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As a result, it is possible to write

2 2

T 4 o
»—~—~——/ sinw’wdx= > —| =xS"(n") (A8)
4 sin®w'w J_, n=l |p?—mn
and
w? / sin2n/r
1— )=S’(n’). (A9)
4 sin?n’ 7r\ n'r

On inserting expressions for S’(x’) and S’(3#') from
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(A9) into Eq. (AS) the desired sum S(x’) becomes a
complicated trigonometric function of 2#'w, #n'm, and
n'm/2. With the aid of standard trigometric identities,
it is possible to reduce this and to show that

S(n')=3=2. (A10)
This particular treatment holds for any nonintegral
value of #’, where »’ may approach an integral value
arbitrarily closely.
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Calculations of the imaginary part of the dielectric constant of an anisotropic solid in the region of a
critical point are used to obtain the real part of the dielectric constant through Kramers-Kronig relations.
Changes in the real and imaginary parts of the dielectric constant are expressed in closed form for all four
types of critical points. Description of these changes can be made with only two functions. The effect of the
finite extent of a band is investigated, and it is shown that previous calculations of the change in the imagi-
nary part of the dielectric constant, based on bands of infinite extent, are valid as long as transitions are re-
stricted to regions near the critical point. Closed-form expressions for the Lorentzian broadening of the
changes in the dielectric constants are given in terms of Airy functions of complex argument.

I. INTRODUCTION

ITH the evaluation of certain integrals involving
Airy functions, it has been possible to obtain the
change in the imaginary part of the dielectric constant
or optical absorption caused by the application of an
arbitrarily oriented electric field near critical points in
solids.! The same methods can be applied to evaluate
the change in the real part of the dielectric constant
near critical points, which formerly had been obtained
only by numerical integration about the fundamental
absorption threshold?—* and about the M critical point
in the special case of the field parallel to the negative-
mass symmetry axis.? It is the purpose of this paper to
evaluate the dielectric-constant changes caused by an
electric field in closed form for an arbitrarily oriented
electric field in an anisotropic solid near all four types
of critical points, and to investigate the effects of the
finite extent of the energy bands on both the real and
imaginary parts of the dielectric constant in the pres-
ence of an electric field. The weak-field effective-mass
approximation will be used throughout.

* This research was supported by the Advanced Research
Projects Agency under Contract SD-131, and by the Rome Air
Development Command.
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Rapid changes in the dielectric constant occur at
Van Hove singularities in an energy band, where the
gradient of the relative energy, Vi(E ,— E,), vanishes at
some value of k.5¢ Such singularities are of four types,
depending on the band curvature or the signs of the re-
duced masses in the effective-mass approximation.
Assuming quadratic energy surfaces, we take the mass
of a conduction-band electron along the axes of sym-
metry as #es, Moy, and m,,, and the hole masses along
the same axes as #Mpq, Miy, and ms,. Defining the re-
duced mass m; for each coordinate i=x, v, and z as

e hi
my=—
Meit M

¢y

the four different critical points may be defined by the
reduced-mass signs®:

Mo mg, my, m, positive (ellipsoid);
My m,, my positive, m, negative (saddle point);
Ms: m,, m, negative, m, positive (saddle point);
Mi: my, my,, m, negative (ellipsoid).

For the two saddle-point singularities M7 and M, the
mass of odd sign is conventionally taken as m,.

5 L. Van Hove, Phys. Rev. 89, 1184 (1953).
6 D. Brust, Phys. Rev. 134, A1337 (1964).
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II. THE IMAGINARY PART OF THE
DIELECTRIC CONSTANT

The imaginary part of the dielectric constant in a
weak electric field near any critical point can be written,
in an anisotropic solid and with the usual approxima-
tion which neglects the Coulomb interaction between
the hole and electron, as!

4NSB
e2(w, &)= (0,0,0.)712 | de, | dey | de.
T4h20?

— € —¢y —€,
><Ai2< ) Ai2( ) Ai2< )
7., 16, ho,
X 8(E;— hw+ e, sgn(m,)+ ¢, sgn(m,)
+esgn(mz)), (2)
where, if p,= |m,|, etc., then for each coordinate i
0.8 =262/ 2hp;. ©)

&, is the field component along the ith symmetry axis, N
is the normalization constant of the Airy function de-
fined in Eq. (A1) of the Appendix, and

B=nwR
262C o2 /8 piytiz\ 12
ey
m2ch VA

B is the anisotropic generalization of the constant B
used by Seraphin and Bottka? for an isotropic solid, R
is the anisotropic generalization of the quantity R de-
fined by Tharmalingam,” and C,? is the approximately
k-independent part of the momentum matrix element’8:

[{fIP[4}]2=C0?|$(0) | *8usx, - ©)

The integration variables ¢; are the kinetic energies of
the electron-hole pair along the symmetry axes in rela-

F16. 1. The closed region of contribution from the integrand of
Eq. (2) for the M, edge, with (5w— E,;)>0. The integrand decays
exponentially outside this region. The boundaries are taken as
those lines where the appropriate limiting Ai? factor of the inte-
grand has 0.01 of its value at zero argument.

7 K. Tharmalingam, Phys. Rev. 130, 2204 (1963).
8 R. J. Elliott, Phys. Rev. 108, 1384 (1957).

ELECTRIC FIELD EFFECTS

973

tive coordinates. The type of threshold is determined by
the sign dependence of these variables, as determined
by the reduced mass, in the arguments of the delta
function. Since the delta function is an even function of
its argument, it is obvious that the imaginary parts of
the dielectric constant for the M, and M5 edges are re-
lated by replacing (E,— #iw) with (fiw— E,) in the result,
and the same relation holds between the M; and M,
thresholds. Therefore, only the My and M, thresholds
will be considered in detail.

The limits on the integrals of Eq. (2) are obtained in
the following way. Since the asymptotic limits of the
Airy function squared are,? for x — o,

A(x)~ (w/4AN?) 123252 (6a)
A(—x)~ (r/2N?)x"*[14-sin(§2*/9)],  (6b)

the lower limits, in which the arguments of the Airy
functions become large and positive, can be extended
to negative infinity with Eq. (6a) insuring that the Airy
functions will cut off the contribution from the integrand
for large positive argument. This represents the
negative-kinetic-energy region, and picks up the electro-
absorption contribution in the nonclassical region of
tunnelling. We note from Eqs. (2) and (6) that in the
limit of zero field (6; — 0) each Airy function squared
reduces to the derivative of the density of states in one
dimension: zero below the gap, proportional to e~/2
above.

In principle, the upper limits to the integrals are the
maximum kinetic energies of the electron-hole pair,
determined by the extent of the relative coordinate
electron-hole pair energy band along the particular
symmetry axis. This maximum kinetic energy is de-
termined for each coordinate ¢ by

Eio= [(Ec—Ev)'i]max— Eg y ;> 0 (7a)
=E,— [(Ec'_‘Ev)i]min I} (7b)

where E, is the energy separation between the valence
and conduction bands at the critical point. Because of
the delta function of energy and the asymptotic be-
havior of Ai?(x) for positive %, certain cutoff energies
may be extended to infinity with negligible error. We
consider first the M, edge.

Since the delta function requires

E,—twt e+ eyte.=0 ®)

for the M, edge, the region of contribution of the inte-
grand is bounded because in any direction one of the
Airy functions approaches zero as in Eq. (6a). This is
illustrated in Fig. 1, where it is assumed that the con-
tributing region is defined as that region where the Airy

m;<0,

9H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 448. The Airy functions in the
Handbook are normalized to N=.
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Fi1c. 2. The electro-optic function F(x).

function arguments are less than 4-1.67, at which point
the square of the Airy function has dropped to 0.01
of its value at zero argument. If this region lies within
the band, that is, does not extend beyond the upper cut-
off energies E;, which is true if

(ho— Eg) < min(Ea,—1.67(#8,-+76,),
Eyy—1.67(10,+78,), Eoi—1.67(10,476,)), (9)

then all upper limits maybe made infinite with negligible
error. The integrals can now be evaluated giving"”?

B01I2 ZVZ
ooy =——( = A =2 AT, (100

w ™
n=(E,—hw)/h8, for the M,edge (10b)
=(hw—E,;)/#0 for the M;edge. (10c)

6 is the generalization of Eq. (3), and is defined in terms
of a reduced mass in the direction of the field:

03=¢282/2%u., (11a)
where
1 1182 82 6.2
—=——+—+—J, (11b)
M &L Mz My Mz
or alternatively,
1 9?
=42 (E.—E,)|. (11¢)
M akrel 112

The zero-field limit of Eq. (10a) gives the well-known
square-root dependence of the density of states

e2(w,0) = (B/w?)#i—1/2 .
X[ (fio— Eg) 1 *u(£ (ho— E,)),  (12)

where #(x) is the unit step function, zero for negative
argument and one for positive argument, and where the
+ sign is taken for M, thresholds and the — sign for M5
edges. The change in the imaginary part of the dielec-
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tric constant with applied field is therefore
Aex(w,8) = e3(0,8) — €2(w,0) (13a)
= (B/w")6"?F(n), (13b)

where
F(n)= (N?*/m)[Ai"*(n)—n Ai2(n)]— (—n)2u(—n) (14)

is the electro-optic function of the first kind, plotted in
Fig. 2, and 7 is given in Eqgs. (10b) and (10c) for M,
and M5 edges, respectively.

The extension of the upper limits to infinity results in
error unless transitions occur only near the critical
point, because the bounded region of Fig. 1 may not lie
within the band. However, the failure of the assumption
of a constant effective mass as transitions occur farther
from the critical point will probably define the true
region of validity of Eqgs. (10). The extension to infinity
has also removed the top of the band, so the band
appears to extend indefinitely. This causes difficulties in
calculating the real part of the dielectric constant with
Kramers-Kronig relations. We return to the Mo and M3
edges in Sec. III.

The extent in energy of the relative coordinate band
plays a much more important part near saddle points,
where the sign of one mass is opposite that of the other
two. For the M, edge, associating the mass of opposite
sign with the z-direction, the delta function of Eq. (2)
requires

E,—fiw+ e+ e,—e,=0. (15)

The major contribution, which comes from the region
where no Airy function argument exceeds 1.67, is now
obtained from the open region of Fig. 3. Equation (2) is
infinite if the region is left open. To close it, we cut off
the ¢, integral at the maximum kinetic energy allowed
in the z direction:

Eu=E,—(Ec~E,)., >0, for M: (i6a)
=(E,—E,) E,>0, for M,. (16b)

As with the M, and M5 edges, we assume that this
bounded region lies within the limits in the x and y
directions, which occurs if

Zmax

(co— E,;) < min(Eay— Esy—1.6740,,

Ey—Eo—1.6748,).  (17)

If this is the case the upper limits on the integrals over
€z and ¢, can be made infinite with negligible error.
Evaluating these integrals gives!

BN3

By —€,
)
(0.2 ) 70,

+(Ey—hw)— ez]

62((.0, 8) =

XAill:K 5 (188,)

Y
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where
0,,°=0,340,°%, (18b)
k=228, (18¢c)
and
Aly(x)= / dt Ai(y). (184d)

The positive sign in Eq. (18a) refers to the M edge,
the negative sign to the M, threshold. This expression
describing the imaginary part of the dielectric constant
near a saddle point apparently cannot be evaluated in
closed form in general, except in the limit that E,,
becomes infinite, or else that the electric field is parallel
to the axis of the mass of opposite sign (6.,=0). If E,,
becomes infinite, Eq. (18a) also becomes infinite, but
the change in e, with field can be evaluated and the re-
sults of Ref. 1 are obtained. If 6., — 0 we make use of
the relations describing the asymptotic limits of the
integral of the Airy function!®:
1/2
Aiy(x)~ x3l4g—1a%
2N

(19a)

2
( )1/295“3/4 cos<§x3/2+z>}; (19Db)
- v

hence, in the limit that 8,, — 0, the Ai; term in Eq. (17)
can be treated as either zero or w/N, depending on
whether the argument is greater or less than zero. We
obtain

™
Aiy(—x) N—[l -
N

B2 E,\ (N?
o 8u) = ) [ A -]
w? ho,/) | =
N? E.\ E, E,,
B ]
T 7o,/ 76, 70,
where
n=(hw— E,)/#0,, for the M, edge; (20b)
=(E,—#%w)/h0,, for the Msedge. (20c)

The effect of cutting off the hyperbolic band, for the M,
region as an example, has been to introduce a term of the
same form as the leading term, evaluated at the differ-
ence between the critical point and minimum separation
energies, and also to bring in a unit step function repre-
senting the absence of absorption until the minimum
separation energy is reached. The zero-field limit can
easily be obtained from this through the relations®

Ai"%(x)—x Ai2(x)~0, if x>0 (21a)
~(r/N?)(—x)2, if x<0 (21b)
or directly from Eq. (18a), and is

e2(w,0) = (B/w?# ) u(#i0,n+ E.,)
X {(E20)1/2_ (_hozn)lmu(_hoz"’)} 3 (22)

10 Reference 9, p. 449.
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Fic. 3. The open region of contribution from the integrand of
Eq. (2) for the M, edge, with (hw— E,;) <0. The integrand decays
exponentially outside this region. The boundaries are taken as
those lines where the limiting Ai? factor of the integrand has.0.01
of its value at zero argument. The cutoff shown for e, represents
the maximum kinetic energy of the electron-hole pair along the
negative mass axis.

where 7 is given in Eqs. (20b) and (20c). Equation (22)
is proportional to the density of states for the saddle-
point threshold divided by w?; the density of states for
the M, threshold is zero until the minimum energy
separation is reached, then rises as a square root and
reaches the critical point with infinite slope and be-
comes constant for higher energies.® There is again no
top to this band since the extension of the e; and ¢,
limits to infinity removed this from the model.

In general, the effect of the e, kinetic-energy cutoff is
to remove the nonphysical infinity in e, which arises if
this cutoff is not assumed. Correction terms are also
obtained which are negligible except when #w is within
several 76, of (E,—E,,), so the results obtained for the
change in e with no cutoff! are generally valid. Equa-
tion (18a) can be written as

BN?
7l.2h0,2(02)1/2

® —¢, E,—hw—e,
X [ f de, Aiz(——> Ai1<x—-————~>
— 70, 710y
® —€, Ej—hw—e,
—/ de, Ai2< > Ai1(lc-——> } (23)
E %0, 70y

%0

62((0, 8) =

for the M, edge, where the second integral is the cor-
rection caused by the finite extent of the band. Both
integrals diverge as the square root of the upper limit
but thesedivergences cancelidentically. The first integral
can be done exactly, and with the first terms of an
asymptotic expansion for large E,, for the second
integral, e can be written as

Ez(w, 8) =

1/2 N2
= A= A1)

Ezo 1/2
+<M> +U},ﬁ 0,>0,, (24a)
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Bovz (N
&)= | —Ln Ai(=n) Bi(=)
w? 7
Ezo 1/2
+AV(=1) Bi’(—n)]+(—> +U} ,
#0
if 0,,>0,, (24b)
where
n=(fiw—E,)/#6, {for the M, edge (25a)
=(E,—#w)/#, for the Myedge  (25b)
and
63=0,*+6,5—6,%| . (25¢)

If #iw> E,— E,, for the M, region and #w< E,+ E,, for
the M, region, the correction term U in Egs. (24) is

17001200\ [4/Eu\ ¥
=) &)=l ]
N\o/ \E,) L3\,

B

1 hozyz 1/2 —5/4
2 ()]
2K GEZ,, hezy

4/ E,, 32 g
Xsin[—( —n) +~], (26)
3\#f,, 4

where k=22/3, It is seen that as long as E,>>#%6, the
correction term is small with respect to the remaining
terms, not only for e; but also for the change in e with

electric field, defined in Eq. (13a):
- Bo2
Ae(w,8)=— - F(y), if 6,>0,, (27a)
w
B2
=— G(—n), if 6,>0., (27b)
w

where 5 and 6 are defined in Egs. (25), F(y) is the
electro-optic function of the first kind given in Eq. (14),
and G(n) is the electro-optic function of the second kind,
defined as

G(n)= (N?*/m)[Ai'(n) Bi'(n)
— 1 Ain) Bi(n) ]+ () 2u(n); (28)

G(x) is plotted in Fig. 4.

It is assumed that the correction term given in Eq.
(26) is negligible in regions of interest near the critical
point where the effective-mass approximation holds, and
that Egs. (24) with U=0, and Eqgs. (27) describe both
the imaginary part and the change in the imaginary part
of the dielectric constant in the presence of an electric
field. These expressions will be used to obtain the real
part of the dielectric constant through the Kramers-
Kronig relations.

Phillips has obtained an expression for the imaginary
part of the dielectric constant near an M; saddle point
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F1c. 4. The electro-optic function G(x).

if the field is parallel to a positive-mass axis'! which
differs from the corresponding result given by Eq. (24b)
with 8,= 6,=0. Although Phillips leaves his expression in
in the form of an integral, it appears that the oscilla-
tory term will be multiplied by a logarithmic factor
which is dependent on the cutoff energy assumed; that
is, the magnitude of the oscillations is larger for wider
bands. To resolve this discrepancy, we consider Phillips’s
method of evaluation applied to Eq. (2) for this par-
ticular case of 6,=6,=0. By Eqs. (6), Eq. (2) becomes

BN? Bzy  de, Ex (e,
7r2hw20,,1/2,/; (ez)l/Z/; (53)1/2
By, —€y
X/ dey Ai2< P )5(Eg—hw+ex+ey—ez). (29)

v

e(w,8)=

Making the usual assumption that E,— E, > fiw—E,,
so there is no difficulty in carrying out the delta-
function integration over ¢,, we obtain

BN? Bz (e,
&)=
62(“-’, ) 1r2hw20y1/2 /; (62)1/2
Bz dea Ea— h"’"" €z €;
X / Ai2( ) . (30)
o (e)1? 10,

Equation (24b) follows by extending the upper limit
of the integral over e, to infinity, which is permissible if
E,—E,>#iw—E,, then performing the e, integration
explicitly. To proceed along Phillips’s derivation, we
define the parabolic coordinates # and v by

= e,—¢,, (31a)
#v=2(eze,) /2. (31b)

The e, €, plane region of integration, the rectangle

1], C. Phillips, Phys. Rev. 146, 584 (1966).
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Fic. 5. (a) Mi-edge
region of contribution in
the e, ¢, plane. (b) M;-
edge region of contribu-
tion in the %, v plane.
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(a)

0< e, < E,, 0<¢.<E,, shown in Fig. 5(a), becomes the
region bounded by the # axis and the two parabolas

u=(#/4E,)v*—E. /%, (32a)
u=— (%/AE.)v*+ E, /% (32b)

shown in Fig. 5(b).

The Airy function properties insure essentially no
contribution from the region defined by #u>#%w—E,
-+1.67%0,; in this case we extend the integral to infinity
and Eq. (30) becomes

BN? g
/ du
20%0,1/2 —Eaylh
[(4Ezy 11) (ut-Ezy [5)]1/2
X / dv [u2+02]1/2
0

.2 (E,,— hw+hu>

ez(w, 8) =

XAl

, (33)
Y
which is Phillips’s Eq. (2.20).

Extending the # limit to infinity eliminates the right-
hand parabola bounding the #-v region in Fig. 5(b) and
expresses the integral over v in terms of only one
boundary. Equation (30) then yields Eq. (24b).
Phillips makes a strip approximation by including only
the region around #=0 defined by |#|<T, 0<v<w,
=2E,,/%, where T is several times the lifetime broaden-
ing or the period of the Airy function. This picks up only
a part of the contributing region, which becomes the
shaded region in the e, €, plane of Fig. 5(a). If I'Kw,,
Eq. (33) becomes

BN® T E—~ho u\ |20
= / du Aiz( +—) In
.

720%0,1/2 0, 0, u

, (34)
which js Phillips’ result.

The only real difference between Eqgs. (24b) and (34)
is the regions of integration that they cover, hence the
question of which is the better approximation reduces to
that of which area is the better approximation to the
electron-hole-pair relative energy band. Since the rec-
tangular area is probably the better approximation,
Eq. (24b) should give more accurate results. We con-
sider this in more detail.

The fact that the region of integration for Eq. (34)

(b)

is smaller shows up in several ways. First, in the zero-
field limit, e, by Eq. (34) is zero until #w— E,> —#T, in
contrast to #w—E,>—E,, for Eq. (24b). Also in the
zero-field limit, if #w—E >AT, Eq. (34) reduces
approximately to

B { O
E@Q=——y
" ot | (ho— Eg) 13

The bracketed term, which represents the density of
states for the saddle-point edge and should be constant
in this range of w,® as is the density of states derived from
Eq. (24b) in this limit, varies as the inverse square root
of #w—E, The smaller region of integration has re-
sulted in an effective loss of (fw— E,)V/2 in the density
of states. This loss is also apparent if the term In | 2w,/u ]|
in Eq. (34) is broken up as [In2w,—In|#%| ]: The term in-
volving In2w, can be considered an approximation to the
term (E,,/#6,)Y/2 in Eq. (24b), which arises from the
density of states.

The interpretation of the tern In|2w,/#| in Eq. (34)
as an amplification factor is unrealistic in that the field-
dependent oscillations in e, arise from two sources, the
boundary or cutoff, and the point singularity in
| V& ret(Ee—E,) |~ This is true regardless of whether
the region in question is elliptical or hyperbolic in
nature. The oscillatory term arising from the point
singularity should therefore depend solely on ‘band
parameters associated with the point singularity itself
(E,, effective masses) and not involve amplification
factors dependent on the extent of the band. This is the
case for the Mo and M threshold results given in Eq.
(102), and for the saddle-point results of Eqs. (24). The
fact that T is small, which is necessary so that the
upper limit of the integral over v in Eq. (33) can be re-
placed by a constant, obscures this in Eq. (34) be-
cause of the close proximity of the boundary and the
critical point.

[T In2w,~T InI'4-I]; . (35)

III. THE REAL PART OF THE
DIELECTRIC CONSTANT

The Kramers-Kronig or dispersion equation!!3 re-
lates the real and imaginary parts of the dielectric
12, S, Toll, Phys. Rev. 104, 1760 (1956).

1B F, Stern, in Solid State Physics, edited by F. Seitz and D
Turnbull (Academic Press Inc., New York, 1963), Vol. 15, p. 327.
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constant:

i e(w)—14iex(w) ]= (P/

—00 w—w

) “—“——El(wl)-,1+ie2(wl)dw’, (36)

where @ indicates that the principal part is to be
taken. € in Eq. (36) is calculated on the basis of
time-dependent perturbation theory which in order to
satisfy reality conditions gives two delta functions of
energy," 8 (E;—E;,—hw) and —8(E;— E;+#%w), only one
of which appears in Eq. (2). Since » ranges over the
entire real axis in Eq. (36), it is necessary to include
both delta functions which can be done by writing the
imaginary part of Eq. (36) as'®

*  dw’

@
€1(0,8)=1+— |

, [eg(w', 8)— 62(___(0/’ 8)] )
T Joo@W—W

37
where the functions e;(w,8) are those derived in the pre-
ceding section.

Equation (37) can be converted into the following
forms:

a(w,8)=1+-¢ (382)

2 wdo'e(w,8)
T ,/;w (o' Fw) (o' —w)
1 * d
=1+—=0¢ / dw’[:——‘(w' 252((0',8))]
o dew’

wir
w'?

In————. (38b)

o' +ol o' —w]
Equation (38b) can be obtained from Eq. (382) with an
integration by parts and is precisely the weak-field—
limit form given by Viswanathan and Callaway* as
their Eq. (28). We will use Eq. (38a) to calculate
€1(w, &) from the expressions for ex(w,&) derived in Sec.
I, since it is somewhat easier to apply.

As discussed, the models for the imaginary part of the
dielectric constant are incorrect in that the bands are
open-ended. But since ey(w, &) decreases asymptotically
as w2 for all thresholds on the least convergent side,
it should be possible to get reasonable approximations
for €1(w,8) near the critical point; the approximations
should be much better for the change in dielectric
constant, which drops off as an oscillating function of
envelope w2 for all four critical-point regions on their
least convergent side.

The calculations are straightforward for the M,
edge. By Egs. (10) and (38a)

N2
e1(w,8)= 1+B@1/2<—~>

T
X f di-® / —-——(—ﬁl—) (39)
oo T J o @' (@' F00) (0 —w)

W1, 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), p. 246.
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The principal-part integral can be evaluated by break-
ing up the denominator using the method of partial
fractions together with Eq. (A8b) from the Appendix.
We obtain

B 1/2 2
€(0,8)=1— Z {2~——[Ai’(a) Bi'(a)—a Ai(e) Bi(e)]
——T[Ai'(8) Bi’(8)—B8 Ai(8) Bi(8)]
N2
——Ai'(n) Bi'(n)—n Ai(n) Bi(n)]} , (40)
where
E, ot+E, E,— o
a=—, f= y M= (41)
#0 #0 7o

This form, with terms of argument E,/%8 and (E,+fiw)/
#6, represents the removal of the nonphysical infinity of
the double pole in €(w,&) at w=0 which cannot con-
tribute since there are no free carriers in the semi-
conductor. The more explicit derivation of the Kramers-
Kronig relation by Viswanathan and Callaway* shows
this clearly.

Since E,/#60 and (E,+7%w)/#0 are always very large,
the terms with these arguments may be replaced with
the asymptotic limit of the expression'®

Ai'(x) BY'(x)—x Ai(x) Bi(x)

. 1/2[1 ootssss -y
T e ]

with negligible error. For example, with fields around
10* V/cm in Ge, %#8=0.010 eV, E,=0.80 eV, so E,/#0
=80 for the M, edge. The second asymptotic term of
argument E,/#%0 therefore contributes about 10~7, com-
pared to the leading terms of argument (E,—%w)/%0
which are of order 1 for #w=~ E,. We therefore replace
the terms of argument E,/#%0 and (E,+7%w)/%0 with
their leading asymptotic terms, and ignore further
terms in the asymptotic e jansion even when calcu-
lating the change with app d field. The result for the
M, edge is

BoV2( /E, E ,+ heo\ 12
D) (29
w? %6 7o

N2

LAY () BY/(n)—n Ai(n) Bi(n)J} , (43a)

Aes(w,8) = (BO'*/0®)G(1), (43b)

15 Reference 9, p. 449. The factor (—1)* in the summation of
the expression for the asymptotic expansion of Bi’(z) is incorrect
and should be deleted [Eq. (10.4.66)].



153

where
n= (Ea—' hw)/h@

and G(n) is given by Eq. (28).

We note that Ae;(w,&) could be obtained by using the
approximate dispersion relation on the expression for
Aes(ws, &) given by Eq. (13b):

(44)

1 ® dw’
Aey(0,8)=—CF | ——w'?Aex(w’,8). (45)
Tw? J_ o —w

This is the dispersion relation used by Seraphin and
Bottka in their calculations.??® It is obtained from Eq.
(38a) by keeping only the pole (w'—w) in a partial-
fraction expansion. The terms of argument E,/#8 and
(E+hew)/h6 are eliminated with this expression, which
means Ae(w,&) will diverge at w=0, but near the
critical point the approximation is very good. The gap
energy E, now enters only as (E,—7%w)/#0. This ex-
plains why Seraphin and Bottka were unable to find
any other dependence on E, in their numerical calcu-
lations. Equation (43b) is the closed expression describ-
ing the results of their numerical integration.

Equation (38a) can be applied to the M3 edge and we
obtain

€(w,8)=1

Bo2( N
2—[AV(—a) Bi'(—a)+a Ai(—a) Bi(—a)]

+

w2

N2
—IEAi’(-ﬁ) Bi'(—8)+8 Ai(—8) Bi(—8)]

N2
-—;[Ai'(—v)Bi'(—n)+nAi(—n) Bi(—n)];, (46)

where «, 8, and 7 are given in Eq. (41). Terms of argu-
ment E,/#%60 and (E,+7%w)/%6 are now expanded in the
large negative-argument asymptotic expansion

Ai'(—x) Bi'(—x)+x Ai(—x) Bi(—=x)

~

sin($x%12).

47

4N%x 7
The leading square-root term which appeared for the M,
edge has vanished; the first asymptotic expansion
terms for the M edge are small and can be dropped.
Thus, for the M ; edge, we have

B01/2 N2

61(60, 8) =1— 5 -
X [AY(n) B (n)—n Ai(n) Bi(n)], (48a)
Aer(w,8)=—(BOV/w)G(n) (48b)

where 7 has been redefined to be consistent with
Eq. (10c):

n=(how—E,)/%8. (49)
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Similar closed-form solutions cannot be obtained for
saddle-point thresholds. Application of Eq. (38a) to the
expression for the imaginary part of the dielectric con-

stant given by Eq. (18a) yields for the M, and M ; edges,
with the help of Eqgs. (A8a) and (A13) of the Appendix,

BN®  [En —e
e, &)= 1F— / de, Ai2< >
w0%(0,)12 ) o, 78,

0 €
o afreet)
F(B/h02) 104y

: — €, — hw — €,
- Gi,(t—l—x——h-—) - Gi(t—l—x—h————) } . (50)

E2) zy

The upper signs apply to the M and the lower to the M2
thresholds, respectively. Equation (50) appears to be
integrable in closed form only in the limit that E,, —),
but this leads to a nonphysical negative 1, depending on
the size of B, for the M edge with 8,> 6,,. Therefore, it
appears that the cutoff E,, plays an important part in
the real part of the dielectric constant near a saddle-
point threshold. Since the integral of the Gi function
does not have the simple asymptotic forms as the integral
of the Ai function, an estimate of the effect of the finite
E,, cannot be obtained. Using the dispersion relation on
Egs. (24) with U=0 is equivalent to taking the limit of
E,,— in Eq. (50); Egs. (24) with U=0 are valid only
over the regions #iw> E,— E,, and #w< E,+E,, for the
M and M, edges, respectively.

It is expected, however, that the change in the real
part of the dielectric constant will be obtained fairly
accurately in the region of the critical point by using
the approximate dispersion relation given by Eq. (45)
on the change in the imaginary part given by Egs. (27),
since Aex(w,&) drops off rapidly away from the critical
point. An alternative derivation is possible by sub-
tracting the zero-field limit of the expression obtained in
the evaluation of Eq. (50) in the limit of infinite E,,.
This can be done with relations given in the Appendix.
With either method of derivation, the following results
are obtained. For the M, edge the change in the real
part of the dielectric constant takes two forms:

BoV2 (hw—E,
Aey(w,8)= G( ) , if  6,>0, (51a)
w #0
B2 (E,—hw
Aey(w,8)=— F( ) , if 0,,>0,. (51b)
w? he
The M, threshold results are
B2 /E,—hw
Ae(w,8)=— ( ) , i 6.>0., (52a)
w? #0
B2 fhw—E,
Ae(w, &)= F( ) , if 0,>0,. (52b)
w? #0
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IV. CONCLUSION

In this paper, the effective-mass weak-field approxi-
mation has been used to obtain expressions for the
changes of the real and imaginary parts of the dielectric
constant near all four types of critical points, in the
presence of an electric field oriented in an arbitrary
direction in an anisotropic solid. The effects of the
finite extent of the bands has been examined, and it has
been shown that the previous general treatment,’
which assumed bands of infinite extent, gives adequate
expressions for the changes in the imaginary part of the
dielectric constant near the critical points. All changes
in the real and imaginary parts of the dielectric constant
can be represented either by the electro-optic function
of the first kind:

F(x)=(N*/m)[AT"*(x)— = Ai*(x)]— (—2)/2u(—2x) (14)
or of the second kind:

G(x)= (V*/m)[AY'(x) Bi (x)—x Ai(x) Bi(x)]
+ (@) 2u(x), (28)

where N is the normalization constant of the Airy func-
tion, defined by Eq. (A1) of the Appendix, and %(x)
is the unit step function, zero for negative argument and
one for positive argument. The electro-optic functions
are plotted in Figs. 2 and 4.

The results are summarized in Table I. Quantities
used in Table I are listed below for convenience.

262C o2 (8 cpiymz\ 112
( ) , @

3
0¢3= e28,-2/2u,-h 5

for each coordinate i=x, y, and 2.

mich

3)

M eiMhs

pi= | m;| = ) 1)
Meit+Mpi
0.y%=0,340,3, (18b)
§3=e28%/2uh, (11a)
where
1 1182 82 6.2
-=~—[——+—+ :I , (11b)
g &Lus py pe
for the M and M; thresholds, and
1 1182 82 8.2
—= |t s (25¢)
p &lus py  pe

for the M; and M. regions. The maximum kinetic
energy in the direction of the mass of odd sign in the M
region is

E20=Ea_ (Ec'—Ev)min (163)
and for the M band:
Es=(Ec— Ev)msx—E,. (16b)

TasLE L. The dielectric constant e(w,8) = e (w, 8)+iex(w,&) in an electric field, near Mo(m., my, m.>0), M1(mz, my>0; m.<0), Mo(m,, my<0; m,;>0),
and M3(m., my, m,<0) critical points. Constants and functions used in this table are summarized in Sec. IV.

&(w,8)—1

&(,&)

AEZ("’) 8)
Bol2

Aer(w, &)

Bo/2
®

n

E,—he

Critical point
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+—L{Ai’(4) Bi'(n) —n Ai(n) Bi(n)]

B\ 1/2

12

E,+

B

E,
7o

i

B2
w?

—[Ai"%(n) —n Ai%(n)]

™

Bz N2
Borz N2

w?

F(n)

w?

G(n)

M,

}

.

T

12
} ho>Eg—En

! () —n Ai(n) Bi(n)]—i—(

E.
9

—[n Ai*(n) - A"*(n) ]+

N2
ki
N2

B2
F(n)
w%

w?
Bo2

Bov2

M, parallel
6:>0zy

1/2
) } fiw>Eq—Es,

Eq
ho

—[Ai’(7) Bi

T

B2
w?

—G()
w?

F(n)

Btz

———G(n)
w2

Bo2
w?

E,—hw

M, transverse
6:,>0.

172
) } ho<E,+E,

Ey
no

(n) —n Ai(n) Bi(n)]+(

—Ln Ai*(n) — A"%(n) ]+

N2
™
N2

Bol/2
F(n)
wz

w?
B2

B2

E,— o

M parallel
0;> 9:1

1/
Y} csss

Eq
ho

—[Ai'(n) Bi

™

B2
w?

—G(n)
td’

F(n)

Bo2
w?

M transverse
0zy >0,
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—[Ai’(n) Bi’(n) —n Ai(n) Bi(n)]

k.

Be2 N2
w?

—— —[Ai"%(n) —7 Ai%(n)]

w?

F(n)

w?

B2

M,
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These results do not include exciton effects, which are
probably important near M, critical points at least.!®
The inclusion of exciton effects causes great difficulties
and requires numerical evaluation of the equations.
This has recently been treated by Duke and Alferieff¢
for M, regions of isotropic reduced mass.

When applying the results to a particular material, it
is necessary to calculate the electro-optic effect for each
pair of valence and conduction bands between which a
transition can occur. For instance, in silicon the A
transition is of the M, saddle-point type, with M,
critical points lying on the (111) axes.l” Therefore, there
are eight such points to sum over, each with the same
transition energy. This means that for any electric-field
orientation there are, in general, four nonequivalent
pairs. Both parallel and transverse type electro-optic
effects should occur at the A transition, depending on
the orientation of the field and the magnitudes of the
reduced masses at these critical points.

It will be interesting to determine these reduced
masses for the common semiconducting materials so
that the theory can be compared with experiment.
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APPENDIX

We review some basic relations concerning Airy func-
tions before deriving the equations used in Secs. II and
III. The integral representation of the Airy function
Ai(x) is'8

1 0
Ai(x)=— / ds cos(}s%+xs) (Ala)
NJo

1 00
= —— / dseites+isz ,
2N J

where the normalization constant N is commonly
taken as 7 or 4/w. Ai(x) is the convergent solution of
Airy’s equation

(@/dx?) Ai(x) =% Ai(x), (A2)

which has a linearly independent divergent solution
Bi(x). A closely related function is Gi(x), defined by!®

(A1b)

1 ]
Gi(x)=— / ds sin(}s®+xs), (A3)
N Jo

and we note that Egs. (Ala) and (A3) can be combined

16 C. B. Duke and M. E. Alferieff, Phys. Rev. 145, 583 (1966).
17 7. C. Phillips, in Solid State Physics, edited by F. Seitz and
D.s’g‘urnbull (Academic Press Inc.,, New York, 1966), Vol. 18,

p. 35.
18 Reference 9, p. 447.
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in the single representation

00

1
Ai(x)+1 Gi(x)=; / dsette*+iez (A4)

0

As shown in Ref. 1, the integral representation of the
square of the Airy function is

VT e ds 1 T
Ai(x)=— —cos(as3+xs+1) , (AS)

2N? 0 \/S

and a second closely related integral was shown to
represent the function

(0 B =Y [ E gn( gt ™
Ai(x) Bl(ac)—zN2 /0 \/Ssm(lzs +xs+4). (A6)

As with Ai(x) and Gi(x), we can combine Ai%(x) and
Ai(x) Bi(x) in a single integral representation

Ai%(x)+1 Ai(x) Bi(x)
—_ ﬁ _diei(l/l2)a3+iza+i(1r/4) . (A‘])
2N2Jo /s

Both representations of Egs. (A4) and (A7) can be
analytically continued into the upper half of the complex
plane. Moreover, the functions fi(z)=Ai(z)+7 Gi(z)
and fy(z)=Ai2(z)+< Ai(z) Bi(z) are analytic throughout
this region, which includes the real axis, and by their
integral representations they approach zero exponen-
tially as the magnitude of 2 goes to infinity in the upper
half-plane. An integral over the upper half-plane
infinite arc therefore vanishes. Since the functions are
analytic in this region, their real and imaginary parts
are related by the Kramers-Kronig integral?:

ir[Ai(x)+4 Gi(x) ]=¢ / i dx’w—) , (A8a)
o &' —x
in[Ai%(x)+4 Ai(x) Bi(x)]
—o /” dx,Ai”(x' )44 Ai(x') Bi(x') .

x'—x

(A8b)

These equations can be used to obtain the real part of
the dielectric constant from the imaginary part as
indicated in Sec. III.

We note an immediate consequence of the vanishing
of the integral of Ai%(z)+% Ai(z) Bi(z) on the infinite
arc of the upper half-plane. Since the electro-optic
functions given in Eqs. (14) and (28) can be written

H(x)=F(x)+iG(x)
N2 z
= / ALAR(t)+i Ai(t) Bi(1)]
T

— (=) Pu(—2)+i(x) *u(x), (A9)
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where #(x) is the unit step function, the Lorentzian
broadening of the two kinds of electro-optic functions
can be given as the real and imaginary parts of

H(xo,l‘)=-r- ©  H(x)dx

_ A10
T J—w (")C_x(l)2'*_:[‘2 ( )

The vanishing of the infinite arc integral enables
the integral part of Eq. (A9) to be evaluated as 2
times the residue at the upper half-plane pole of Eq.
(A10), z=x,+:I'. Since the Lorentzian broadening of
(®)2u(x) is

T r* (x)2u(x)dx

T J o (—x0)* I‘2~=

+ 2+F2 1/2y1/2
{xo (x02 ) } (A

the analytic expressions for the Lorentzian broadening
of the electro-optic functions F(x) and G(x) are

F(xo,P)+iG(xo,F)
=2(N?/7)[e=13 Ai’(z) Ai’ (w)+w Ai(z) Ai(w)]

. .__xo_l_ (x02+1‘2)1/2}1/2
2
X + x2+1"2 1/2y1/2
+{_L__>}  (A12a)
2
where
z=x0+:T (A12b)
E,—hw T(energy units)
S L (energy ,  (A120)
70 #0
and

w=ge~ @/, (A12d)
To simplify the result, we have used®®
Ai(z)+1 Bi(z) =2¢i"/3 Ai(w). (A12e)

Equation (A12a) is a closed analytic expression for the
curves obtained numerically by Seraphin and Bottka,?

19 Reference 9, p. 446.
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though at the expense of using complex arguments in
the Airy functions.

A discussion of the effects of broadening is given in
Ref. 2, but it should be mentioned that these curves are
slightly in error in that they do not approach zero as
(fiw— E,;) becomes large on the oscillatory side. (All
curves except the 15 kV/cm curve in Fig. 7 of Ref. 2 are
examples of this.) Application to electroabsorption is
given by Hamakawa, Germano, and Handler.?

To reduce Eq. (50) in the limit of infinite E,,, integral
relations involving the Gi function are needed. Since
these may easily be obtained by the methods of Ref. 1
which were applied to the closely related Ai function,
only the results of such derivations are presented.
Equations necessary to evaluate Eq. (50) are

] i du Gi(u) Ai(en+pB)

8
S Gi[ ] it =l (Al3a)
N(a3__1)1/3 (1__a3)1/3

BN?

/ wg Gi(r-Fa) =k Ai(ix-) Bi(f) (Al4a)
0

¥ K K

fo i % Gi(a—r)= —klV Aiz’@ ,

where k=223, and N is the normalization constant of
Eq. (A1).

In order to numerically evaluate the derived expres-
sions, the author has generated 9-significant-figure
FORTRAN subroutines for Ai(x), Ai’(x), Bi(x), Bi'(x),
Ai(x) Bi(x), and AY'(x) Bi'(x); FORTRAN subroutines for
Ai(z) and Ai’(z) where z is complex have been developed
by D. Blossey of this research laboratory (unpublished).

, if =1 (A13b)

(A14b)

20y, Hamakawa, F. A. Germano, and P. Handler, in Proceed-
ings of the International Conference on the Physics of Semi-
conductors, Kyoto, Japan, 1966 (unpublished).



