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Bound-State Solutions of the Schrodinger Equation
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We present a new method for solving the Schrodinger equation for attractive potentials. The basic idea
is to use in conjunction both the differential and integral forms of the equation. In one dimension, for
example& a formal solution for &t (x) can be found from the differential equation; since this is of second order,
the solution is fixed, in principle, by &t (0) and &t (0) —=d&b/dx

~
x p. These quantities are in fact unknown, but

from the integral equation we can calculate integral expressions for them. We insert the formal solution into
the integrands of these expressions and eliminate P(0) and &t'(0) from the resulting equations to get an equa-
tion for the energy eigenvalues. In three dimensions, the method works much the same way. In terms of
Q&(r), where the radial wave function R&(r) for the tth angular momentum state is R&(r) =r'Q&(r), it leads to
the basic equation for the eigenvalues,

00

tx3x&x" x(2t+1) p

where Es is essentially the magnitude of the energy, and the potential is written as —v&&n(r). For non-
singular potentials, the formal solution for Q& (r) can be put in the form

Q& (r) =S& (r) +QS&, ,(r) U&&&*&+QS&, ,~ (r) U&&&'& U&&&'&+

where U(r) = v&&tt (r) —Es, and where Up&'& is the sth derivative of U(r) at the origin. The functions S&(r) and

S&, ,(r) are calculated, and then the results are applied to the case of a Gaussian potential. A modification of
these ideas for singular potentials is also discussed, and is applied to the Yukawa potential.

I. INTRODUCTION

~ 'HE problem of solving the Schrodinger equation
for one or another potential arises in many

branches of physics. Unfortunately, there is only a
small number of potentials for which an exact solution
is known. In one dimension there are, for example, ' the
square-well (or, more generally, any "staircase" po-
tential), the harmonic-oscillator, triangular potentials,
and a small number of less well-known ones. In three
dimensions, the square-well and oscillator potentials
are still solvable, and there is, in addition, the Coulomb
potential, and a few others, such as the exponential,
which can be solved exactly for 5 states only. '

In this paper, we present a method of solution which

' For a fairly complete presentation of most known cases
see P. Morse and H. Feshbach, Methods of Theoretical I'hysics
(McGraw-Hill Book Company, Inc. , New York, 1953).' The triangular potential is discussed (for the scattering
problem) in N. F. Mott and I. N. Sneddon, IVave Mechanics and
Its APPhcations (Oxford University Press, London, 1948).

applies to a wide variety of potentials and equally to one,
two, or three dimensions. For the sake of clarity,
however, we shall begin by explaining it for the one-
dimensional case since the multiple integrations and
spherical harmonics that three dimensions introduces
are complications that are irrelevant to the basic idea.

We consider then the one-dimensional Schrodinger
equation for a potential V(x) and for a bound state
with energy E=—

( Et&:

d'lP/dx'= Le—vptt(x)]&&b,

where

e=2ttt~ E~/&&t' v(x)—=—vpg(x) =2tNV(x)/&&'ts

There is an integral counterpart of this which we can
write using the Green's function Grc(x,x'),

Gtr(x, x') = (1/2E)e—~~s—"& K'= e,

which satisfies

((d'/dx') —Z')Grc(x, x') =—8(x—x') .
l54 1207
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This integral equation is

50

2E
f(x')u(x')e x~' '~dx'. (2)

Now each of the two equivalent forms (1) and (2) has
a special virtue that merits a comment. The virtue of
Eq. (1) is that it has a formal solution. If, for example,
the potential is nonsingular, such a solution can be
constructed in the form of a Taylor series and, since
the equation is of second order, the series is determined,
in principle, by fixing the value of g and dP/dx=—P'(x)
at some point, say the origin. The solution can be con-
structed in practice by computing the higher derivatives
of f in terms of f(0) and f'(0) from the equation itself,
by repeated differentiation. There is, of course, a
catch: Eq. (1) is not really defined, since one does not
know the value of e in advance, and it is in this sense
that the solution is a formal one. For an arbitrary
choice of p, a solution for P which is constructed out
from the origin in the above or any other way will, in
general, blow up at infinity. It is only for special values
of e, the eigenvalues, that the eigenfunction will have
the acceptable form at large distances of a decaying
exponential.

The integral Eq. (2) has the virtue of not suffering
trom this defect, for if one computes f from its left-hand
side using even an approximate or formal expression
for f(x') in the integrand, it automatically gives the
correct form at large ~x~ of a decaying exponential,
although the exponent may not be known. On the other
hand, this equation is not so easy to attack as the
differential equation is; there is no analogous formal
solution. Perhaps the only truly general. method is to
expand it in some set of orthogonal functions, and so
convert it to an in6nite set of linear equations and a
corresponding infinite, and in general untractable,
determinant for the eigenvalues.

In this paper, we present a method which, using both
Eqs. (1) and (2), combines their virtues and, we believe,
minimizes their defects. Although we apply it only to
the bound-state (homogeneous) problem, it is clear
that a similar technique can be used for the scattering
(inhomogeneous) problem.

Then Eqs. (2) and (3) become

&0

2E
iP(x')u(x') e

—x~*'~dx',

0

P(x')u(x') ex"dx'

f(x')u(x')e x"dx' . (5)

Since the formal solution is determined by u and b, it
can be written as

(6)

where f,(x) and Pp(x) are definite functions, calculable
from (1) and involving the energy p. We shall shortly
discuss them in detail but, assuming for the moment
that they are known, we see on putting (6) into (5)
and (4) that the energy eigenvalues of the system are
determined from

a= Toa+Tpb,
b= T,'a+Tp'b,

ol

where
T~ TQ " 1

=0

Taylor series about that point, systematically using

(1) to reduce the higher derivatives dQ/dx" to linear
combinations of g(xp) and f'(xp). We end up then
with two homogeneous linear equations in f(xp) and
P'(xp), whose vanishing determinant fixes the energy
eigenvalues. Having found these, we can then calculate
the corresponding eigenfunctions either from the formal
solution, or in other ways, as we discuss below.

Now we All in some details. In this paper, we shall
use a Taylor series about the origin, that is, take x0=0,
but there may be cases in which other values are more
appropriate. For compactness, we relabel P and its
derivative at the origin according to

0(0)=—a 4'(0)=b

II. ONE DIMENSION

The method goes, in general, like this. From Eq. (2)
for P(x), we calculate f' as

&0

T,= P (x')u(x')e x~*'~dx',
2E

P(x')u(x')e-x& "&dx'

1c a Q~O f.(x')u(x') ex"dx'

+p'Vp P(x')u(x')e x&"—&dx'. (3)

+ ', pp P,(x-')u(x')e x*'dx'.
0

We evaluate (2) and (3) at some convenient point xp,
and then expand P(x') in the integrands in a formal

The problem now is to calculate P, and fp. We begin
by writing (1) more compactly as

P"=—Uf, U(x) =vpu(x) —p.
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Ke shall have to deal with various functions and their
derivatives evaluated at the origin. For a typical
function, call it Z(x), we shall use the notation

To calculate the coeKcients Pp("), we simply differen-
tiate (1) repeatedly. If we adopt the normalization

u(0) =uo = 1,
d Z

z(")
7

dx

The Taylor series is then

dnz —=zo(").
we get, for example

(9)
Il,p

(2) — Upa

P (2) — U (i)a Uob

It p&4& = (Upo —~ ~ ~ Uo&'&) a—2 Uo&'&b,

OO xn
4(x)= 2 Itp(")—.

n~p

From derivatives like these, we then find for f (x) up
to terms in x7,

x2 x3 x4 x' x'
fN(x) = 1——U()—Uo&"—+(Uo' —Up &'&)—+(4Uo Up('& —Uo &")—+(—Up'+ (4Uo&'&) '+ 7 UoU() &'& —U()&'&)—

and for It o(x),

x7

+( 9Uo"—'Uo'+ 1SUo"'Uo"'+11UoUo"' Uo"'—) +—, (11)
7!

Ux' 2U(') '
))t o(x) =x—

x' x'
+(Up' —3Uo&'&)—+ (6UoU() &'& —4Uo&'&)—

x7

+(—Uo'+10(Uo&'&)'+13UoUo&'& —5 Up&4') —+ . (12)
7!

T =1, even parity.

Similarly, for odd states, we have

(13)

T&'= 1, odd parity.

The question of the convergence of the series above
is, of course, an important, even crucial one. It will turn
out that, in some simpler applications, the series con-
verge well enough to be useful as they stand. In this
connection, one should note froin (2) that the series
are used only in the region where the potential is
nonvanishing.

To get some idea of the convergence, we work out a
simple example. We take first a symmetric potential,
for which u(x) =u(—x). Then, each state as a function.
of x is either even or odd about the origin. For the even
states, ))!p(') —=b is zero, T,' is zero, and Eq. (7) becomes

Integrating this equation, we get the well-known exact
result

where
$=$0$ ) 8= 6$ ~

Similarly, froin Eq. (14) for the odd states, we get

(3'—s)"' cot(3'-s)'"= -(s)"'.
To get some idea of the convergence of the series

expression for f(x), we compare the results of term-by-
term integration with exact ones. For the even state, for
example, if we keep only the first constant term in the
Taylor expansion, we get

1= (X/s) (1—exp/ —s"'j) . (15)

Similarly, with the first two terms we find,

It is instructive to try these equations out on the 1 I exp( sl/2)+1
square-mell potential:

u(x) =1, —a(x(a
=0 elsewhere.

All the derivatives Up&"& are then zero; and from (11)
we see that p, (x) simply becomes cos((2)p—o) ')2x).

Thus, (13) becomes

'Vp

1=— cos(UP'x)e x"dx'.

)& L2—exp( —s'~') j(2+2s'&'+s) . (16)

In Table I, we compare results from these formulas with
the exact ones. Ke see that even the lowest order ap-
proximation gives results accurate to within about 10%.

So much for the moment on the eigenvalues; we now
would like to comment on the calculation of the eigen-
functions. With the eigenvalues known, the eigen-
functions are, of course, determinate and are, in fact,
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TABLE I. Exact and approximate results for ground state of
one-dimensional square well. y= voa' z= ea'.

0.1685
0.6784
2.4254
3.3507
4.6712

Exact

0.5285
1.318
3.425
4.453
5.881

One term in
Taylor series:

Eq. (15)

0.5004
1.209
3.074
3.992
5.280

Two terms in
Taylor series:

Eq. (16)

0.5290
1.323
3.454
4.500
5.962

given in series form in (11) and (12). There is another
possibility however: we can use the integral expression
(2) for calculating the eigenfunction. Now at first sight
there might seem to be no advantage in doing so, since
to evaluate the integral for II(x), one must already
know f(x), say from the exact series form itself, to
put into the integrand. There may, however, be an
advantage in practice, since the series can really be
used only as a truncated one, which may or may not
converge well. If, however, we use this approximate
form in the right-hand side of (2), we can then look on
this integral equation as a device for iterating and,
hopefully, improving it. Thus, instead of tediously
calculating higher order terms in the series (11), it may

be simpler and more accurate to stop at some reasonable
point and to iterate the resultant function. It is im-

possible, of course, to prescribe how and when this
should be done in general, but to illustrate it, let us
take a very simple example.

We consider the ground state of the square-well for
which the approximation of the wave function in the
well by a constant leads to the results in Table I. Let
us now iterate this to find a new approximation to the
wave function. If then, we put lI (x') = 1 in the integrand
on the right-hand side of (2), we 6nd for the iterated
wave function, with i = x/a

1—-', { pL
—"'(1+i)$+ pL

—'"(1—t)3},

to which, of course, is joined the function exp( —z'i'~3'~)

We plot this, normalized to unity at the origin, in
Fig. 1 and compare with the exact wave function. The
iteration improves the wave function to a surprising
degree.

III. THREE DIMENSIONS

A. General Results

We now consider the problem in three dimensions.
We proceed along much the same lines as in one di-

l. o
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FIG. 1. The exact solution for the ground state of the one-dimensional square well and the first-order approximation obtained by
using the integral equation (2) to iterate once the zerothorder approximation iP(x) =constant, ) x) (o. y= 34254. z=24254 exactly
ao.d z=2.779 approximately.
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mension, that is, by using the appropriate differential
and integral equations in conjunction. We shall consider
the potential n to be spherically symmetric: p=it(r).
The Schrodinger equation is then

LV'+cpu(r) jII (r) = y(r), (17)

where, as in one dimension,

p= K'= 2m
~
E

~

/h' and iI(r) = —cpu(r) (18)

with the normalization u(0) —=up= 1.
The equivalent integral equation contains the three-

dimensional Green's function

We 6rst discuss the formal solution of this equation.
This solution, which expresses Qi in terms of Qi(0) and
Q'i(0), is in some ways simpler for the present case
than for the one-dimensional case, since Qi'(0) is not,
in general, independent of Qi(0). We shall discuss this
in detail for two important cases: u(r) regular at the
origin as for a Gaussian or exponential potential, and
u(r) singular as 1/r, as in a Yukawa potential. For the
former case, we see directly, on evaluating (26) at the
origin and recognizing that Qt(0) and Qi"(0) are finite,
that

Qi'(0) =0, u(r) regular at the origin.

and is

&
—X/r —x'/

Gx(r, r') =——
4~ [r—r'[

u(r) = w(r)/r, (2&)

Thus, the formal solution of (26), is determined com-
pletely by Qi(0). For the case that u(r) is singular, we
write

f(r) = i p u(r') P(r') Grr(r, r') dr'. (19)

O'R) 2 dR)
+— + cpu(r) —p-

Or' r Or

l(1+1)

r2
RE= 0. (21)

We can get the corresponding integral equation by using
the expansion

E
Glr(r, r') = ——P (2l+1)Pi(cosy) I'i(r, r'), (22)

4~ t=o

where

I'i(r, r') = ji(iKr') hi(iKr), r'& r
= ji(iKr)hi(iKr'), r&r'

(23)

and y is the angle between r and r'. lf we put (20) and
(22) into (19), and use the addition theorem for spheri-
cal harmonics on Pi(cosy), we get in a straightforward
way

For the assumed spherically symmetric potential, the
wave function f(r) is an eigenfunction of angular
momentum, and we need only consider one such eigen-
function at a time. For the /th state, then

(2o)

The radial function Ri(r) satisfies the well-known dif-
ferential equation,

where w(r) is finite at the origin and, in fact, can be
taken to be unity there. Again evaluating (26) at the
origin, we see that

Qi'(0) = — Q~(0), u(r) singular at the origin.
2(l+1)

For this case also then, Qi'(0) is fixed, so the formal
solution is in terms of Qi(0) only. Since Eq. (26) for
Qi is homogeneous, the value of Qt(0) drops out of
consideration and we can conveniently take

Qi(o) =1. (28)

r'Qi(r) = Kpp r"Qi(r')u(r'—)I'i(r, r')r"dr'.

To extract Q&(0) from this, we write it out as

r

r'Qi(r) = —Kpp h&(iKr) ji(iKr')u(r')Qi(r')r'+Pdr'
0

The calculation of Qt(r) will take a fair amount of dis-
cussion, and we shall leave it for the next section. We
turn then to the integral equation satisfied by Qi,' we
want to evaluate it at the origin. We begin by sub-
stituting (25) in (24), when it becomes

Ri(r) = —Kvp Ri(r')u(r') I'i(r, r')r"dr'. (24) +ji(iKr) hi(iKr')u(r')Qi(r')r'+'dr' . (29)

iX IX1X3X5X (8—1)

(iEr) '+'hi(iEr) ~—
R (r) =r'Q (r), (25)

(iKr) '

ji(iKr) ~
1X3XSX (21+I)

and consider the differential and integral equations for
Qi(r), since Q~(r) is finite at the origin. Using (25 in

(21), we find that Qi(r) satisfies
)

and with these expressions in (29), we see that the
(26) first integral vanishes in the limit r ~ 0, and a factorrQi"+2(l+1)Qi'+r(cpu(r) —p]Qi= 0.

Now, we cannot usefully evaluate (24) at the origin Now, for small r
since it vanishes there; it is well known that R~ behaves
like r' for small r. But we can then write
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X h~(iE»')I(»')Q~(»')»"+pd»'. (30)

All that remains then is to determine Q&(»).

B. Potentials Regular at the Origin

In this section, we discuss the formal solution for
Q~(») for potentials which are regular at the origin;
those with a 1/» singularity are discussed in the next
section.

There are at least two possibilities. First, we might
simply expand Q& in a Taylor series, as we did in one
dimension. In fact, the results are already at hand for
one special case which is instructive to look at. Namely,
if for /= 0, we make the substitution

Q(&(») =X(»)/»,

then the equation for X(») is identical to the one-
dimensional Eq. (1),

x"= [ape—(») pjx—

The formal solution of this is then given by Kqs. (6),
(11), and (12). To apply these results to the present
case, vre must however satisfy one further condition.
That is, we know Qp must be 6nite at the origin, which
means that X(0) must be zero. Thus, Qp(») is given by
the one-dimensional formal series vrith a=o, or

Qp(») =A(»)/». (31)

If we put this into (30), we have the basic equation for
s states,

1=vo Po(r')I(»')e ~"'d»'.
0

(32)

There is, however, another way we can go about
finding a formal solution, without prejudice against
the straightforvrard series form. To be concrete, let
us look in detail at the solution for Qp(») =go(»)/». This
is of the form of a series of povrers of r each times a
coefBcientwhichisafunctionof the Up, Up ), Up

Moreover, although we have not remarked on it, it is
clear that this series can be partially summed. For it is
evident that for the special case that all Up(") are zero
the potential is simply a constant and the series must
represent the odd solution in a constant potential. That
is, the series must represent sin(Up'&'»)/» and, in fact,
in (11)one can pick out the terms, among others, which
constitute the expansion of this function. This then
suggest that the other terms in the series may be sum-
mable in a similar vray into knovrn, or at least universal,
functions. Thus, there is, for example, in fp, a term in

r' arises in the second which just cancels the r' on the
left-hand side. Thus, we have, remembering (28),

Esp(iE') '

1X3XSX~ (2t+1)

which Up&') multiplies powers of r and r', and this
suggests the beginning of a series of even powers of r
multiplying Up&", and similarly for a series of odd
powers of r multiplying Up&').

We can get at these series from a more basic view-
point if we look at the problem in the following vray.
The equation for Q& is a flnctio»( of »; it is also a flee
tion, (Jl of the quantity U(»); we can take this to mean
that it is a function of Up and of the in6nite number of
derivatives Up&", Up(') ~ ~ ~

Q)
——Q&(»; Uo, Uo'", Uo "&, ) (33)

We can imagine Q& expanded in power series in either
of two vrays. We can consider it as a povrer series in r in
which the coeKcients are functions of the Up("),' this
is just the form in which vre have presented the one-
dimensional solution and the solution above for Qo.
Alternatively, we could expand it in an infinite-dimen-
sional power series in the quantities Up&'), Up('), Up( )

~ ~ and their powers and products in which the
"coefficients" are functions of r. That is, vre could write

- U, (&S,„(»)
Q, (» U, U, (& U, (» " )=S,(»)+P

sf

„g,„(„)U, ( &U, (o
+2 +". (34)

s t$[s=i
f&s

Such a series has at least one important advantage. We
know the solution when all the derivatives Up(") are
zero; as we have discussed above, it is just j&(Uo'~'»)
for R~ and this times» ' for Q&. Thus, the first term in the
series corresponds to approximating the potential by a
constant. One would, therefore, expect good convergence
for potentials close to square wells.

The basic question now is vrhether the functions
S&, S&„, etc., can be calculated. A second, and equally
important, question. is that of the convergence of (34).
The ansvrer to the 6rst question is yes; the details of
construction of the series are given in the Appendix.
From it vre find, for example, for the case 1=0, for
vrhich we shall shortly vrork out a numerical example.

sin(Uo'&'»)
~p(») =- (35)

Here

sf
So (») = — »'+'B, (U '&'»)

(s+3)!

( +3)!
B.(w) = g ( )mp(s »&p)~pm

-=o (s+2~+3)!
(3't)

and P(s,»&p) is expressed in terms of binomial coeKcients

/s+1i s+3i (s+2m+li
P(s,~)=l I+ I+"

I

s J s ) s I
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N(r) =e—&"/~&', (38)

since there are quite exact variational calculations by
Svartholm' with which to compare. For this potential,

I N. Svartholm, Hakan Ohlssons, Lund, thesis, 1945 (un-
published).

The question of the convergence of the expansion (34)
is not unrelated to the problem of explicitly calculating
the higher functions S~,,&, etc., for if the expansion does
converge well, the more complicated of these do not
enter into practical calculations, and so do not need to
be worked out at all. We have already begged this
question somewhat above in that we have written out
only the expression for Se,, ,'this corresponds, in (34),
to keeping only terms linear in the Up("). We shall
shortly see, however, for the numerical example we
adopt, that this is fairly good and hopefully it will be
so for other cases as well.

We turn then to a numerical example. We consider
the potential

all Us&"' with e odd are zero and

280
U, (2) — Up(4)—

g2

12vp
Up(6)—

g4

120vp

z) 1/2

2y2

sin((y —z) '/ss) exp( —s —z'/ss) ds

Bs((y—z)'/'s)s exp( —s' —z'/ss)ds

12y'
+4((y—z)'/ss)s/ exp( —s —z'/ s)ds. (39)

~ 0

We then put (34), (35), and (36) into (30), use the
reduced variables

y=SpQ ) Z= &8 )

and then rather arbitrarily truncate the formula by
keeping only the terms involving the Grst two non-
vanishing derivatives: Up(') and Up('). We get
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Numerical results from this formula are given in
Table II and compared with what appear to be the
quite accurate variational calculations of Svartholm. '
We see that the results are good to within several

percent, which clearly leaves room for improvement
but which is also good enough to indicate that there
is nothing seriously wrong. To make this method into a
really precise one some numerical experiments are now
needed to determine, for example, the relative impor-
tance of keeping in (34) the higher derivatives Up&P&,

etc. and of keeping terms nonlinear in the Up("', as
(Up'")', Up"& Up"', etc.

rQt"+2(l+1)Qt'+W(r)Q&= 0,
W(r) = t&pw(r) —er.

(40)

We want now to find the formal solution of this equa-
tion. As in the previous case, we can derive it in either
of two ways: We can simply write it as a power series

C. Singular Potentials

Now we consider singular potentials, as defined by
Eq. (27). With this definition, Eq. (26) becomes

where we use the notation of Eq. (9). We can calculate
the coeKcients from Eq. (40), by differentiating it e
times and evaluating it at the origin. If we do this,
we get

where
(42)

P(n, /) =-
I+2(/+1)

By successively setting v=0, 1, 2, . . . in (42), we can
calculate the coefficients (Qt'"&)p, and so derive however

many of the terms in the series (41) that we wish. We
find in this way:

in r, with coeKcients that are functions of the quantities
TVp&'), H/ p&" ~; or we can write it as a series of powers,
and products of powers, of these quantities, with

coefficients that are functions of r.
We first consider the former kind of series. We can

simply consider this a Taylor series in r, i.e., can write

rn
(41)

Qt(r) = 1+WpP(0, /)r+P(1 l) [(Wp)'P(0, l)+Wpt'& j(r'/2!)
jP(2,/)[(Wp) P(0, /)P(1, l)+W W ' (P(1,l)+2P(0, l))+W & &j(r /3!)
+P(3 l)[(Wp) P(0 l)P(1 /)P(2 l)+Wp Wpt &(3P(1 /)P(0 l)+P(2 l)[P(1 l)+2P(0 l)])

+3(Wp'")'P(1 l)+WpWp"'(3P(0 l)+P(2 l))+Wp"'7(r'/4!)+. . . . (43)

This series is obviously somewhat more complicated
than the analogous one for potentials regular at the
origin. Moreover, if we set all the derivatives 8'p&"'

equal to zero, the series does not approach that for a
constant potential, as was the case previously. The
reason is, of course, that for potentials regular at the
origin, the first term in the Taylor-series expansion of
the potential is a constant; in the present case, by
contrast, potentials with a 1/r singularity have no
Taylor series expansion around the origin.

There is, however, a limiting case of (43) which it is
instructive to consider. Consider a pure Coulomb po-
tential for which w(r) =1.We then have,

8'p ——ep,

H/ p(~) = —e,

Wp( )=0, m=2, 3, 4

Thus, those terms in (43) which involve only Wp and
8'p&') and their powers represent the formal solution
to the pure Coulomb case. We might proceed by
writing this in terms of the hypergeometric function,
and then sum the remaining terms which involve the
8'p(", Wp(') . . This would be then quite analogous
to the treatment of regular potentials where we took
the solution to be that for a constant potential, plus a

TABLE II. The relation between y =vOa' and s = ea' for the
Gaussian potential p(r) = —ppe ""~' as calculated from Eq. (39)
and as given by the variation method of Svartholm.

0
0.5
1.5
3.0

y(Svartholm)

2.69
5.33
7.84

10.9

xP.q (»)j
2.84
5.61
8.40

11.8

series in the Up( ) which represented the deviation
from constancy.

Partly for variety and partly because it appears easier
for a beginning, we shall proceed in a different way in
which we still can exhibit explicitly the Coulomb limit.
We do this by writing the wave function for some level
in the potential w(r) as the product of the Coulomb
wave function which would obtain if t&&(r) were unity
times a series which we can calculate from (43). Con-
sider, for example, the ground state in a Yukawa po-
tential w(r)=e "~'p. For rp~~, we have the pure
Coulomb case; if we use atomic units in the Schrodinger
equation, we have for this case

t&p
——2, w(r) = 1, E'= e=1—

and the ground-state wave function Qp(r) is just e ".
For the Yukawa potential, also in these units, we can
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TmLE III. Ground-state energies for the Yukawa potential
s(r)= —2e ~1": Length in atomic units, energy in Rydbergs;
8 =0 corresponds to the hydrogen atom. U(r) =seg(r) —e. (A2)

0.15
0.30
0.50
0.80

e (Harris)'

0.7309
0.5153
0.2962
0.0894

s from Eq. (47)

0.7272
0.5089
0.2916
0.0806

U (s)rs

U(r) = P
s-p g t

(A3)

We assume that U(r) is regular at the origin and can,
therefore, be expanded in the Taylor series,

a G. Harris, Phys. Rev. 125, 1131 (1962).

write, with 8 dimensionless

mr =e '".

For Qs(r), we can then assume

Qo() = -"c(),

It will be convenient to define F(s) by

F(s) = U, &'&/s!, (A4)

and in terms of this, the form of the solution that we
shall seek for Qi is, from Eq. (34),

(45)
Q( U Uo"' U "' " )=S()+2S,.()F()

and know now that as 8 ~ 0, C(r) —+ ].We can get a
formal power series for C(r) by simply multiplying
out the series (43) (with l=0) for Qs(r) and the series
for e". If we do this, we get

rs)b e 1~ p
8' 8 e 1 ~c

2 i3 6 6) k 12 9 18 183

s=l

+~ St,,i(r)F(s)F(&)+ . (A5)
s=it)s

To express Qt in this form, we shall first derive a formal
power series solution of (A1), and then pick out from
it the factors of F(s), of F(s)F(f), etc. ; these factors will
then be the functions S„,„Si,,i, etc. In (A1) then, we put

(3@+P+4be+ es—1)+ ~ . (46)
120

Qi= E Di(n)»
e=p

00 U (s}rs

Q n(n 1)Dt(—n)r" '+P Q Di(m)r
n=2 s=p g f m=ps(b+R' —s)

j

We then put (45) and (46) back into (30), and do the
integrals to get an explicit formula for 8 versus E. For as well as the expansio„(A3) to get
example, keeping only the 6rst three terms in Eq.
(46) for C(r), we get the transcendental equation

(A6)

E+8+1 (X+8+1)s

(—s~'+ s~+R' —s)+' ' '

(E+b.+1)'
(47)

In Table III, we compare the results from this formula
with variational results due to Harris. We see, as we
would expect, that the results get worse for large
values of 8, but presumbaly this could be improved by
taking more terms in the series. These results are,
however, enough to illustrate our present points.
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APPENDIX

= —2(l+1)P nDi(n)r"-s
n=l

If we equate coeficients of r" in this equation, letting
s+m= n in the double summation, we get the infinite-
terrn recursion relation

Di(n+2) =-
(n+2) t (n+1)+2(l+1)j

U (n—m)

X Q Dt(m).
=s (n—m)!

It is convenient to replace n+2 by n in the last equa-
tion, and to define H(n, l) by

a(n, I)=—nLnyZ+1j,

in which case it becomes, on relabeling the summation
variable,

We consider Eq. (26) of the text, which we rewrite
in the form

m—2

Di(n) = P F(n—2—nt)Di(ni).
H(n, l) ,=o

(A7)
2(l+1)Qi'

Qt"+ U(t)Qt=— (A1)
We write out this last equation as follows, remembering
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that D~(1)=0, since Q~'(0) =0, and D~(0)—=1, dg(0) = 1, corresponding to Dq(0) =1,

D((n) = F(n—2)+ P F(n —2—ng)Dg(ng)
H(n, l) %/=2

We iterate this once, i.e., we form D~(nq) from it and
then put the result back into its own right-hand side.
We get

~—2 F(n—2—ng)F(ng —2)
D)(n) = F(n—2)+.

H(n, l) H(ng)l)

2F(n —2——ng) ~i—&

+ P — g F(n~ —2—n2)D~(ng) . (A8)
~&=2 H(ny, l) ~a=2

d/(n) =O, n odd

F(o)
d)(2) =

H(2, l)

F(0)'
d/(4) =

H(2, l)H(4, l),

F(o)-
d/(2n) =

H(2, l)H(4, l) H(2n, l)

F(0)rm
S,(y) =1+

H(2, l) H(2, l)H(4, l)
F(n—2) ~-~ F(n—2—ny)F(ng —2)

D)(n)= — + Q
H(n, l) +i=2 H(n, l)H(nr, l)

F(0)'r'
2F(n— 2 —n~)F—(n~ 2 —n2)F—(n2 2)—

+Z
ny=2 ns 2 =H(n&l)H(nlql)H(n2&l)

+, (A11)
H(2, l)H(4, l)H(6, l)~ ~ 0

(A9) and if we put in the defining expressions for F(0) and
for H(n, l), it is straightforward to find that this series
is related, as we would expect, to that for the spherical
Bessel function j&(x). We 6nd, in fact

We want to use (A9) to construct the functions

S,(y), S~,(y) ~ defined by (A5). Since Qq is a power

series in r, the functions S~, S~,„etc., will also be power
series in r; the right-hand side of (A5) can be considered

to be a rearranged version of the original series (A6).
We can then write

1X3X5X (2l+1)S()= j((pol/my)
(P 1/2y)l

If we continue to iterate in this way, we end up with an Thus, »(r) is

in6nite formal expression for D~(n), viz. ,

S)(r) = g d((n)r",
n=o

S~,,(r) = g d/, (n,s)r",
n=0

Sg,,g(r) = Q d)(n, st)r"
n=0

If we combine these equations with Eqs. (A5) and

(A6), we have

D,()=d()+Z F()d(, )
@~1

+P F(s)F(t)dt(n, st)+ (A10)
g~f
t&s

Consider first S~(r). To construct this is to 6nd the
coeKcients dq(n). To do this, we choose a value of n

and then pick out from the expression for Dq(n) that
part which is independent of any of the derivatives
Uo&'&, i.e., that involves only F(0). This part is then

just d&(n). We fmd, for example, with the normalization

Now we work out the functions Sg,.(r). We begin
with S~,l, the calculation of the general S~,, then follows
the same lines. We imagine the formal expression (A9)
for Dt(n) substituted in the left-hand side of Eq. (A10).
We then take e= 0, 1, 2, ~ successively in the resulting
equation and for each n pick out the factor of F(1)
on the left-hand side; this factor is just d&(n, 1). It is
easy to see that there is no such factor for n=0, 1, and
2, so dg(0, 1), d~(1,1) and d~(2, 1) are zero. For n=3,
however, the left-hand side reduces to the single term

F(1)
Dg(3) =

H(3, l)
so that

d/(3, 1)=
H(3,l)

We get no factors of F(1) from Eq. (A9) for n=4, but
for m=5 it becomes

F(3)» F(3—ng)F(ng —2)
D/(5) = + (A12)

H(5, l) H(5, l) ni=2 H(ng, l)

A factor F(1) arises in the summation for nq ——2 and
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for Nq=3. We have then

F(0) 1 1
d, (5,1)=

H(5, l) H(2, l) H(3,l)

Likewise, for m= 7, we 6nd

F(0)' 1
d)(7, 1)=

H(7, l) H(2, l)H(4, l)

(A13)

Now, if p~, p2 ~ .p, is any one of these sequences, we
form an associated factor

1/H(p~, l)H(pn, l)" H(p. ,l)

and add together all such factors, one for each sequence;
the result is the factor M~(m, i). We can write this then

Mg(m, i)=
H(p~, l)H(p2)l)H(p»1) H(p, )l)

H(2, l)H(5, l) H(3, l)H(5, l)

Proceeding this way, it soon becomes clear that the
general term is of the form, for m& i,

With this de6nition, the coeKcients d~(n, i) are now well
defined. The series for S~,~(r) in terms of these coeK-
cients is thenF(0)™-1M,(m, 1)

d~(2m+1, 1)=-
H(2m+1, l)

In exactly the same manner, we Gnd for the general
case

2, 4, 6, 8, 2(m —1). (A14)

F(0))))r2)))+3

where the factor M~(m, i) is formed as follows: For, H(2m+3 l)
+l, l(r) = Q M&(m+ 1, 1) .

m= 1, we de6ne M~(1,1) to be unity; for m&1, we form
the sequence

We then form a set of sequences, of which the Grst of
the set is just (A14). The next sequence of the set is

got by increasing the erst and all succeeding members of
(A14) by unity, and the next sequence after that by
increasing the second member and all succeeding mem-
bers of (A14) by unity, and so on. Thus, we generate
the set of sequences

2, 4, 6, 8, ~ ~ 2(m —1),
3579 ~ ~ 2m —1

7 7 7

2, 5, 7, 9, . 2m —1, (A15)

2479 . 2m —1) 7 7 7

2, 4, 6, 8 . 2m —2, 2m —i.

F(0))wr 2)))+)+2

~~..(r)= Z Mt(m+1, s) . (A16)
~-0 H(2m+s+2, l)

Here, Mg(m, s) is formed according to the same pre-
scription as Mg(m, i) except that in forming the related
sequences like (A15), one adds s where one added unity
in forming M~(m, i).

If now we specialize these results to the case 1=0,
using H(e, 0)= —N(I+1) and the definition of F(s), it
is not diKcult to show that Eq. (A16) becomes the
result in the text quoted as Eq. (36). Similarly, Eq.
(A11), for l=0 becomes Eq. (35).


