of the metric. This paper presents
a parametrization of this reduced problem which exhibits a previously unnoticed symmetry. Although the
symmetry group Pisomorphic to homogeneous Lorentz transformations on (2+1)-dimensional space) has
a trivial action corresponding to unimodular linear transformations of the @t coordinate pair, its existence
"explains" the existence of a very simple new Lagrangian for the reduced Geld equations, and the relatively
simple form in which these equations (and the corresponding surface-independent flux integrals for mass
and angular momentum) can now be written.

INTRODUCTION AND SUMMARY

'+RE&IOUS studies' —' of stationary vacuum solu-

tions of Einstein s equations with axial symmetry
have shown that the de.culties can be isolated in a
reduced system involving only two independent coupled
second-order equations in the two basic unknown func-
tions entering the metric. In this paper we point out a
previously unnoticed symmetry group Lisomorphic to
the homogenous Lorentz transformations in (2+1)-
dimensional space) for this reduced problem. This
symmetry governs the various ways in which the metric
components can be expressed in terms of the two basic
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functions (Geld variables). In terms of two field vari-
ables n and p which we define, the reduced problem is
summarized in a simple Lagrangian

2 = (VP)' —cosh'P (Va)'

involving only vector operations in Aat Euclidean 3-
space. For the corresponding field equations,

v M=o,
where

M= e' ( PV+—
-' ssinh2P VII),

only those solutions with axial symmetry are accepted.
For solutions satisfying appropriate conditions which
guarantee that the corresponding metric is asymp-
totically Rat and nonsingular outside some bounded
(source) region, the integral

(M+vlnp) dS=8 (nt+iJ),

(where p'=x'+y') has the same value on every closed
2-surface Z surrounding the source, and gives the mass
m and total angular momentum J of the system.


