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Local-Field Corrections to Coulomb Interactions
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The effective charge-charge, charge-dipole, and dipole-dipole Coulomb interactions are calculated for a
solid dielectric. The static dielectric screening of the solid is included by using the point-dipole model, which
assumes that the host ions are polarizable points. This model allows the dielectric screening of Coulomb
interactions to be included exactly, since the local-6eld corrections can be summed to all orders. The long-
range charge-charge interactions are just screened by e, where ~ is the Lorentz-Lorentz dielectric function.
The long-range interactions involving dipoles can be understood by assigning the dipoles an external moment
p, = (&+2)p/3, where p is the moment in a vacuum. This form of the external moment applies only to dipoles
in positions of cubic symmetry.

I. INTRODUCTION

'N a vacuum, the Coulomb interaction between two
~ - charges qi and qs is qiqs/E, where R is their separa-
tion. In an appropriately homogeneous, isotropic ma-
terial with dielectric constant e, the interaction is
qiqs/eR. Similarly, the charge-dipole and dipole-dipole
interactions in vaccurn are

Cubic
dielectric

External
moment

TAaI,E I. The long-range Coulomb interactions in cubic di-
electrics. For dipoles at interstitial, yet cubic, symmetry, sites, the
dipole interactions can be expressed in terms of an external mo-
ment y, = (e+2)y/3. The enhancement of the:moment derives
from the Lorentz internal-6eld corrections. The dipole-dipole in-
teraction is ii = (i —31tl)R '.

V,s=+qp R/Rs,

~«= Si' 1('(R) 'Ps

charge-charge pigs/R pigs/eR

$+2
charge-dipole q = ts R/2t' qy. R/g'

36
ggg ' R/eRI

ii(R) = (l —MA)/Es.
dipole-dipole pl. p p2 gimme' P ' gis, /e

The question of interest here is the change in these
interactions in a solid with dielectric constant e.

The reason that the charge-charge interaction is re-
uccd by e I ln thc diclcctr1c 1s that thc host lons 1n

the solid are polarizable. They polarize around the im-

purity charges gI and g2, which reduces the CGective
interaction between qj and qg. Viewed microscopically;
if one knows the position of all the host ions, and their
polarizability, the CGective screening can be evaluated
from first principles. This is done below for the charge-
charge interaction in cubic crystals, and the CGective
interaction at large R is just reduced by e '. The same
method of summing the local-6eld corrections is then
applied to the charge-dipole and dipole-dipole inter-
actions. In the limit of large separation, the local-held
corrections to these interactions can also be expressed
simply in terms of the static dielectric constant. These
results are summarized in Table I. It is shown that for
interstitial impurities, the long-range dipole inter-

actions can be characterized by assigning the dipole
an external moment'-' ts, = (e+2)p/3, where y is the
Inoment in a vacuum. The moments p are viewed as

rigid, and their magnitude is not altered by electric

' L. Onsager, J. Aro. Chem. Soc &g, 14g6 (1936).
'H. Frohlich, Theory of Dklectrf'cs (Clarendon Press, Oxford,

England, 1958}.
'Onsager (Ref. 1) de6nes the external moment as that which

"determines the force. . . which the dipole will exert upon a
distant charge in the dielectric".

fields. The increase of p, over p arises from the polariza-
tion of the ions surrounding the impurity moment.

My interest in the local-6eM corrections to dipole-
dipole interactions was stimulated by recent dielectric
measurement of OH molecules in KCI by Kanzig,
Hart, and Roberts. 4 The theoretical calculations5 8 on
these systems can only agree with experiment by
assuming a dipole moment which is twice as large as
that observed. Kieins used (2) divided by e for his
dipole-dipole interactions. Lawless' used local-field cor-
rectioIls based Qn FI'ohlich's models. In Sec. IV it is
shown that the correct enhancement factor for long-
range dipole-dipole interactions is

The factor y'/p, defined in Eq. (2'I), arises because the
impurities are at substitutional sites. It is due to the
change in the dielectric properties of the medium caused

'%'. KKnzig, H. R.Hart, Jr., and S.Roberts, Phys. Rev. Letters
13, 543 (1964).

~ 'gf. Zernik, Phys. Rev. 139, A1010 (1965}.' M. %'. Klein, Phys. Rev. 141, 489 (1966).
r W. N. Lawless, Phys. Cond. Mat. 5, 100 (1966).
8 M. E. Baur and W. R. Salzman, Phys. Rev. Letters 16, 'R1

(1966).
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by the absence of a host polarizable ion. The ratio y'/jk

depends upon e, but the functiona1 form of this e de-

pendence cannot be reduced to a simple analytical form.

Since the static dielectric constant in KCl is' 6p=4.4,
the enhancement factor is 1.03(p'/ji)2, which is neg-

ligible for p'=p. The external moment is 2.1 p,, which

justifies Klein's use of 2 y in his calculations. But at the

peak of the dielectric-constant data, e 10, which gives

an enhancement of 1.6 (p'/ji)2 to the dipole-dipole inter-

actions. The paraelectric polarizability of the impurity

dipoles, which contributes to e, therefore enhances the
interaction between any two impurity dipoles. The
moment entering into the formula for t. also contains

p„and thus depends upon &.

The statement that the paraelectric contributions to
e affect the strength of the dipole-dipole interactions
makes the external moment depend upon temperature,

impurity concentration, and applied electric field. This
statement assumes that the results for cubic arrays
also apply to random arrays. This is reasonable since

the average field from a random array is that of a uni-

form array, which is essentially cubic. This could ex-

plain the observation of Bron and Dreyfus' that the
effective dipole moment appeared to depend upon the
concentration of impurities. A similar experiment by
Feher, Shepherd, and Shore" did not have this difBcult. y,
and the value of the OH- moment they report is in

agreement with Kuhn and Luty. "Since the experiment
of Feher et u/. was done at much lower OH concentra-

tion, one would not expect a significant contribution to
the external moment in their case. This could explain

some of the discrepancy between these two experiments.

We also note that in an earlier adiabatic depolarization

experiment by Shepherd and Feher, " they reported a
higher value of the moment in more concentrated

systems.
The local-field corrections are summed microscopi-

cally, assuming that the induced moments on the host
ions are point dipoles. This convenient model allows

the general formulas to be expressed in compact form.

The method used to sum the local fields has been used

recently in the discussion of van der Waal's forces in

solids. '~" The final formulas are given only for cubic

lattices, since they are particularly simple in this case.

9%'. E. Bron and R. W. Dreyfus, Phys. Rev. Letters 16, 165
(1966).' G. Feher, I. W. Shepherd, and H. B. Shore, Phys. Rev.
Letters 16, 500 (1966).

"U. Kuhn and F. Luty, Solid State Commun. 2, 281 (1964);
4, 31 (1965).

'21. Shepherd and G. Feher, Phys. Rev. Letters 15, 194 (1965).
3 S. Doniach, Phil. Mag. 8, 129 (1963).
' A. D. McLachlan, R. D. Gregory, and M. A. Ball, Mol. Phys.

7, 119 (1964)."A. Lucas, Phys. Letters 12, 325 (1964).
"A.Lucas, thesis, University de Liege, 1966 (unpublished)."G. D. Mahan, J. Chem. Phys. 43, 1569 (1965).

IE. CHARGE-CHARGE

The two charges q& and q2 are in a host lattice at
points lr and 12. It is convenient to assume that they
are at interstitial positions, so as not to disturb the
dielectric properties of the host lattice. The simple ex-
tension to substitutional impurities is given at the end.
The host ions are at lattice sites 1;, and each has an
induced moment P; whose amplitude is proportional
to q~ and q2. The Hamiltonian is

qyq2 1 2 P,"12
+rIr Z P' +C2Z +2 2»"Na" Pr

i(2 ~ l;g' ~ l,2'

where 1;2——1;—lr, and P;;= $(l;—1;) is the dipole-dipole
interaction (3).

This Hamiltonian leads to four types of energy terms.
One is just the van der Waal's binding energy of the
solid, which is independent of qj and q2. The second
term depends upon qj' and the third upon q~'. These
two are just the energy needed to put the separate
charges into the polarizable medium, and they are
independent of the position within the lattice. The
fourth term is proportional to q~qg and depends ex-
plicitly upon the separation of 12 and 12. This last term
we call the "effective interaction, " although a more
conventional name for this section would be the
"screened Coulomb interaction. "The evaluation of this
effective interaction gives the local-field corrections to
the Coulomb interactions. The superposition principle
shows that these four energy terms are independent.

The effective interaction between qj. and q~ is ob-
tained by eliminating the induced moments P; from
the equation. Because of the superposition principle,
which is just an assumption of linear polarization re-
sponse to an electric field, only the terms in P; which
are caused by qj and q2 need to be considered. One can
see the types of terms which occur by noting that the
electric Geld at a site 1; is

and using the definition of ion polarizability e,,

P,=V,I; E;,
where Vp is the volume per host ion. However, if one
evaluates P; by this method, and inserts the result in
3'., one miscounts the number of times each interaction
occurs.

The effective interaction is correctly given by the
series

1 lrj irj 12j llj'rrj pj'2'ci'12'
I'-=ares ——1'oZ, , +1'2'Z

-lx2 ~ lg l2 ij

VO p llj'rrj ' pii iri'11ik'irk '122/l2k llew
+' ' ' . (6)

ijk
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The correct counting is achieved by expanding the free or
energy'8 '9 )I+ Rj G=l. (10b)

P= —P-'in(exp — d x( ) )
and sorting out its diagrams. Irreducible (connected)
diagrams which are independent of qj, and q~ give the
van der Waals binding energy. Clusters which start
and end at the same charge (qi or qq) contribute to the
polarization self-energy of that charge. The effective
interaction is found from clusters which start at one
charge and end on the other. Thus, this method gen-
erates all four of the energy terms mentioned above.
The polarizability is introduced into these clusters by
requiring that the only nonzero contractions are

P

dr P', P;(r) P; (r'))= Vair,&;;,
0

where T, is the usual tau ordering operator. '9 In this
formalism, the polarizability a(~) is a thermodynamic
Green's function" which is evaluated. only at zero fre-
quency. One advantage of this formalism is that it
gives a rigorous method of extending (6) to finite fre-
quencies and to Qnite temperatures.

The infinite series of terms in the equation for V„can
be summed exactly. This is done by changing the sums
over l; to wave-vector sums. For simplicity, we assume
that the ions are identical, and e is independent of j.
Berne'~

Vp
T(k) =—g expLik ljy(l),

4~ Igp

W(k)= Vo/4s p e'"'" 'oi(l —10)/(1—10)',

R(k)=4we T(k).

The 1 sums are over lattice sites, while lo is the vector
from the interstitial impurity to a lattice site. The
equation for V„ is noir

g gag 4Ã
V„= -qiqs —P e'i"&'L4sW(k) e W(—k)

ling V L

-4sW(k) R(k) e W(-k)

Then the in6nite sum becomes

g jgg 4Ã
V„= —qiqg Qe'~'i2L4sW(k) I G{k) W(-k).

lg2 V &

(11)

This result is true for a lattice of arbitrary symmetry.
But it is convenient to specialize to cubic lattices where
the polarizability is isotropic, I=0,l. Cubic crystals
aho have the property that the matrix T(k) is diagonal
in the coordinate system deined by the three ortho-
normal unit vectors k= eg, 8i„and 82,

8; T(k) 8;=b~yT;(k).

This allows G(k) in (10) to be expressed as

G(k) =P
'-i 1+4~aT {k)

This simple form of G is only valid for cubic lattices.
But the equivalent solution for other lattice symmetries
is easily obtained by finding the most general form of R
from group theory, and then inverting the matrix equa-
tion (10b). The matrix G is simply related to the di-
electric tensor.

The prescription for 6nding the effective interaction
between two charges is to evaluate W(k) and T(k)
and then do the wave vector sums" over the Srillouin
zone in (11). For liq small, of the order of a lattice
constant, this effort is necessary. But for lin large, only
small values of k in the sum should be important, and
we can expand W and T around their k=0 values 2'

limW(k) =~k/k'

limTg(k)= —-', j=i 2
~0

Since W is in the direction k, only the TI component
enters the k sum in (11).For large l»

4mn 4m

V-(lie) - qiqa— —Z
lip 118sn/3 V i k2

+4 W R R W+ j {9) we approximate

To conform vrith Doniach's notation, "deine

G= I—R+ R R—~ ~ =El+ R3 ', {10a)

4m e'"'»—Z
V & k' ling

~ R. Brout and P. Carruthers, Iectlres ow the Many-Electrol
Problems (Interscience Publishers, Inc., ¹wVork, j.963).

~9A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
3Athods of QNuntum Field Theory irI Stutk tical Physics (Prentice-
Hall, Inc. , Englewood Cli6s, New Jersey, 1963}.

It has recently become apparent that it is necessary to do
these wave-vector sums in order to obtain accurate numerical
answers for local-Geld corrections. This is shown in Ref. 16.» This method has its dangers. Sy using the k -+ 0 limit for
~(k) in an electron gas, one misses the Friedel oscillations. It is
conceivable that similar eQects are being overlooked here,
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o+2)
v

3e )q&q2 4znV„(l„): 1- q1q2/lloo (15)'|~" l» 1+So.n/3 The long-range interaction is altered by (e+2)/3o.

IV. DIPOLE-DIPOLE
where, for cubic crystals, the dielectric constant is

This sum is not exact, since the k sum extends only Using the definition of e,
over the Brillouin zone. This gives

(19)

1—4'/3

III. CHARGE-DIPOLE

The same type of analysis is applied to the interaction
of an impurity charge q at 1& and an impurity dipole

p at lo, both assumed to be at interstitial sites. The
Hamiltonian is

loi y lr, P~.

&=+q —qZ +2 ~ o»" P~
~n'

The effective interaction between two impurity di-
poles p& and p2 at 1& and 12 is now derived by the same
methods. The Hamiltonian and resulting effective in-
teraction are

pl' $12' po+Q pl' Plj' Pj+Q po' Pop' Pg

+o 2 P' O'J" »,
Vdd pl'E'$12 Vo Z glj'nj'nj2

+Vo'2 Nu"n~" PJ' n' P*o+ j po, (20)

y-,'P P; y,; P, .

Again eliminating the P; coordinates, the effective inter-
action is

4x
Vdd pl ' $» —g e"'»4~T'(k)

G(k) n T'(k) po. (21)

—
ling

V.g=+q —Vo Q
-~n'

+Vo'E —"
lI (17)

'j ill'

For cubic crystals, the wave-vector sum simplifies to

4n- o e„e 2' '(k)'—
Vee= ti P» —«n—Z e'"'"'2 po.

V I =i1+4xnT (k)
(22)

In order to convert this to a dipole sum, another wave- In the limit of large I», Vqd is obtained from the

vector transform must be defined: approximation

Vo
T'(k) =—2 e'" ('-' ~y(1—1,).

4~ i

4x—Q e'~'5k= y(1), (23)

Pl' $12 P2
~dd"™(1+8m n/3) (1 4~n/3)—4x

V,g ——+q l,g/li, '——P e-'"'»W(k)
&+2) pl' P»'po~ ~~ ~

3 j e~ G(k) n T'(k) p. (18)

V. EXTERNAL DIPOLE MOMENT

which gives
Now the sum of terms in (17) for the charge-dipole
interaction can also be summed:

~ (24)

In the limit of large 1», we replace G(k) and T' by
their value at k=0, and again only the T3 component
enters in (18). When the interstitial moment is at a
position of cubic symmetry, the k ~ 0 limit of To'(k)
is also —,', which gives

V —++qlog p/1»'(1+8'/3).
cd

The exact formulas for the interaction energy, as a
.function separation ll2, have been derived for charge-
charge (11), charge-dipole (18), and dipole-dipole (21)
Coulomb interactions in molecular solids. For small
values of ll~, the indicated wave-vector sum would
have to be done numerically to obtain the proper
separation dependence. The asymptotic form of the
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This causes the effective interaction to have the forms
given in Table I. All interactions are now just reduced
by e ', as one expects Coulomb interactions to be re-
duced. The other (o+2)/3 factors show that the ions
near the impurity dipole polarize around it to make its
external moment look larger. Thus, for any type of
equation, wherever y. -appears in the formulas for inter-
action in a vacuum, then p, should be used for.inter-
actions in a cubic dielectric. An additional check is to
eva1uate the interaction of a dipole p, between the
parallel plates of a condenser, with the internal Geld.

E; ~ V/d; the r——esult —to E;„o for a vacuum does be-
come —pe ' King ln the dielectric. This form of the
external Geld is different than that deduced from the
classical models of Onsager' and Frohlich. ' This sug-

gests, perhaps, that their classica1 models are also in-

correct for liquids.

VI. SUBSTJTUTI05'Al IMPURITIES

In the preceding discussion of local-Geld corrections,
the charges were conveniently assumed to be inter-
stitial impurities. This meant that the dielectric re-
sponse of the host lattice was undisturbed by the
presence of the impurities. When an impurity occupies
a lattice site, a host ion is Inissing. Its absence alters the
local dielectric response of the system.

These changes occur in the higher order terms in the
effective interactions. For example, the third terIn in
the series (6) for the charge-charge interaction is now

written

V o
II,"e,"y;; e; 1 o= Vo'Z

,3/. 3 i,j
11; e; y, ,"e,"llo

llo eo yog e; I'o llo eo pol el llo—2Voo Q +Vo'
~12'~ 2'

interactions, valid for large llo, are given in (15), (19),
and (24).

Alter noting the occurrence of the (o+2)/3 factor in
the interactions involving dipoles, it seems reasonable
to deGne the external dipo1e moment as

t.= o(o+2)~.

tions to the l ' term of the order- 3 ' or higher. They can
be safely omitted in the limit l —+~.

These corrections are important for the charge-dipole
and dipole-dipole interactions. An examination of these
terms shows that some of them go with the same power
of 1 as the fundamental interactions. Other correction
terms go with I '" higher powers of 1. The important
terms with the salne 1 dependence can be conveniently
expressed as an alteration of the effective dipole mo-
ment. Their effect is to replace the moment y, by"

V'=t L1—Vo'e'Z 4V 01

+Vo'e'Z 0v N~' 4 "3—, (2&)

which may be written as a wave-vector sum

(4~e)'
y'=to 1 — Q T(k) G(k) T(k)

k

Since p' enters into all formulas, it is just the measured
moment. These correction. terms can be evaluated by
numerical integration. Their magnitude can be esti-
mated from the first term, which is also the leading
lattice sum in ca1culations on van der %aals binding
energies. '~ For dipole interactions at large distance, the
total external moment is now

S.'= o (o+2)S'.
It is obvious from (27) that the ratio y'/p depends upon
the dielectric constant e. Numerical integration of the
wave-vector sum in (27) is necessary in order to deter-
mine this ~ dependence.

No simple approximation scheme seems possible,
since the functions T;(k) vary considerably near the
edge of the Brillouin zone, where the density of wave-
vector states is large. It is discouraging to note tha&
Doniach's" ingenious method of approximating a similar
integral has been shown to lead to large errors by
Lucas' s" numerical calculations.

Another change which occuI's fol substltutlonal im-
purities is that W(k) is now de6ned as

Vo
+(k)— g &ik 11/~o

4x»o

Tile effect of thc first col'I'cctlo11 term 1I1 (25) ls to asslgll
the charge q~ an effective dipole moment

do=2qoVo'Q po; e; 1;o/l;oo.

One should also use T(k) instead of T'(k).
In this case, (18) and (21), simplify to

(4~)
V ~=+~ p e—a Ioipy(k). G(k). y~ (1g

This moment is zero in cubic crystals because of the
cancellation of 1 and —1 terms. The higher order terms
in the series (6) each have a rapidly increasing number
of such correction terms. All of these correction terms
to the charge-charge interaction correspond to correc-

4m

Vaa= —Z &""'pl' T(k) G(k) p'o (21')

"If the polarizability of the impurity a' is nonzero, then
~' —+~(~—~'), ~'~a'(a —n'), etc. Thus, in (27), the factor
(4m-a)' —+ (4m.)'cx (u —a').



These formulas have the same f-+~ as the prior re-
sults shown in Table I. The only change is the use of
p' instead of p.

VII. DISCUSSION

An attempt was made to estimate the distance at
which the limiting forms (15), (19), and (24) become
valid. This effort was abandoned when it was realized
that the most important correction terms arose from
the approximations (14) and (23). By replacing the
wave-vector sum over the Brillouin zone by a sum to
infinity, one introduces errors which depend upon the
shape of the zone.

The eGective mass of exciton states in cubic crystals
was also evaluated. These masses arise from the wave-
vector dependence of

kkp
T(k),p

—— —-,'8 p+klklw p)p(c/~)'+0(jp).
k'

The lattice constant u is introduced to make m dimen-
sjonless, and therefore dependent only upon crystal
structure. The value used for a was the molecular
separation along a (100) direction. The fourth-order
inverse effective-mass tensor m has the general form for

cubic crystals. It contains three independent constants
wll, wig, RIld w44. Tile colldltloll tlla't Tl'Rcc T(k) =0 lnl-

poses the condition WII+2wll ——0. The exciton mass is
characterized by two constants, m~~ and m44. These are
mji ———0.291 and m44 ———0.093 in bcc lattices, mi~
= —0.187 and m44= —0.057 in fcc lattices, and mj.~

=0.258 and +44= —0.50k in sc lattices. These values
Rl'c 111 Rgrccmcnt w1th CRlclllR'tlolls of T(iI) ovcl' tile
entire Brillouin zone."

This method of evaluating local-held corrections can
also be applied to solids composed of several diferent
kinds of atoms. Here the single equation (10b) for 6 is
replaced by a set of coupled equations —the number of
equations equals the number of diferent atoms. A
calculation on NaCl structures gives the obvious result
that the polarizability o. to use in e is just the sum of
the anion and cation polarizabilities.
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