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Lattice Absorption in Finite Crystals
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Certain size and shape effects in the infrared lattice absorption spectra of crystals of finite size have been
predicted theoretically by Rosenstock using a simple nearest-neighbor model in the harmonic approximation
with free end boundary conditions. Atoms of equal mass, but of opposite sign, were assumed to lie on adjacent
sites. In the present investigations, these results were extended to consider the case where the adjacent atoms
are of unequal mass. In the case of the one-dimensional chain, this inequality can introduce surface modes
and critical points at the zone boundary. Absorption of radiation propagating along the chain can occur
because of interaction with the transverse vibrations over the entire range of permitted lattice frequencies
and that of the surface mode. However, the amount of energy absorbed (neglecting beam-attenuation ef-
fects) can be shown to be directly proportional to the chain length in the frequency region of the long-
wavelength optical branch modes, but is independent of chain length elsewhere. In the three-dimensional
case, the absorption for the cases of adjacent atoms of equal mass and that for adjacent atoms of unequal
mass are expected to be similar, and calculations have been carried out only for the former situation, Sub-
sidiary absorption bands in the frequency region associated with some, but not all, critical points can occur,
and this can be readily explained in terms of the atomic amplitudes. A size dependence of the absorption
corresponding to the one-dimensional chain can be expected. The question of infrared absorption in one-
dimensional chains whose length can be either smaller or larger than the wavelength of the interacting
radiation has been considered from a simple point of view. In this approach, the nature of the modes inter-
acting with the radiation can be regarded as different for large crystals and small crystals. However, the total
absorption in the fundamental frequency region is directly proportional to the chain length, regardless of
the ratio of chain length to the wavelength of interacting radiation. The possibility of experimental observa-
tion of these various effects is discussed.

I. INTRODUCTION
' 'N crystals containing X atoms, there are 3X-3
~ - vibrational modes, all of which may be infrared and
Raman active. However, very strong infrared absorption
can result from only relatively few modes in the funda-
mental or "reststrahl" frequency region. In addition to
the strong absorption associated with the fundamentals,
there can be a small amount of infrared absorption
associated with a large number of other modes even
within the harmonic approximation. This behavior was
demonstrated in an article by Rosenstock' (designated
as I) for a monatomic lattice with Hooke's law forces
between nearest neighbors and free end boundary
conditions. Atoms of opposite sign and equal mass
were assumed to be located adjacent to each other
along the chain with the Coulomb forces between them
ignored in the dynamical problem. With the aid of this
model it was possible to obtain relatively simple
expressions for the lattice absorption. Furthermore, it
was found that the dependence of the absorption on the
length of the chain depended on the frequency range
under consideration. The absorption was shown to be
proportional to the chain length in the fundamental
region as expected, but was not proportional to the chain
length in the other frequency regions. These results
were rederived in more detail and extended to two- and
three-dimensional crystals in a subsequent article2
(designated as II). In the multidimensional case small
subsidiary absorption bands were found associated with
certain critical frequencies. A corresponding size

dependence was also deduced in the multidimensional
case.

Using this same type of simple model, Wallis' 4

showed that in diatomic lattices, surface modes can
occur whose frequencies and atomic amplitudes can
be calculated. It was suggested that lattice absorption
associated with these surface modes could occur,
although specific expressions were not given.

In the present article, some aspects associated with
the infrared lattice absorption of finite crystals treated
in articles I and II are discussed further. The absorption
associated with a one-dimensional diatomic chain with
nearest-neighbor interactions is treated, as this is the
simplest situation in which critical points at the zone
boundary arid surface modes can occur. Expressions for
the bulk mode absorption as well as an expression for
the surface mode absorption. (due to Wallis) are given.
The size dependence of the absorption noted in I and II
has been examined from a somewhat different point of
view. It can be shown that the absorption in a one-
dimensional chain away from the fundamental fre-
quency (designated as nonfundamental) region is
essentially independent of the length of the chain.
Calculations of the lattice absorption of a three-
dimensional crystal have been carried out along the
lines indicated in II for a specific case. The subsidiary
absorption bands have been associated with the
appropriate critical frequencies and their origin can be
understood by a consideration of the atomic amplitudes.
The possibility of experimental observation of these
effects is noted.

' H. B. Rosenstock, J. Chem. Phys. 23, 2415 (1955).' H. B. Rosenstock, J. Chem. Phys. 27, 1194 (1957).
' R. F. Wallis, Phys. Rev. 105, 540 (1957).
4 R. F. Wallis, Phys. Rev. 116, 302 (1959).
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Finally the general question of photon-phonon inter-
actions in one-dimensional chains has been considered
from a simple point of view neglecting retardation. In
the usual treatment of photon interactions, strong
(i.e., fundamental) interaction is said to occur when the
photon frequency and wavelength are of the order of
the optical branch phonon frequency and wavelength.
It is appropriate to apply this condition only when the
chain length is much longer than the absorbing wave-
length of the fundamental optical modes. When the
chain length is much smaller than this absorbing
wavelength, the condition stated above is not approp-
riate to the problem as the maximum phonon wave-
length is then of the order of the chain length and thus
much smaller than the absorbing wavelength. In such
cases, the usual "dipole" approximation for atomic
and molecular problems is employed. The connection
between these two limiting cases of large and small
chains has not been discussed previously to the best of
our knowledge. The treatment given here provides an
expression for the absorption for chains of any length
and gives some insight into the nature of the absorbing
modes in finite crystals.

(2.1)

in which C contains only fundamental constants. The
term r„(N) involves the sum

r-(N) = Z e(j)~-(j)n(j,~). (2.2)

Here e(j) is the charge on the jth atom, N„(j) is the
displacement of the jth atom in the nth normal mode,

' The term "absorption" in this context refers to the fractional
energy of the incident beam absorbed by the sample, assuming
that attenuation sects of the beam in traversing the sample are
small. This quantity is not to be confused with the absorption
coefBcient appearing in Lambert's law relating transmission and
thickness.

The absorption g, (S) can be shown to be temperature-independ-
ent for an assembly of harmonic oscillators )see Ref. 2, Eq.
(26)j.A phase factor 6, not present in Ref. 2, has been introduced
here.

II. THE ONE-DIMENSIONAL DIATOMIC CHAIN

It is assumed that a one-dimensional chain can be
described by an assembly of coupled harmonic oscil-
lators. Consider a system of point atoms arranged on a
line in which different charges may lie on the various
atoms. If radiation propagates along the chain, only
those normal modes in which the displacements of the
atoms are perpendicular to the chain will contribute
to the absorption. Application of the usual semiclassical
time-dependent perturbation theory leads to an
expression for s„(N), the absorption' associated with
the nth normal mode of frequency ~„ for a chain of Ã
atoms, given by

p p ( @Ms

M 1III k MiMs

) t/s

sin'k. a
I

(2 3)

in which the characteristic values of the phonon wave
number k„are given by

k„=trir/2Nu, n=1, 2, 3, , N —1, (2.6)

where M is the reduced mass MtMs/(Mt+Ms). The
fundamental frequency &os

——(2P/M)'~s is defined for the
limiting case k„a=0, although this is not a normal
mode of the system. For a total number of 2$ atoms,

' Equation (2.5) is given in the reduced zone scheme and is
equivalent to Eq. (6.1) of %allis (Ref. 3) in the extended zone
scheme with a change in notation.

and rt(j, A) represents the spatial dependence of the
vector potential arising from an electromagnetic wave

propagating along the chain and having a phase shift 6
with respect to the first atom so that

rt( j,A) = sin(k'x, +6) . (2 3)

The coordinate x, represents the position along the
chain of the jth atom and k' is the photon wave which
is related to the number frequency co and photon wave-
length X„. by k'=co /c=2s/X . For chains which
are short compared to the wavelength X„ the term
k'x, = 2s.x,/X„. can be considered small for all values of

j so that expression (2.1) can be reduced to

(N) =Crosl &~ e(j)&s(j) Is
~

k'x~ ~ 0 (2 4)

This small crystal approximation will be employed in
this and the following section and a consideration of the
more general situation will be postponed until Sec. IV.

The spectrum of a system of harmonically coupled
oscillators will then consist of sharp lines at the various
frequencies co„. For systems containing a large number
of particles, the frequencies will usually lie close
together, enabling an absorption spectrum to be
deduced by forming a histogram as is done for density-
of-states calculations. However, it will be seen that these
lattice absorption histograms have an unusual behavior
in that doubling the number of atoms in the chain can
double the lattice absorption in some frequency regions,
but leave it unchanged in other regions.

In order to evaluate the absorption for a specific
case, consider a one-dimensional lattice of X atoms of
mass My and S atoms of mass M~ with M2&My. These
atoms are assumed to be arranged in an alternating
array spaced a distance u apart so that the end atoms
have different masses. The light atoms are located on
the odd-number lattice sites 2j—1, 2j+1, and
heavy atoms on the even-numbered sites 2j, 2j+2,
The nearest-neighbor Hooke's law force constant for
displacements perpendicular to the chain is denoted
by P. The dispersion relation for such a system has been
found by Wallis' using free end boundary conditions
to be'



M. H ASS AN D H. ROSENS TOCK

I.O—

U
2'.
~ 075-
0
hl
CL'

L 05

~ 0.25

0
X

SURFACE-

MODE
FREQ

0.5 l.o
REDUCED SAVE VECTOR

COORDINATE
(~)

~04 Q IQ IQ igloo so

OO OO 0 40 $0 OO ~ 0

I$g OOOO 0 O 0 ~ 0 ~ 0

~ aopologobogos

(b) {c)

I Sght atom displacement

M= 2M, J heavy atom displacement
2 I

I t I

IO IO IO
ABSORPTION

FM. 1. (a} Dispersion curves for
the one-dimensional diatomic chain
with nearest-neighbor interactions and
free end boundary conditions. {b)
Relative lattice absorption of a one-
dimensional diatomic chain 2000 ion
pairs long. (c) Atomic displacements
in various frequency regions for the
one-dimensional diatomic chain with
2351=35~. The bulk mode displace-
ments are typical of atoms on di6erent
locations on a chain of many ion pairs.
The surface mode displacements are
typical of the atoms near the surface.

the number of permitted modes (excluding pure
translation) in one transverse dimension is 2$—1 of
which 2$—2 of these are accounted for by the condition
(2.6). An additional solution is provided by the surface
mode at the frequency ~, given by'

a&,t= p/3f (2.7)

(2.8b), the absorption K„(1V) can be reduced to'

e' ) cosk a)' Mto '/P
K (Ã)=C(v„

M1V) sink al (M~ '/P) —1

for e odd

for e even.
(2.»)

and this lies in the gap between the optical and acous-
tical branches. The dispersion curves are illustrated in

Fig. 1(a).
The form of the normal mode vibrations correspond-

ing to various values of k„ is of interest in calculating
the lattice absorption. By proceeding in this way indi-
cated in Refs. 2 and 3, the following expressions for the
displacemen. ts u„(2j) and u„(2j—1) can be obtained:

u„(2j—1)= csLsin2( j—1)k„a
—(1—Me co„'/P) sin2 jk„a], (2.8a)

u„(2j)=c&L—sin2(j —1)k„a
+ (1—M & tc '/P) sin2 jk„a]. (2.8b)

The constant c~ is given by

cs——M'~ /MtMs(SMG&o /P)'~ (M(cn /P —1) . (2.9)

The corresponding expressions for the surface mode
amplitudes given by %allis' are

u, (2j—1)=c,(—1)' '(Mt/Me)' ', (2.10a)

u, (2j)=c,(—1)'(Mt/Ms)', (2.10b)

cg
——ILMtMs/(Ms —Mt)]L1—(Mt/Ms) ])

The form of the displacement amplitudes is illustrated
in Fig. 1(c) for certain modes. Use of free rather than
clamped boundary conditions results in the end atoms
always having a small but finite amplitude.

The lattice absorption can be calculated in the
following way. Assume that atoms of opposite charge
&e are located on alternate sites with the Coulomb
interaction neglected in the dynamical problem. The
absorption for the case of the small crystal approxima-
tion in (2.4) becomes

K„(Ã)= Cta„~ P, I eu„(2j—1)—eu„(2j)]~

'. (2.11)

With the aid of the amplitude expressions (2.8a) and

In the limiting case of M~=M2 all of the terms for e
even will be rigorously zero by symmetry considerations.
When Mi/Mg, these modes become permitted, but
their intensity will be considerably less than that of the
adjacent odd modes.

Calculations of the absorption for a chain of 2000
atoms have been carried out using Eq. (2.12). The
results are shown in Fig. 1(b). Although a curve is
shown, this is actually an intensity histogram in which
the frequency range has been divided into 100 equal
increments. As a result, any sharp maxima will tend to
smooth out and the sharpness of the curve depends upon
the width of the frequency interval chosen. This spec-
trum shows strong absorption in the region of the funda-
mental and weak absorption elsewhere. The absorption
in the region of the zone-boundary frequencies show
minima even though there are maxima in the density of
states. This arises because the absorption associated
with the individual modes near the boundary (k s n/2a)
decreases faster than the density of modes in this region.

The corresponding expression for the surface mode
absorption is given by'

Ka(Ã) =CD e'c 'L1—(—1)~(Mt/M )~]' (2.13)

This results in a weak absorption at the surface mode
frequency ~,. For the usual situation in which E)&1,
the intensity associated with this mode is independent
of E. The atomic motions corresponding to this surface
mode are illustrated in Fig. 1(c), and the absorption
relative to the bulk mode absorption is shown in
Fig. 1(b).

If calculations are carried out for chains of diferent
lengths, the expression for the absorption as a function

' Numerically equivalent expressions for {2.8) and {2.12)
have been obtained independently by R. F. challis (private
communication).
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of length depends on the frequency range under con-
sideration. In computing the absorption, the frequency
range of interest is divided up into a large number of
intervals (but still much less than N) of width hco. The
absorption in each interval is given by

P «„(N), (2.14)

in which the values of «„(co) are summed for all modes
whose frequency lies between co and co+hco. It will be
shown that

P «(N) oc N; co&coo(co+Aco, (2.15)

provided the fundamental frequency ~0 lies within the
interval co and co+Aco. Furthermore, for nonfunda-
mental frequency intervals (except the ones which in-
clude the zone-boundary frequencies), it will be shown
that

2 «n(N) =F (co,hco); co+ waco(coo (2.16)

in which F (co,Aco) is only a function of the frequency co

and the frequency width Ace and does not depend upon
the length of the chain N. Explicit values of «„(N)
can be obtained from the absorption expression (2.12).
In the fundamental region, the factor k„a is much less
than —,'vr so that (2.12) can be expressed as

8C~ Se'2e 1
«„(N) =Cco„=, k„a«2m. . (2.17)

MN (k a)' Mn'n'

The first term, where m=1, is much larger than any of
the others and this occurs at a frequency extremely
close to the fundamental frequency coo. Consequently,
any sum of the form (2.14) which includes this erst
term will be nearly proportional to X. Because of the
fatness of the dispersion curve for k„a((-,'x, the next
closest frequency interval will involve terms in which
the index n is large so that Ii:„=~„+~.As a result, sums
in the other frequency regions can be represented as
the product of an average value of «„(N) in the fre-
quency interval and the number of states p(N, co,hco)
in the interval so that

proportional to X so that

p(N, co,waco) =Ng(co, hco) .

Consequently the product («„(N))p(N, co,waco) is given by

(«„(N))p(N, co,hco)

= (C/N)f(~)Ng(~, ~~) =Cf(M) g(~, ~~) (2 2o)
=F (co,Aco),

which indicates that the resulting absorption in the
nonfundamental frequency range is a function only of
the frequency and the width of the frequency interval
under consideration and does not depend upon the
length of the chain.

III. THE' THREE-DIMENSIONAL CRYSTAL

The case of the three-dimensional crystal represents
a closer approach to reality. Preliminary calculations of
the lattice absorption for the case of NaCl-type cubic
lattice with nearest-neighbor interactions (neighboring
atoms were assumed to have equal mass in the dynam-
ical problem and opposite charges in calculating the
absorption) have been carried out by Rosenstock. ' In
order to obtain a more general solution, the case of the
diatomic crystal in which adjacent atoms have unequal
mass was treated and the expression for the phonon
dispersion has been obtained. Owing to the added
complexity of the problem, an expression for the lattice
absorption has not been derived. However, arguments
will be advanced on the basis of the phonon dispersion
curves which suggest that the principal features of the
lattice absorption of the equal mass case will be nearly
the same as for the unequal mass situation in contrast
to the situation in one dimension. The surface mode
absorption has not been calculated, but such absorption
is expected corresponding to the modes discussed by
Wallis. 4

The dispersion relation for the three-dimensional
NaC1-type diatomic crystal can be deduced by an
extension of the approach used by Rosenstock' for the
monatomic crystal. The results of such a procedure
give an expression of the form

P «.(N) = («.(N))p(N, co,aco) . (2.18)

The function «„(N) can always be regarded as a function
of co„since the index e and the frequency z„are related
through the dispersion relation (2.5) giving

f'( kq a, kmak aa)~

X
(1+2cr)'

(3.1)

«„(N) = (C/N) f(co„), (2.19)

in which all terms in (2.12) which are functions of co

and k„a are considered to be functions of the frequency
co„. The number of states in the interval A~ is directly

8 This condition is somewhat stronger in that ~0 should not be
close to the edge of an interval;

for the eigenfrequencies of a cubic-shaped crystal
containing S -ion pairs where the macroscopic cube
edges are parallel to the crystallographic unit cell and
where f(k&a,k2a, ksa) = cosk ca+ cr (coskaa+ coskaa). The
phase factors k~a, k2a, and k3a extend from 0&ka&~.
Here a is the nearest-neighbor distance and k~, k2, and
k3 represent propagation vector components along the
cube edges. The parameter o is equal to P/ whenre n
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and P are the force constants for parallel and perpendic-
ular displacements of nearest-neighbor atoms.

The dispersion relation represented by Eq. (3.1) is
shown in graphical form' in Figs. 2 and 3 corresponding
to the cases of M~/M~=1 and M2/M& ——2.0. It can be
seen from Figs. 2 and 3 that the zone-boundary fre-
quencies are not markedly changed by varying the mass
M&/M& nor do there appear to be any zone-boundary
degeneracies which are split as in the one-dimensional
case. ' The principal diRerence is the splitting of a
degeneracy part way through the zone. Consequently,
it is not unreasonable to expect that any subsidiary
lattice absorption bands appearing for the case %~=M2
will not be markedly changed for M&/M2. Furthermore,
it is probably the case that any new absorption bands
which would arise or increase in intensity for M&/3f2

04
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FIG. 3. Dispersion curves in the three principal symmetry
directions for the diatomic crystal with nearest-neighbor interac-
tions and free end boundary conditions with unequal masses
2%1=&2 and force constant ratio O=p/~=-', . The strongest
subsidiary absorption maxima are expected to occur in the
X-point frequency region denoted by an asterisk.
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Fn. 2. Dispersion curves in the three principal symmetry
directions for the diatomic crystal with nearest-neighbor interac-
tions and free end boundary conditions with nearly equal masses
%1=Sf~ and force constant ratio o=p/n=&. The strongest
subsidiary absorption maxima are expected to occur in the
X-point frequency region denoted by an asterisk.

would still be much less intense than those which absorb
regardless of the ratio M2/Mq. These arguments are
employed to justify use of the simple expressions for
the case of M~ ——M2. For the case of Mr=M~, the
lattice can be regarded as simple cubic rather than
face-centered cubic and the following expression

'One peculiarity of this model is that there is an unrealistic
lack of coupling between the displacements in the x direction and
those in the y and z directions (see Ref. 4, Sec.II).Thus each set of
permitted values of k1, k2, A3 corresponds to three modes in which
the atom motions are always along either the x, y, or z directions.
Furthermore, the model does not possess rotational invariance.

The deduction of the dispersion curves in Figs. 2 and 3 from
Kq. (3.1) can be carried out in the following way. The dispersion
curves in the $00@ direction represent solutions of Eq. (3.1)
setting k1a=0 —+ ~ and k2u=k3u=0, for the longitudinal modes.
The transverse modes, which are twice as numerous, are obtained
by setting k1a=k3a=0, k2a=0 ~ m and k1a=k2u=vr /N =0,
kea=0 ~ m. . The terms "transverse" and "longitudinal" for this
model refer to the number of solutions, rather than the relation
between the atomic motions and direction of propagation of a
phonon.

"This is probably a consequence of the particular lattice
chosen rather than a general result.
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FrG. 4. Relative lattice absorption of a crystal with 100 atoms
on a side and equal masses of all atoms. The corresponding
dispersion curve is very close to that given in Fig. 2. Much weaker
absorption maxima than those indicated occur. rlear other zone-
boundary frequencies, but these do not show up with the scale
used.

"Reference 2, Eq. (61) with ku —+0.

(applicable only to simple cubic) can be employed":

e )'8M 1
~~~„($)=c~~~„—

~

——
Ml 1V' cos (hr/2E)

1 1

cos(mm/2Ã) cos(m/2X) j
I, m, m = 1, 3, 5, , E 1(3.2)—

for light propagating along the edge of a cubic-shaped
crystal having N atoms on a side. The lattice absorption
spectrum has been calculated using (3.2) for a cubic-
shaped crystal having 100 atoms on a side, and the
results are shown in Fig. 4. It can be seen that there
are two subsidiary absorption maxima at frequencies
which are the same as those for the X(IA) and X(TO)
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« the direction of propagation of the radiation. The right-hand side gives the relative dipole moment of each sheet of atoms constituting
the crystal.

points in the Brillouin zone for a face-centered cubic
lattice with Mg=M2. (Here LA and TO stand. for
longitudinal acoustic and transverse optic, respectively. )
Some subsidiary absorption bands also appear corre-
sponding to other zone-boundary critical frequencies
but their intensity is substantially less and cannot be
shown in Fig. 4. Since the model employed is sufficiently
simple, it is possible to explain the intensity in the
various critical-point regions from a consideration of

the atomic amplitudes, which can be readily calculated
from the three-dimensional equivalent of Eq. (37) of
article II.

These atomic amplitudes are shown in Fig. 5. The
highest frequency mode in the fundamental region
designated as I' corresponds to the usual out-of-phase
motion of adjacent atoms. On the other hand, the
motion of the X(TO) mode and also of the X(LA)
mode can best be described as that of layers in which
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each layer has a large dipole moment, but the moments
of adjacent layers nearly, but not quite cancel. The
large density of states at these frequencies results in a
subsidiary absorption band. On the other hand, in the
region of the other critical frequencies, the absorption
associated with the individual modes is much lower.
The reason for this is illustrated for the X(LO) case
where it can be seen that the motions are such that
there is no sheet of atoms with a large moment. At best
there are only lines of atoms which have large moments
and adjacent lines tend to cancel.

The dependence of the absorption on size of the
three-dimensional crystal is somewhat more complicated
than the one-dimensional case. However, in the case of
slab-shaped crystals in which the radiation propagates
in a direction normal to the large face, the problem
becomes essentially a one-dimensional one and most of
the results found in Sec. II can be applied. By proceed-
ing along the same general lines, it can be established
that the absorption in the nonfundamental frequency
region is independent of the thickness of the slab.
This result holds for all frequency intervals induding
those occurring at: zone-boundary frequencies (which
were excluded in the one-dimensional case)." The
situation for crystals of other shapes is more compli-
cated. However, it has been shown for crystals of a
few simple geometric shapes that the absorption away
from the fundamental can be considered proportional
to the surface area and this result is probably true in
general.

The occurrence of nonfundamental absorption discus-
sed here is very similar to one-phonon impurity-
induced absorption which has been observed in ionic
crystals. In both cases, the translational symmetry of
the lattice is broken down by either impurities or the
surface. The intensity of the impurity-induced absorp-
tion is proportional to the impurity content. " In a
similar way, the intensity of the finite-size nonfunda-
mental absorption discussed here would be expected to
be proportional to the surface area.

the chain length. When the chain is comparable in
size with the absorbing wavelength the mode having
the largest absorption is no longer n= i but a mode
whose wavelength is closest to the wavelength of the
absorbing radiation. In fact the exact value of the index
I in any particular case will depend upon the chain
length. In such a situation it is not immediately obvious
that the absorption in the fundamental frequency
region is directly proportional to chain length with the
same proportionality constant as in the small crystal
approximation. However, it will be shown in this
section that the total absorption in the fundamental
frequency region, which is summed over all absorbing
modes in this region, is directly proportional to the
chain length for chains of any ratio of chain length to
absorbing wavelength.

The general expression for the absorption is given by
Eq. (2.1) which involves the atomic amplitudes. The
optical branch amplitudes in the long wavelength
(fundaments, l) frequency region are given to a very
good approximation by

u„(2j—1)= (2M/X)'12(sin2 jk„a)/Mg,
k„a((2m; (4.1a)

N„(2j)= —(2M/X)'12(sin2 jk„a)/M&,
k„a((-,'vr, (4.1b)

which are obtained by series expansion of (2.8a) and
(2.8b) for k„a((2m. . The absorption expression (2.1)
then becomes

~P; sin(2jk a) sin(2jk'a+2) ~'dh (4.2)

=Co) (2e'/XMs)

X ~P;sin(jew/X) sin(jn's/X) cosh~'dh

IV. ABSORPTION DT SMALL AND LARGE
CRYSTALS

In previous sections it has been assumed that the
size of the sample is small compared to the wavelength
of the absorbing radiation. In this approxima, tion, the
largest absorption is associated with the mode n= I and
it has been shown that the absorption in the funda-
mental frequency region is directly proportional to

"In the one-dimensional chain, the absorption Ii:„($)decreases
sharply near the zone-boundary frequencies, and this is associated
with an atomic motion in which the amplitude of one type of atom
is very small. In the three-dimensional case, the amplitudes
associated with both types of atoms are comparable in magnitude
near zone-boundary frequencies and there is no sharp drop o6
in ~ (E) as the zone-boundary frequency is approached.

"A. J. Sievers, A. A. Maradudin, and S. S. Jaswal, Phys. Rev.
138, A272 I'1965).

+ ~ g, sin(jew/Ã) co (jets'vr/X) srnA
~

'dA
1 (4.3)

in which the cross term containing the product sink
&&cosh vanishes on integration. The substitutions k„u
=ex/2Xa and k'a=re„/e=e's/2$a have been made
where I' is some number which may be either integral
or nonintegral in the range 0&e'((E. In order to
evaluate the sum in (4.3) it is convenient to replace
the sum over the variable j by an integral in the variable
j.This can be done since it has been assumed that X
is large. The expression for lr„(Ã) then reduces to

+L1—(—1)"cose'm j'} (4.4)
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for the more dificult case where e' is assumed non-
integral. In deriving (4.4), it is helpful to remember
that all terms containing since can be set equal to zero
since the phonon index e is always an integer. The
expression (4.4) has a maximum value for n=e'«Ã
except for the case when e'«1. The latter case arises
when the chain length 2%a is much smaller than the
photon wavelength X„.In this case the largest value of
x„(E) is for the smallest phonon index m=1. The
phonons of interest for both large and small chains
will be those in the range m= 1 to e= integer «E. All
modes for these phonon indices have practically the
same frequency which can be set equal to the funda-
mental frequency ~0. In any frequency interval which
includes coo, the above modes can be summed to give
the total absorption in the interval. Since the absorption
of the individual modes drops oR sharply for e not of
the order of I', the sum over a 6nite number of modes
can be replaced to a good approximation by a sum
extending to inanity giving

Q x (N) = (2Ciooe'S/Mm')5(n'), (4 5)

where

X(sin2is'a+[1 —(—1)"cosN'a j'}. (4.6)

"A different conclusion was reached in article II, and this was
due in part to the fact that a sum was not taken over all relevant
modes and the phase factor was neglected. The correct expressions
for the small-crystal case were obtained, but not for the large-
crystal case.

The sum S(N') can be shown to be independent of ii'
and equal to -,'x'. This result, which was demonstrated
by John Slater of the University of Reading, is outlined
in Appendix A. It follows that the absorption in a
frequency interval h~ which includes the fundamental
frequency ~0 is given by

Q ii„ ii„(X)=Ca)oe'E/M, a) (coo &a)+ho) . (4.7)

Expression (4.7) has the same dependence on S for
both small crystals and large crystals. '4

Some physical lnslght into thc RbsoI'ptlon process CRn

be obtained by considering two limiting approximations.
In the small crystal case, the chain length 2%a is small
compared to the photon wavelength X„so that e'
=4%a/X„. tends to zero. In the limiting case the
absorption (4.4) becomes equal to the previously
derived expression (2.17) and is proportional to 1/n'.
The result (4.7) can also be obtained by summing the
small crystal expression (2.17). This sum will consist of
a large first term (I=1) which contributes over 80%
of the anal result. The remaining odd terms contribute
less than 20%. A different distribution of intensity
among the various modes occurs in the large crystal
approximation. The special case of a chain whose

length is some large integral number of half-wavelengths
of the radiation can be calculated directly from (4.3) as
m'= 21Va/-', X is an integral number. In such a case, the
first term on the right-hand side of (4.3) contributes
50% of the absorption and this term is finite only for
e=e' or where the photon and phonon wavelengths
are equal. The other half of the absorption aris'es when

in e—
i
=1, 3, 5, . The distribution of intensity

among the various modes in the sInall and large
crystal limiting cases is more easily represented in the
dispersion curve shown in Fig. 6. Vere the percent
absorption associated with various modes in the small
and large crystal approximations is shown.

V. SUMMARY AND EXPERIMENTAL
CONSEQUENCES

The lattice vibration spectrum and resulting infrared
absorption spectrum have been calculated for a crystal
model involving nearest-neighbor forces only with
free-end boundary conditions. The following features of
the absorption are predicted on the basis of this model:
(1) Absorption of incident radiation is expected to
occur over the entire range of permitted lattice fre-
quencies and at the frequencies of some surface modes.
The most intense absorption would occur in the
frequency region of the long-wavelength optical branch
modes (designated as the fundamental frequency
region). Much weaker absorption could occur in the
frequency region of other modes (designated as the
nonfundamental frequency region). There may be some
s'tructul c ln thc nonfundan|cntal Rbsolptlon assoclRtcd
with certain critical frequencies in the lattice vibration
spectrum. (2) In the fundamental frequency region, the
amount of energy absorbed by a sample would be
expected to be proportional to the volume of material
in the beam (neglecting attenuation effects on the beam
within the sample). On the other hand, in the non-
fundamental frequency region, the amount of energy
absorbed would be proportional to the surface area
of the material. This behavior is analogous to impurity-
induced one-phonon absorption in which the surface
layer is regarded as the impurity. In the case of a slab-
shaped crystal, this would imply that the transmittance
of radiation normally incident on a slab would be
independent of thickness in the nonfundamental
frequency region.

These predictions of the infrared absorption spectrum
have been made using a mathematically simple, but in

many ways physically unrealistic model. This has the
advantage in that these effects can be readily interpreted
in terms of the atomic amplitudes. However, the
question arises as to whether these predictions would
also hold for more realistic models. The two principal
factors which have been neglected are: (1) retardation
and (2) Coulomb forces between atoms. Retardation
effects are of principal importance in considering the
long-wavelength optical branch modes where there is a
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intensity can be made by noting the similarity between
the size absorption and impurity-induced one-phonon
absorption. The impurity-induced absorption can be
observed with impurity concentration in the range of
10"impurities/cc. "Regarding the surface atomic layer
as analogous to the impurity situation, then the
calculated effective "impurity" concentration of a slab
2000-A thick is also in the range of 10"atoms/cc. This
suggests that the size absorption discussed here should
be observable with a sufficient number of layers.

It would be desirable to calculate the size effect using
a realistic model. However, the lattice dynamics of
hnite crystals with long-range Coulomb forces is quite
complicated. A promising approach of the long-wave-
length optical modes of a finite crystal has been
given recently by Kliewer and Fuchs. "One consequence
of the inclusion of long-range Coulomb forces is a
separation of the long-wavelength transverse and
longitudinal optical modes. A related effect is the
following: In models involving only short-range
interactions, the dispersion curves for long wavelengths
are Rat. That is, all of the long-wavelength modes have
practically the same frequency. When long-range
Coulomb forces are allowed and the crystal size is small
compared to the absorbing wavelength, it has been
suggested that the longest wavelength modes do not
all have the same frequency. "As a result there may be
a marked size and shape dependence in the fundamental
frequency region in addition to the other effects
discussed here.

In conclusion, the results of this present investigation
indicate that the lattice absorption of a 6nite crystal
can be quite complicated even within the framework of
the harmonic approximation. A number of effects have
been predicted, and these might be experimentally
observable under suitable conditions.

their hospitality during a period over which much of
the manuscript was written.

APPENDIX A

It is desired to show that the sum S(ts') defined by

Then

S(ts') = 2S'(ts') —2 costt'n. P (—1)"—
n=l g —g

(A2)

(A3)

=2S' (ts') —2 costs'n.

(A4)
n 08ti g —g,

in which the sums are taken over even or odd integral
values of g. Since

g 2 g
S'(ts')= Q ——+ P

neven g2 g2 nod/ g2 g2I I

n even ass —I s n=t (2ts)s —I s

oo g
S(ts') = P —(sin'ts'm.

n 1 g2 g2
+[1—(—1)"cose'e.]') (A1)

is in fact a constant independent of g' whose value is ~w'.

I.et
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n=1

(—1)"+'ts sinetr

g' —g"
(A6)

On squaring both sides and integrating over a range of x
from —z to +~, all cross terms on the right-hand side
of (A6) vanish except for those of the form

Eq. (A4) can be written as

S(ts') = 2(1+costs'7r)S'(tt, ') (cosN's)S—'(-,'ts'). (As)

In order to evaluate S'(n'), consider the identity"

x sing'x sinx 2 sin2x 3 sin3x
+ ~ ~ ~

2 sing'x 1—g" 2' —g" 3'—g"

"R.Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965);
K. L. Klievver and R. Fuchs, ibid. 150, 573 (1966)."M. Bass, Phys. Rev. Letters 13, 429 (1.964); A. A. Maradudin
and G. H. Weiss, Phys. Rev. 123, 1968 (1961);J. Grindlay, Can.
J. Phys. 43, 1604 (1965);R. Englman and R. Ruppin, Phys. Rev.
Letters 16, 898 (1966).

g2 —g'2
sin gx dx= ——

7l .
g —g

' R. Courant, Differential and Integral Calculus (Blackie and
Sons, Ltd. , London, 1937), 2nd ed. , Vol. I, p. 445,
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As a result, it is possible to write

4 sin2n'x

00 e 2

sin'e'xdx= P ~ ——=sS'(e')
8 —S

(A8)

(A9) into Eq. (A5) the desired sum S(e') becomes a
complicated trigonometric function of 2e'm, e'x, and
e m/2. With the aid of standard trigometric identities,
it is possible to reduce this and to show that

and
7I t' Sln2B m)

i
=S'(n').

4 sin'I'~k 2m'~ i
On inserting expressions for S'(n') and S'(-', e')

S(m') =-'x'. (A10)

This particular treatment holds for any nonintegral
value of n', where e' may approach an integral value

from arbitrarily closely.
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Electric Field Effects on the Dielectric Constant of Solids*

DAVID E. AsPNESf

Materials Research Laboratory and Department of Electrical Engineering,
University of Illinois, Urbana, Illinois

(Received 30 June 1966)

Calculations of the imaginary part of the dielectric constant of an anisotropic solid in the region of a
critical point are used to obtain the real part of the dielectric constant through Kramers-Kronig relations.
Changes in the real and imaginary parts of the dielectric constant are expressed in closed form for all four
types of critical points. Description of these changes can be made with only two functions. The e6ect of the
finite extent of a band is investigated, and it is shown that previous calculations of the change in the imagi-
nary part of the dielectric constant, based on bands of infinite extent, are valid as long as transitions are re-
stricted to regions near the critical point. Closed-form expressions for the Lorentzian broadening of the
changes in the dielectric constants are given in terms of Airy functions of complex argument.

I. INTRODUCTION

ITH the evaluation of certain integrals involving
Airy functions, it has been possible to obtain the

change in the imaginary part of the dielectric constant
or optical absorption caused by the application of an
arbitrarily oriented electric field near critical points in
solids. ' The same methods can be applied to evaluate
the change in the real part of the dielectric constant
near critical points, which formerly had been obtained
only by numerical integration about the fundamental
absorption threshold' 4 and about the MI critical point
in the special case of the field parallel to the negative-
mass symmetry axis. ' It is the purpose of this paper to
evaluate the dielectric-constant changes caused by an
electric field in closed form for an arbitrarily oriented
electric field in an anisotropic solid near all four types
of critical points, and to investigate the effects of the
finite extent of the energy bands on both the real and
imaginary parts of the dielectric constant in the pres-
ence of an electric field. The weak-field effective-mass
approximation will be used throughout.

*This research was supported by the Advanced Research
Projects Agency under Contract SD-131, and by the Rome Air
Development Command.

t Now at Brown University, Providence, Rhode Island.' D. E. Aspnes, Phys. Rev. 147, 554 (1966).'B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).' B. O. Seraphin and N. Bottka, Phys. Rev. 139, A560 (1965).
4K. S. „Viswanathan and J. Callaway, Phys. Rev. 143, 564

(1966).

WeimI, i

m, ~+my;

the four different critical points may be defined by the
reduced-mass signs':

Mp.

M1.

M2.

M3.

m„m„, m, positive (ellipsoid);

m„m„positive, m, negative (saddle point);

m„m„negative, m, positive (saddle point);

m„m„, m, negative (ellipsoid).

For the two saddle-point singularities M1 and M2, the
mass of odd sign is conventionally taken as m, .

' L. Van Hove, Phys. Rev. 89, 1184 (1953).
6 D. Brust, Phys. Rev. 134, A1337 (1964).

Rapid changes in the dielectric constant occur at
Van Hove singularities in an energy band, where the
gradient of the relative energy, Vt,(Z, E,), vanishe—s at
some value of k.' ' Such singularities are of four types,
depending on the band curvature or the signs of the re-
duced masses in the effective-mass approximation.
Assuming quadratic energy surfaces, we take the mass
of a conduction-band electron along the axes of sym-
metry as m„, m, „, and m„, and the hole masses along
the same axes as mg„mI, „, and ml„. Defining the re-
duced mass ns; for each coordinate i =x, y, and s as


