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As a result, it is possible to write

4 sin2n'x

00 e 2

sin'e'xdx= P ~ ——=sS'(e')
8 —S

(A8)

(A9) into Eq. (A5) the desired sum S(e') becomes a
complicated trigonometric function of 2e'm, e'x, and
e m/2. With the aid of standard trigometric identities,
it is possible to reduce this and to show that

and
7I t' Sln2B m)

i
=S'(n').

4 sin'I'~k 2m'~ i
On inserting expressions for S'(n') and S'(-', e')

S(m') =-'x'. (A10)

This particular treatment holds for any nonintegral
value of n', where e' may approach an integral value

from arbitrarily closely.
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Calculations of the imaginary part of the dielectric constant of an anisotropic solid in the region of a
critical point are used to obtain the real part of the dielectric constant through Kramers-Kronig relations.
Changes in the real and imaginary parts of the dielectric constant are expressed in closed form for all four
types of critical points. Description of these changes can be made with only two functions. The e6ect of the
finite extent of a band is investigated, and it is shown that previous calculations of the change in the imagi-
nary part of the dielectric constant, based on bands of infinite extent, are valid as long as transitions are re-
stricted to regions near the critical point. Closed-form expressions for the Lorentzian broadening of the
changes in the dielectric constants are given in terms of Airy functions of complex argument.

I. INTRODUCTION

ITH the evaluation of certain integrals involving
Airy functions, it has been possible to obtain the

change in the imaginary part of the dielectric constant
or optical absorption caused by the application of an
arbitrarily oriented electric field near critical points in
solids. ' The same methods can be applied to evaluate
the change in the real part of the dielectric constant
near critical points, which formerly had been obtained
only by numerical integration about the fundamental
absorption threshold' 4 and about the MI critical point
in the special case of the field parallel to the negative-
mass symmetry axis. ' It is the purpose of this paper to
evaluate the dielectric-constant changes caused by an
electric field in closed form for an arbitrarily oriented
electric field in an anisotropic solid near all four types
of critical points, and to investigate the effects of the
finite extent of the energy bands on both the real and
imaginary parts of the dielectric constant in the pres-
ence of an electric field. The weak-field effective-mass
approximation will be used throughout.

*This research was supported by the Advanced Research
Projects Agency under Contract SD-131, and by the Rome Air
Development Command.

t Now at Brown University, Providence, Rhode Island.' D. E. Aspnes, Phys. Rev. 147, 554 (1966).'B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).' B. O. Seraphin and N. Bottka, Phys. Rev. 139, A560 (1965).
4K. S. „Viswanathan and J. Callaway, Phys. Rev. 143, 564

(1966).

WeimI, i

m, ~+my;

the four different critical points may be defined by the
reduced-mass signs':

Mp.

M1.

M2.

M3.

m„m„, m, positive (ellipsoid);

m„m„positive, m, negative (saddle point);

m„m„negative, m, positive (saddle point);

m„m„, m, negative (ellipsoid).

For the two saddle-point singularities M1 and M2, the
mass of odd sign is conventionally taken as m, .

' L. Van Hove, Phys. Rev. 89, 1184 (1953).
6 D. Brust, Phys. Rev. 134, A1337 (1964).

Rapid changes in the dielectric constant occur at
Van Hove singularities in an energy band, where the
gradient of the relative energy, Vt,(Z, E,), vanishe—s at
some value of k.' ' Such singularities are of four types,
depending on the band curvature or the signs of the re-
duced masses in the effective-mass approximation.
Assuming quadratic energy surfaces, we take the mass
of a conduction-band electron along the axes of sym-
metry as m„, m, „, and m„, and the hole masses along
the same axes as mg„mI, „, and ml„. Defining the re-
duced mass ns; for each coordinate i =x, y, and s as
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II. THE IMAGINARY PART OF THE
DlELECTRIC CONSTANT

The imaginary part of the dielectric constant in a
weak electric field near any critical point can be written,
in an anisotropic solid and with the usual approxima-
tion which neglects the Coulomb interaction between
the hole and electron, as'

4$'8
ee(&e, 8)= (8,8„8,) '~' de, de„de,

x46'co'

XAi'( ) Ai'( ) Ai'( )
X8(E,—Pue+ e, sgn(m )+e„sgn(m„)

+e, sgn(m, )), (2)

where, if p, = I m, I, etc., then for each coordinate i

8,e = e'8;e/2k';.

8; is the field component along the ith symmetry axis, S
is the normalization constant of the Airy function de-
fined in Eq. (A1) of the Appendix, and

2&'Co' 8p.p p. "'
m'ch h' )

8 is the anisotropic generalization of the constant 8
used by Seraphin and Bottka' for an isotropic solid, R
is the anisotropic generalization of the quantity R de-

fined by Tharmalingam, ~ and Co' is the approximately
k-independent part of the momentum matrix element":

tive coordinates. The type of threshold is determined by
the sign dependence of these variables, as determined

by the reduced mass, in the arguments of the delta
function. Since the delta function is an even function of
its argument, it is obvious that the imaginary parts of
the dielectric constant for the Mo and M3 edges are re-
lated by replacing (E,—k&e) with (Are —E,) in the result,
and the same relation holds between the Mj, and M2
thresholds. Therefore, only the Mo and M& thresholds
will be considered in detail.

The limits on the integrals of Eq. (2) are obtained in
the following way. Since the asymptotic limits of the
Airy function squared are, ' for x —+ ~,

Ai'(x) (n-j4jg')x '~'e ''*"' (6a)

Ai'( —x)~ (m j2X')x ' 'I 1+sin(eax' ')j, (6b)

the lower limits, in which the arguments of the Airy
functions become large and positive, can be extended
to negative infinity with Kq. (6a) insuring that the Airy
functions will cut off the contribution from the integrand
for large positive argument. This represents the
negative-kinetic-energy region, and picks up the electro-
absorption contribution in the nonclassical region of
tunnelling. We note from Eqs. (2) and (6) that in the
limit of zero field (8;~ 0) each Airy function squared
reduces to the derivative of the density of states in one
dimension: zero below the gap, proportional to 6; ' '
above.

In principle, the upper limits to the integrals are the
maximum kinetic energies of the electron-hole pair,
determined by the extent of the relative coordinate
electron-hole pair energy band along the particular
symmetry axis. This maximum kinetic energy is de-
termined for each coordinate i by

The integration variables e; are the kinetic energies of
the electron-hole pair along the symmetry axes in rela-

Oz 1.67 fl ez

FIG. i. The closed region of contribution from the integrand of
Eq. (2) for the 3E0 edge, with (~—Eg) )0. The integrand decays
exponentially outside this region. The boundaries are taken as
those lines where the appropriate limiting Ai' factor of the inte-
grand has 0.01 of its value at zero argument.

' K. Tharmalingam, Phys. Rev. 130, 2204 {1963).
8 R. J. Elliott, Phys. Rev. 108, 1384 (1957).

(&b)

where E, is the energy separation between the valence
and conduction bands at the critical point. Because of
the delta function of energy and the asymptotic be-
havior of Ai'(x) for positive x, certain cutoff energies

may be extended to infinity with negligible error. We
consider first the Mo edge.

Since the delta function requires

Eg Aie+ eg+ ee+ eg
=—0

for the Mo edge, the region of contribution of the inte-
grand is bounded because in any direction one of the
Airy functions approaches zero as in Kq. (6a). This is
illustrated in Fig. 1, where it is assumed that the con-
tributing region is defined as that region where the Airy

H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 448. The Airy functions in the
Handbook are normalized to g =x.



tric constant with applied field is therefore

(13a)

(13b)

Flo. 2. The electro-optic function F(x}.

ggl j2 QT2

33((o,8)= —[Ai"(3/) —
3/ Ai3(r/)],

M

(10a)

r/= (E,—ko)/A8, for the M3 edge (10b)

= (Puo E3)/A8 —for the M3 edge. (10c)

8 is the generalization of Eq. (3), and is defined in terins
of a reduced mass in the direction of the field:

(11a)

function arguments are less than +1.67, at which point
the square of the Airy function has dropped to 0.01
of its value at zero argument. If this region lies within
the band, that is, does not extend beyond the upper cut-
off energies E;„which is true if

(A~—E,) (min(E„—1.67 (A8„+A8,),
E„, 1.6'/(A8, +A8—,), E., 1.6?(A8 +A8—)), (9)

then all upper limits maybe made in6nite with negligible
error. The integrals can now be evaluated giving"

is the electro-optic function of the 6rst kind, plotted in
Fig. 2, and g is given in Eqs. (10b) and (10c) for M3
and Ma edges, respectively.

The extension of the upper limits to infinity results in
error unless transitions occur only near the critical
point, because the bounded region of Fig. 1 may not lie
within the band. However, the failure of the assumption
of a constant effective mass as transitions occur farther
from the critical point will probably de6ne the true
region of validity of Eqs. (10).The extension to infinity
has also removed the top of the band, so the band
appears to extend inde6nitely. This causes difhculties in
calculating the real part of the dielectric constant with
Kramers-Kronig relations. YVe return to the j/Io and M3
edges in Sec. III.

The extent in energy of the relative coordinate band
plays a much more important part near saddle points,
where the sign of one mass is opposite that of the other
two. For the gled edge, associating the mass of opposite
sign with the s-direction, the delta function of Eq. (2)
requires

Eg AN+ 3g+ 63 33=0.

The major contribution, which comes from the region
where no Airy function argument exceeds 1.67, is now
obtained from the open region of Fig. 3. Equation (2) is
infinite if the region is left open. To close it, we cut oQ
the e, integral at the maximum kinetic energy allowed
in the 8 direction:

E„=E, (E,—E.). , &0—, for Mi (16a)

or alternatively,

B,' By' B,'-
+ +

~ —Pz Py Pz—

(E E)
~~x'el I I

= (E, E„), ,„E,)0—, for —M3 (16b).
As with the Mo and M3 edges, we assume that this

bounded region lies within the limits in the x and y
directions, which occurs if

(AM —E,)(min(E„—E„—1.67A8„,

E„, E„1.6/A8 ) .—(17)—

The zero-field limit of Eq. {10a) gives the well-known
square-root dependence of the density of states

33((o,0)= (8/(o') A-"'

X[+(Aio —E,)]'"N(a (Aa&—E3)), (12)

where N(x) is the unit step function, zero for negative
argument and one for positive argument, and where the
+ sign is taken for M3 thresholds and the —sign for M3
edges. The change in the imaginary part of the dielec-

33((O, a) =-
ir3hsP{8,) '~3

a(E3 Iud) e, — —
QAlj K

A8,.„
(1ga)

If this is the case the upper limits on the integrals over
~, and e„can be made in6nite with negligible error.
Evaluating these integrals gives'
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where
g o —go+go

z= 22/3,

(18b)

(18c)

Aig(x) = d( Ai(t) . (18d)

o

I
II-

IV !i

The positive sign in Eq. (18a) refers to the Mi edge,
the negative sign to the M2 threshold. This expression
describing the imaginary part of the dielectric constant
near a saddle point apparently cannot be evaluated in
closed form in general, except in the limit that E„
becomes infinite, or else that the electric field is parallel
to the axis of the mass of opposite sign (8,„=0).If E„
becomes infinite, Eq. (18a) also becomes infinite, but
the change in e2 with field can be evaluated and the re-
sults of Ref. 1 are obtained. If 0,„—+ 0 we make use of
the relations describing the asymptotic limits of the
integral of the Airy function':

(~)1/o

Ai~(x) x '"e i*'", (19a)
2E

1 2
Ai~( —x) —1— x "' cos —x'"+—!; (19b)

cV (or) '~' 3 4l

hence, in the limit that 8,„+0,the A—ii term in Eq. (17)
can be treated as either zero or or/X, depending on
whether the argument is greater or less than zero. Ke
obtain

gg 1/2 E g2
oo(oo, h„)= u g+ —fg Ai'(g) —Ai"(g)]

CO he, m.

E' Ezo) Ezo E.o+—Ai" — l+ Ai' —,(20a)
Ag.) Ag.

where
g= (As&—E,)/Ag„ for the Mq edge; (20b)

= (E,—As&)/Ag„ for the Mm edge. (20c)

The effect of cutting off the hyperbolic band, for the M&

region as an example, has been to introduce a term of the
same form as the leading term, evaluated at the differ-
ence between the critical point and minimum separation
energies, and also to bring in a unit step function repre-
senting the absence of absorption until the minimum
separation energy is reached. The zero-field limit can
easily be obtained from this through the relations'

Ai"(x)—x Ai'(x) 0, if x& 0 (21a)

~(or/S')( —x)'~' if x(0 (21b)

or directly from Eq. (18a), and is

eo(sii0) = (8/si'A' ')u(A8 q+E )
&& ((E, )' '—(—Agog)"'u( —Ag g)), (22)

' Reference 9, p. 449.

c, ='-I.67%8,

FIG. 3. The open region of contribution from the integrand of
Eq. {2) for the MI edge, with (fute —E,) &0. The integrand decays
exponentially outside this region. The boundaries are taken as
those lines where the limiting Ai' factor of the integrand has, 0.01
of its value at zero argument. The cutoff shown for e, represents
the maximum kinetic energy of the electron-hole pair along the
negative mass axis.

where z is given in Kqs. (20b) and, (20c). Equation (22)
is proportional to the density of states for the saddle-

point threshold divided by co', the density of states for
the j/I~ threshold is zero until the m)inimum energy
separation is reached, , then rises as a square root and
reaches the critical point with infinite slope and be-
comes constant for higher energies. ' There is again no

top to this band since the extension of the e, and e„
limits to infinity removed this from the model.

In general, the effect of the e, kinetic-energy cutoff is
to remove the nonphysical infinity in ~2 which arises if
this cutoff is not assumed. Correction terms are also
obtained which are negligible except when A~ is within
several Ag, of (E, E„),so the re—sults obtained for the
change in e2 with no cutoff' are generally valid. Equa-
tion (18a) can be written as

MT3
eo(ooo 8)=

or oAso'(8, )"'

I Ahl ~-
Ag) k Ag, „

(gfz Ai' Ai~ Ifo
— 23

for the Mj edge, where the second integral is the cor-
rection caused by the finite extent of the band. Both
integrals diverge as the square root of the upper limit
but thesedivergences cancel identically. The first integral
can be done exactly, and with the first terms of an
asymptotic expansion for large E„ for the second
integral, e2 can be written as

ae&12 E2
e2(si, 8)= —! ot Ai'(rl) —Ai"(g)j

7P

&/2

+ +U, if 8,&8,„(24a)
htt
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Bgl/2 P2
es(40, 8)= —

t t/ Ai( —2/) Bi(—2/)
CO 7l

where

and

1/2

+Ai'( —t/) Bi'(—2/)$+~ +U
l, aS

if 8,„)8„(24b)

2/= (Ao&—E,)/As, for the Mi edge (25a)

= (E,—AM)/As, for the Ms edge (25b)

82 (8-.2+8„2 8,2—
) (25c)

If Ate) E,—E„for the Mi region and Ao/(E, +E„for
the Ms region, the correction term U in Eqs. (24) is

I(8.)'&'(48.) 4 2.,)'&'
U ——

/

—
/ (

/cos-
4&8i &E i 3 hs,

1 hs, „s~'/'- p
E„--«4

2«8E„i (as,„
-4 E.,

&(sin — —
t/

~
+—,(26)

3 as.„
where «=22/2. It is seen that as long as E,P&A8, the
correction term is small with respect to the remaining
terms, not only for e2 but also for the change in e2 with
electric field, defined in Eq. (13a):

B01/2
des(o/, 8)= — F(t/), if 8,)8,„(27a)

GO

I

-2

Fro. 4. The electro-optic function G(x).

22(ot, Z) =
~2k 2e»2 (e )1/2 (e )1/2

. (
ds„Ais~ ~8(E2 ho/+ e,+—e„—2,) . (29)

~, hs„i

if the field is parallel to a positive-mass axis" which
differs from the corresponding result given by Eq. (24b)
with 0,= tII, =0.Although Phillips leaves his expression in
in the form of an integral, it appears that the oscilla-
tory term will be multiplied by a logarithmic factor
which is dependent on the cutoff energy assumed; that
is, the magnitude of the oscillations is larger for wider
bands. To resolve this discrepancy, we consider Phillips's
method of evaluation applied to Eq. (2) for this par-
ticular case of 8,= 8,=0. By Eqs. (6), Eq. (2) becomes

Ezp

diaz

where rj and 8 are defined in Eqs. (25), F(r/) is the
electro-optic function of the first kind given in Eq. (14),
and G(r/) is the electro-optic function of the second kind,
defined as

EgpBS2
ss(o/, 8)=

tr2ho/28 1/2 (2 ) I 2

Bgl/2

G(—t/), jf 8 &)8 (27b) Making the usual assumption that E„, E„)Ao/ Es,— —
GO so there is no difhculty in carrying out the delta-

function integration over t.„, we obtain

G(4/) = ($2/2r) LAi'(r/) Bi'(2/)
—tl Ai(t/) Bi(t/) $+ (r/) '/2N(t/); (28)

G(z) is plotted in Fig. 4.
It is assumed that the correction term given in Eq.

(26) is negligible in regions of interest near the critical
point where the effective-mass approximation holds, and
that Eqs. (24) with U=O, and Eqs. (27) describe both
the imaginary part and the change in the imaginary part
of the dielectric constant in the presence of an electric
field. These expressions will be used to obtain the real
part of the dielectric constant through the Kramers-
Kronig relations.

Phillips has obtained an expression for the imaginary
part of the dielectric constant near an M~ saddle point

AQ= 6g 6z p

At/= 2(e e.) '/'.
(31a)

(31b)

The e„~, plane region of integration, the rectangle

"J.C. Phillips, Phys. Rev. 146, 584 (1966).

/'Eg hN+ s~ sg'l

&& Ats~
~
. (30)

as„

Equation (24b) follows by extending the upper limit
of the integral over e, to infinity, which is permissible if
8„—8„&Ace —E„ then performing the e, integration
explicitly. To proceed along Phillips's derivation, we
define the parabolic coordinates I and e by
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FrG. S. (a) MI-edge
region of contribution in
the e„e, plane. (b) MI-
edge region of contribu-
tion in the I, v plane.

Exp

I
{b)

0&c,&E„,0& e, &E„shown in Fig. 5(a), becomes the
region bounded by the I axis and the two parabolas

u = (A/4E„) v' —E„/A, (32a)

u= (A/4E„—)v'+E„/A (32b)

shown in Fig. 5(b).
The Airy function properties insure essentially no

contribution from the region defined by Ae&Aeo —E,
+1.67A8„; in this case we extend the integral to inGnity
and Eq. (30) becomes

81V2
e2((0, 8)= du

m'co'8y'/' g„p
f (4gzo /A) (u+Ezo /5)] I/2

dv Pu'+v'7 't'

(E,—ha)+hu
XAi'~, (33)

which is Phillips's Eq. (2.20).
Extending the u limit to in6nity eliminates the right-

hand parabola bounding the u-v region in Fig. 5(b) and
expresses the integral over v in terms of only one
boundary. Equation (30) then yields Eq. (24b).
Phillips makes a strip approximation by including only
the region around u=0 defined by ~u~ &I', 0&v&or,
=2E„/A, where I' is several times the lifetime broaden-
ing or the period of the Airy function. This picks up only
a part of the contributing region, which becomes the
shaded region in the e„e, plane of Fig. 5(a). If I'«~„
Eq. (33) becomes

BS' r (Eg—ho) u ) 2(o,
du Aim~ +—

~

ln (34)
7r%a'8„'I' r ~ h8„8„) u

which is Phillips' result.
The only real difference between Eqs. (24b) and (34)

is the regions of integration that they cover, hence the
question of which is the better approximation reduces to
that of which area is the better approximation to the
electron-hole-pair relative energy band. Since the rec-
tangular area is probably the better approximation,
Eq. (24b) should give more accurate results. We con-
sider this in more detail.

The fact that the region of integration for Eq. (34)

is smaller shows up in several ways. First, in the zero-
Geld limit, e2 by Eq. (34) is zero until Aar —E,)—AI', in
contrast to Ace—E,) E„ for E—q. (24b). Also in the
zero-Gekl limit, if Are —Eg)&AI', Eq. (34) reduces
approximately to

8 (h)'t'
Ll' 1n2co,—I' 1nl"+I'j . (35)

v(o' (ha&—Eg)'t'

The bracketed term, which represents the density of
states for the saddle-point edge and should be constant
in this range of or, 6 as is the density of states derived from
Eq. (24b) in this limit, varies as the inverse square root
of A~ —E,. The smaller region of integration has re-
sulted in an effective loss of (A~—E,)'t' in the density
of states. This loss is also apparent if the term ln

~

2io,/u
~

in Eq. (34) is broken upas Dn2a&. —ln~u~ j:The termin-
volving ln2co, can be considered an approximation to the
term (E„/A8„)'t' in Eq. (24b), which arises from the
density of states.

The interpretation of the tern 1n~2~, /u~ in Eq. (34)
as an ampli6cation factor is unrealistic in that the field-
dependent oscillations in e2 arise from two sources, the
boundary or cutoff, and the point singularity in
~~q„i(E,—E,) ~

—'. This is true regardless of whether
the region in question is elliptical or hyperbolic in
nature. The oscillatory term arising from the point
singularity should therefore depend solely on band
parameters associated with the point singularity itself
(E„effective masses) and not involve amplification
factors dependent on the extent of the band. This is the
case for the ufo and Ms threshold results given in Eq.
(10a), and for the saddle-point results of Eqs. (24). The
fact that I' is small, which is necessary so that the
upper limit of the integral over v in Eq. (33) can be re-
placed by a constant, obscures this in Eq. (34) be-
cause of the close proximity of the boundary and the
critical point.

III. THE REAL PART OF THE
DIELECTRIC CONSTAN'T

The Kramers-Kronig or dispersion equation"" re-
lates the real and imaginary parts of the dielectric

"J.S. Toll, Phys. Rev. 104, 1760 (1956)."F. Stern, in Solid State Physics, edited by F. Seitz and D
Turnbull (Academic Press Inc. , New York, 1963), Vol. 15, p. 327.
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—E+12M), o 1

both delta functions which can e one
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2 M dM es(M, 8)
el(M, a) =1+—tP

——fAi'(P) Bi'(P)—P Ai(P) Bi(P)7

—Ai tt i tt — ' '
(40)——)Ai'(tt) Bi'(tt) —tt Ai(2t) Bi(tt)7

(4&)

s of ar ument E,/2lt8 and (E,+So&

ofA8, represents the remo
the double pole in e2(M, G) at M=O w ic

clc arc no f1cc carl lcrs ln
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ith these arguments may e r

the asymptotic limit of the expression

Ai'(x) Bi'(x)—x Ai(x) Bi(x)

m 0.013888——(x)'~2 1—
(4/9)x'

(42)

~o g

88'~2 (Es /Es+hM) 'ts
"'""='+.

—LAi'(&) Bi'(&)—~ Ai(~) Bi(~)7, 43a

or. For example, with 6elds aroundwith negligible error. or exa, '
s around

d symptotic term of
e AH=0. 010 CV, E,=

der 1 for A~=E, . Ke therefore replacewlilcli al'c of order 1 fol' AM Es. c
the terms of argum, Ae '"'h

l
m totic terms, an i

m totiC e ianslon eVterms in the asymp
lating the change with app

ed eis

(43b)~"(,~)-(&8 i ) (

e erenc, . factor (—1)~ in the summation of'()
and should be deleted fE~q.

'cs McGraw-Hill .Book Com-14 I, . S biff Qguntum Mechanics ( c r
. 246.pang, . Qc.

q
I c. Neer York, 1955), p.

dt (P — . (39)
" d 'Ai'(t —M'/8) 1/2 Ms G tt)

Gl CO 0) Cd —03@ttgg X'
Oo Gl CO
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rl = (Ey—Aa))/A8 (44)

and G(g) is given by Kq. (2g).
We note that b,eq(co&8) could be obtained by using the

approximate dispersion relation on the expression for
A&2(~;g) given by Kq. (13b):

I dM

Afy(M~8)= (P M 662(M &8) .
X'M re GP 63

This 1s thc dispclslon relation used by Scraphln and
Bottka in their calculations. ' ' It is obtained from Eq.
(3ga) by keeping only the pole (&a'—&o) in a partial-
fraction expansion. The terms of argument E,/A8 and
(E,+Ace)/A8 are eliminated with this expression, which
means heq(co, g) will diverge at o&=0, but near the
critical point the approximation is very good. The gap
energy Eg now enters only as (E~ h~)/A8. T—his ex-
plains why Seraphin and Bottka were unable to find
any other dependence on E, in. their numerical calcu-
lations. Equation (43b) is the closed expression describ-
ing the results of their numerical integration.

Equatiori (38a) can be applied to the Ms edge and we
obtain

cz(M, 8)= 1

agif2
+ 2—LAi'( —n) Bi'(—n)+n Ai( —n) Bi(—n)j

N g

E'
——L»'( —0)»'(—0)+0 Ai( —0)»(—P)l

Q2——$Aj'( —y) Bi'(—g)+g Ai(—g) Bi(—g)1, (46)

where n, P, and g are given in Eq. (41). Terms of argu-
ment E,/A8 and (E,+Au&)/A8 are now expanded in the
large negative-argument asymptotic expansion

Ai'( —x) Bi'(—x)+x Ai( —x) Bi(—x)

sin(-,'x'I') . (47)
4E2X

The leading square-root term which appeared for the Mo
edge has vanished; the first asymptotic expansion
terms for the mfa edge are small and can be dropped, .
Thus, for the 3f3 edge, we have

88'~2 E2
Ey(co, 8) = 1—

OP TP

X/Ai'(g) Bi'(g) —g Ai(g) Bi(g)j, (48a)

Aeq(~, 8)= —(BP~'/&o')G(g) (48b)

Similar closed-foI'IQ solutions cannot bc obtalncd fol'

saddle-point thresholds. Application of Eq. (38a) to the
expression for the imaginary part of the dielectric con-
stant given by Eq. (18a) yields for the M & and M2 edges,
with the help of Eqs. (Aga) and (A13) of the Appendix,

t'y(%~ 8)=1%
gg 3 zzo

A8,m'hem'(8, )'"

80'~2 Ao) —Eg
he)(o), 8)= G

M2 A8
if 8,)8,„(51a)

80'~2 Eg—Ace

Dog(o), 8)= — Ii, if -8,„&8, . (51b)
AO

B8'~' (Eg Au&—
keg(a), 8)= — G~, if 8,)8,„(52a)

(os h8

dt 2Gi t—e
A8 y

( 6g Pkd) 6g+ AM

Gij g—+i
[

—Gi t+x . (50)
a8.„ i A8.„

The upper signs apply to thc3f~ and the lower to the M2
thresholds, respectively. Equation (50) appears to be
integrable in closed form on1y in the limit that E„—+00,

but this leads to a nonphysical negative e~, depending on
the size of 8, for the M2 edge with 8,&0,„.Therefore, it
appears that the cuto6 E„plays an important part in
the real part of the dielectric constant near a saddle-

point threshold. Since the integral of the Gi function
does not have the simple asymptotic forms as the integral
of the Ai function, an estimate of the effect of the 6nite
E,„,

cannot be obtained. Using the dispersion relation on
Eqs. (24) with U= 0 is equivalent to taking the limit of

Ego ~CO m Kq. (50); Eqs. (24) with U=0 are valid only
over the regions A~&E, E„and A&a(Z—,+K„for the
M~ and M2 edges, respectively.

It is expected, however, that the change in the real

part of the dielectric constant will be obtained fairly
accurately in the region of the critical point by using
the approximate dispersion relation given by Eq. (45)
on the change in the imaginary part given by Eqs. (27),
since Asm(&o, 8) drops off rapidly away from the critical
point. An alternative derivation is possible by sub-

tracting the zero-6eld limit of the expression obtained in
the evaluation of Eq. (50) in the limit of infinite E„.
This can be done with relations given in the Appendix.

ith either method of derivation, the following results
are obtained. For the 35~ edge the change in the real
part of the dielectric constant takes two forms:

q = (Aa)—Eg)/A8. (49)

where g has been redefined to be consistent with
Kq. (10c):

89'~2 4O —Eg
Bey(N& 8)= F

co2 A9
if 8,„)8, . (52b)
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2e'Co' SP,IJ,yP,, '~'
8—

m'cA' A'

8 =e'h;2/2p;h,

for each coordinate i=@,y, and s.

(4)

p;=!m;j = 5$»jf5$j

tfl e~+ fÃki

(18b)

rvhere
8'= e'8'/2ph,

1 B ' By' B,'-
+ +

P ~ -Pa Py P»-2

(11a)

(11b)

IV. CONCLUSION

In this paper, the effective-mass weak-6eld approxi-
mation has been used, to obtain expressions for the
changes of the real and imaginary parts of the dielectric
constant near all four types of critical points, in the
presence of an electric Geld oriented in an arbitrary
direction in an anisotropic solid. The sects of the
6nite extent of the bands has been examined, and it has
been shovrn that the previous general treatment, '
which assumed bands of in6nite extent, gives adequate
expressions for the changes in the imaginary part of the
dielectric constant near the critical points. All changes
in the real and imaginary parts of the dielectric constant
can be represented either by the electro-optic function
of the 6rst kind:

F(x)= (lP/s)LAi"(x) —x Ai'(x) j ( —x)—'"I( x)—(14)

or of the second kind:

G(x) = (E'/x) LAi'(x) Bi'(x)—x Ai(x) Bi(x)J
+(x)'~'N(x), (28)

vrhere F is the normalization constant of the Airy func-
tion, defined by Eq. (A1) of the Appendix, and N(x)
is the unit step function, zero for negative argument and
one for positive argument. The electro-optic functions
are plotted in Figs. 2 and 4.

The results are summarized in Table I. Quantities
used in Table I are listed. belovr for convenience.
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for the M~ and M~ regions. The maximum kinetic
energy in the direction of the mass of odd sign in the M~
region ls

and for the Mg band:

(g, g,) (16a)

(16b)
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where u(x) is the unit step function, the Lorentzian
broadening of the two kinds of electro-optic functions
can be given as the real arid imaginary parts of

I " a(x)dx
H(xp, I")=-

(x—xp)'+ F2
(A10)

The vanishing of the in6nite arc integral enables
the integral part of Eq. (A9) to be evaluated as 22ri

times the residue at the upper half-plane pole of Eq.
(A10), s=xp+il'. Since the Lorentzian broadening of
(x)"'u(x) is

I' " (x)'/'u(x)dx x +(xp'+I")'" '"
„(x—xp) '+ I"' 2

the analytic expressions for the Lorentzian broadening
of the electro-optic functions F(x) and G(x) are

P(xp, I')+2G(xp, I')

=2(X2/Ir)ge —'& "& Ai'(S) Ai'(W)+W Ai(S) Ai(W) j
gp+ (xp2+P2)1/2 I/2

though at the expense of using complex arguments in
the Airy functions.

A discussion of the e6'ects of broadening is given in
Ref. 2, but it should be mentioned that these curves are
slightly in error in that they do not approach zero as
(Ap/ —E,) becomes large on the oscillatory side. (All
curves except the 15 kV/cm curve in Fig. 7 of Ref. 2 are
examples of this. ) Application. to electroabsorption is
given by Hamakawa, Germano, and Handler. "

To reduce Eq. (50) in the limit of infinite E„,integral
relations involving the Gi function are needed. Since
these may easily be obtained by the methods of Ref. 1
which were applied to the closely related Ai function,
only the results of such derivations are presented.
Equations necessary to evaluate Eq. (50) are

du Gi(u) Ai(nu+P)

Gi if
E(n' —1)'/' (1—n')'"

if e= j.2' (A13b)

g + (g 2+$2)1/2 I/2

(A12a)
2

dr n t/n)
Gi(r+n) =gA' Ai — Bi~ —

~
(A14a)

r ~ Izi

s= xp+21' (A12b)

" dr (n)
Gi(n —r) = —/IX Aip~ —

~,
Q &~i

' (A14b)

Eg—Atd F(ellel'gy lllllts)
+2

A8 h8
(A12c)

(2W/3) s'

To simplify the result, we have used"

(A12d)

"Reference 9, p. 446.

Ai(s)+i Bi(s)=2e' /' Ai(w). (A12e)

Equation (A12a) is a closed analytic expression for the
curves obtained nulnerically by Seraphin and Bottka, m

where x=2'~', and S is the normalization constant of
Eq. (A1).

In order to numerically evaluate the derived expres-
sions, the author has generated 9-signi6cant-6gure
PGRTRAN subroutines for Al(x), Al (x) Bl(x), Bl (x),
Ai(x) Bi(x), and. Ai'(x) Bi'(x); RoRTRAN subroutines for
Ai(s) and Ai'(s) where s is complex have been developed.
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