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Self-Consistent Energy Bands and Cohesive Energy of
Potassium Chloride
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Massachusetts Institute of Technology, Cambridge, Massachusetts

{Received 3 August 1966)

The valence and conduction bands of potassium chloride were determined by the augmented-plane-wave
method from a potential of a more general functional form than that usually assumed in this method. With
a few iterations of the band calculation within the Hartree-Fock-Slater (HFS) approximation, a good degree
of self-consistency was obtained. The calculation of the cohesive energy of the crystal from the energy-band
results was simplified considerably by using Slater s approximation to the exchange potential in the ex-
change-energy terms, and the resulting cohesive energy is in excellent agreement with experiment. The self-
consistent HFS values of the Cl 3p bandwidth and the band gap were found to be 0.82 eV and 6.3 eV,
respectively.

I. INTRODUCTION —THE APW METHOD

S originally proposed, ' the augmented-plane-wave
~ ~

(APW) method yields the eigenstates of a periodic
one-electron potential of a rather restricted form.
Within spheres centered at the atomic sites, the po-
tential is required to be spherically symmetric, while
outside these spheres (referred to as APW spheres) the
potential is taken to be a constant. If, however, one
requires accurate eigenstates of a potential of a more
general form, as for example in the case of an iterative
self-consistent-field calculation, the averaging of the
potential necessary to satisfy the above restrictions
may not be justified. It is therefore desirable to remove
these restrictions insofar as is possible. In view of the
extensive use of the APW method in recent years, it is
also of interest to obtain an accurate assessment of the
effects of these restrictions upon the calculated band
structure.

It is convenient to express the potential to be treated,
V(r), as a "muffin tin" part, V (r), which is spherically
symmetric within the APW spheres and constant out-
side, plus a remainder:

V(r) = V (r)+ V~(r)+ V2(r),

where V~(r) =0 inside the spheres and V2(r) =0 outside.
If V2(r) is omitted, the problem remaining may be
solved exactly by the APW method, as has been noted
previously. ' All that is required is the addition of the
matrix element of V~(r) between the APW's P, and P,
to the original matrix element of the Hamiltonian
minus the trial value of the energy, (H E),, ' Since-
the APW P, equals 0 '" exp[i(k+K, ) r] in the region
where V~(r) is nonzero,

1
(V&),,=— exp[—i(k+K;) r]

cell

X Vr(r) exp[i(k+K;) r]d'r=c(K; —K,), (2)
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' J, C. Slater, Phys. Rev. 51, 846 (1937).' H. Schlosser and P. M. Marcus, Phys. Rev. 131, 2529 (1963).
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where k is the vector in the first Brillouin zone labeling
the translational symmetry of the eigenstate, 0 is the
volume of the unit cell, K; and K; are reciprocal lattice
vectors, and c(K) is the Fourier coefficient of Vq(r)
corresponding to the reciprocal vector K. Since within
each sphere the APW's are made up of solutions of
Schrodinger's equation for the appropriate spherically
symmetric potential and therefore depend on E, the
eigenvalue E(k) is then determined by the customary
procedure of varying E numerically to satisfy the
condition,

det[(H —E);,]=0.
Since the degree of convergence of a given eigenvalue

is found to vary directly with the product k, R„
where R, is an APW sphere radius and k, is the mag-
nitude of the smallest wave vector omitted from the
APW basis set, it is customary to choose the sphere
radii so that nearest neighboring spheres touch. If the
radii of these spheres are reduced, the dimensionality
of the secular equation must increase in proportion to
(1/R, )' in order to maintain a given degree of con-
vergence and thus it is not feasible to make V2(r)
negligibly small by reducing the size of the APW
spheres. Since the APW's do not form a complete set,
the inclusion of matrix elements of V~ in the secular
equation would not be an exact procedure although it
would at least give the first-order effect of V2 upon the
band energies. The main reason for not including the
matrix elements of V2 is that they would increase
substantially the computational effort required to carry
out the band calculation. However, it should usually be
possible to treat V~ as a first-order perturbation using
the wave functions of the unperturbed APW eigenstates.
If greater accuracy should be needed, one could use the
eigenfunctions of the APW problem without V2 as a
basis set and diagonalize the resulting Hamiltonian
matrix as has been done for relativistic corrections. '

It is also possible to estimate the effect of V2 upon
the energy bands by including approximate matrix
elements of V& in the secular equation. One way to

' J. B. Conklin, Jr., L. E. Johnson, and G. W. Pratt, Jr., Phys.
Rev. 137, A1282 (1965).
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approximate the matrix elements of V~ is to replace the
APW's by the corresponding plane waves in the ex-
pression for these matrix elements. The approximate
value of (V&);, is then the Fourier coeScient of V~(r)
correspondmg to the rec1procal lattice vector (Kj Kj)
as in Eq. (2). This approximation is justi6ed if the
major part of the true matrix element of V2 comes from
the regions close to the surfaces of the APW spheres
where the interior parts of the APK's join continuously
onto the plane-wave exterior part.

II. SUPERPOSED-FREE-ION HFS POTENTIAL

To obtain a potential of a realistic form for the
purpose of carrying out a numerical example of the
above discussion, the Hartree-Fock-Slater (HFS) pre-
scription was applied to an assumed charge density for
KCl. This crystal charge density was obtained by super-
posing free-ion charge densities centered on the ionic
sites of the crystal which has NaCl structure. Thus the
superposed-free-ion (SFI) charge density may be written

us~r(r)=Z 2'u (Ir—R —r I), (4)

where the index g res over all the points I, of the
fcc lattice and p„ is the free-ion charge density of the
nth ion in the unit cell, located at r„relative to R,.
The Coulomb part of the HFS potential is then a
lattice sum of the Coulomb parts V,„(r) of the free-ion
HFS potentials and the exchange part is the averaged
free-electron or "p't"' potential, 4'

where the second term is the sum of the contributions
of all neighboring ions, in the point-ion approximation.
The Madelung constant' o. is 1.747558 and the cube
edge u was chosen to be 11.8014 a.u. following How-
land. s The last term contains the departures of the
Coulomb potentials of the near neighbors from the

asymptotic forms, &2/r, averaged by Lowdin's method. '
The APW sphere radii were chosen to be a/4 which
seemed to make V2 as small as possible for the case of
touching spheres. The average of the Coulomb poten-
tial in the region outside the APK spheres is obtained
from the volume integrals of V,~ and V,2 inside the
APK spheres and the volume integral over the entire
cell of the Coulomb potential which is just the volume
integral of V,~+ V,2 over all space. Since the Coulomb
part of V(r) —V (r) is, apart from an. additive constant,
a lattice sum of spherically symmetric functions, the
Fourier coeKcients of the Coulomb part of Vc(r)
+Vg(r) are also easily obtained by radial integration.

The exchange part of the potential is not as easily
treated because it is not linearly related to the charge
density. However, the method applied above to the
Coulomb potential can be used to express the total
charge density ln thc 'foI'Dl

~»r (r) =u-(r)+a~(r)

where p„(r) equals the spherical average of the charge
density within each APW sphere and the average of
the charge density outside. It is then convenient to
choose the exchange part of V (r) to be

In order that V(r) might be reasonably close to the
self-consistent HFS potential for the crystal, the free-
ion charge densities were obtained from the HFS
atomic program of Herman and Skillman. '

The Coulomb part of the potential in Kq. (5) may
be expressed in the form given in Eq. (1), with the
remainder terms V~ and V2 in Fourier-series form, by
performing the appropriate radial integrations. For
example, the spherical average of the Coulomb poten-
tial about the K+ (n= 1) ionic site, chosen to be at the
origin, is

To obtain a Fourier series for the remainder of the ex-

change potential, this remainder was tabulated on a
cubic grid of points in 1/48 of the unit cell and the
Fourier coefficients were calculated by triple numerical
integration. Similarly, V~(r) was tabulated, using
Kwald's method'0 for the point-ion part of the Coulomb
potential, and its Fourier coeKcients were obtained
numerically.

In Table I, the values of V~(r) are given at three
points on the plane bisecting the line from the K+ ion
at the origin to the Cl ion at a/2(001). The values of
Vg at u/4(001) and a/4(111) turn. out to be the ex-

IRg+f ~I+r— 2
V,.(r') w —r'dr', (6)

r'tR0+~~l —.—

4 J. C. Slater, Phys. Rev. 81, 385 (1951).
5 Unless otherwise indicated, the potentials referred to here will

have the units of Ry/electron, so that the potential due to a
nucleus of atomic number Z located at the origin is —2Z/r and
the Coulomb part of the potential satisfies the equation V'V, (r)= —8~p(r), where the electronic-charge density p(r) is a positive
function having the units of electrons/cubic Bohr radius.

'F. Herman and S. Skillman, Atom& Structure Calculates
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

(001)a/4
(Oiila/4

0.281—0.083-
—0.189

0.205—0.069—0.156

C. Kittel, IrItroductiorI, to SoM State I'byes (John bailey R
Sons, Inc. , New Vork, 1956), 2nd ed. , p. 77.' L. P. Howland, Phys. Rev. 109, 1927 (1958).' P.-o. Lowdin, Advan. Phys. 5, 96 (1956)."P. P. Kwald, Ann. Physik 64, 253 (1921);Ref. 7, Appendix A.

YAaiE I. VI(r) and the exchange contribution to VI(r) in units
of Ry/electron.
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tremal values, while the dominance of the exchange
part of V~ is apparent from the table. Just inside each
APW sphere, Vq(r) undergoes angular variation with
an amplitude of about 0.1 Ry, which is the same order
of magnitude as the nonspherical part of the point-ion
potential. About a given ionic center, the part of V~(r)
produced by charges outside the corresponding APW
sphere satisfies Laplace's equation and is therefore
represented by an expansion in r'Vp(e, &), where the
lowest nonzero value of / is 4 because of the cubic
symmetry about each ionic site. The rest of V2(r) is
produced by the tails of the charge densities of neigh-
boring ions and thus Vz(r) falls off fairly rapidly as the
distance from the center of an APW sphere decreases.

III. ACCURACY OF THE APW METHOD
APPLIED TO KC1

To assess the e6ects upon the calculated band struc-
ture of the remainder terms in the potential of Eq. (1),
the bands were calculated at several inequivalent points
in the Brillouin zone for the potentials V„(r), V (r)
+Vi, (r), and V (r)+V~(r)+V2(r) For the last of
these, the approximate matrix elements of V2(r) de-
scribed above were used. The resulting bands were
similar to those shown in Fig. 1, where the lowest band
shown is the Cl 3p band which is the highest occupied
band. By taking differences between these sets of re-

KCP O'ND ENERGIES IN RYDBERGS

suits, the effects of Vq(r) and V2(r) on the bands were
determined. The various states in the Cl 3p band were
found to be shifted by amounts from —0.001 to —0.004
Ry by including V&(r), while the estimated effect of
V&(r) on these states was typically 10 times smaller.
These results were to be expected from the fact that the
part of the C13p charge density in the interstitial
volume is concentrated close to the APW spheres and
the fact that the energies of p states are not affected
to first order by the nonspherical part of a potential of
cubic symmetry. The effects of V& and V2 on the K 3P
and Cl 3s bands, both of which were found to be about
0.9 Ry below the Cl 3p band, were somewhat smaller.
The estimated contributions of V~ to the energies of
the conduction bands were found to be less than 0.005
Ry in magnitude and typically &0.002 Ry. The
contributions of V~ to these band energies, with one
exception, ranged between —0.017 Ry and 0.039 Ry,
the predominance of positive values being due to the
positive average value (0.016 Ry) of the exchange part
of V~. However, in the case of the F2. state, the potential
V&+ V& contributed 0.0689 Ry or 0.94 eV to the energy.
The gap between the Cl 3p band and the lowest con-
duction state was 6.7 with the SFI potential of Eq. (1)
as compared with a gap of 6.4 eV obtained from V
alone, and with the experimental value of about 7.5
eV."Thus the effect of Vj, the remainder term in the
potential outside the APW spheres, is not negligibly
small in comparison with the discrepancy between
theory and experiment, while it would seem that the
nonspherical potential inside the spheres may safely be
neglected in KCl.
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IV. THE SELF-CONSISTENT ENERGY-BAND
CALCULATION

In the course of an iterative HI'S energy-band calcu-
lation, a crystal charge density p(r) is obtained by
summing the charge densities of all occupied Bloch
states, and the potential for the next iteration is ob-
tained by solving Poisson's equation for this crystal
charge density and adding the exchange correction
which is proportional to p"'(r). From the crystal charge
density given by the Bloch states of this potential, a
new potential is derived by the same prescription and
a comparison of these two potentials indicates the
degree of self-consistency which has been achieved.
Since p(r) is not in general a lattice sum of spherically
symmetric functions, the calculation of the Coulomb
part of the potential in the iterative calculation is a
little more involved than above. If we write

(9)

I t I

r a x z w K z r A L w

Fro. 1. The conduction bands and the highest valence band for
KCl determined by the APW method at 12 inequivalent points
in the first Brillouin zone using the self-consistent HFS potential.

where p (r) is the spherical average of p(r) inside each
APW sphere and equals the average po of p(r) in the

"G.Kuvrabara and K. Aoyagi, J. Phys. Chem. Solids 22, 333
(1961),
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TABLE II. SFI and self-consistent (SC) charge densities
outside APVV spheres.

(002)u/8
(012)u/8
(112)u/8
(022)u/8
(122)u/8
(222)u/8

average charge density (p0)

PsFI(&)

0.0114
0.0058
0.0033
0.0023
0.0017
0.0011
0.00378

0.0105
0.0055
0.0029
0.0016
0.0010
0.0006
0.00335

"J. C. Slater and P. DeCicco, MIT Solid-State and Mo-
lecular Theory Group Quarterly Progress Report No. 50, 1963
(unpublished).

"This procedure has also been used to speed the convergence
of self-consistent atomic HFS calculations. See Ref. 6.

region outside, then the exchange part of the potential is
conveniently handled as described in Sec. II. The con-
tributions of p and py to the Coulomb potential are
conveniently treated separately, using Ewald's method
to obtain the solution of Poisson's equation for p and
a Fourier-series solution for the Coulomb potential
from pf.

A considerable simplification of the iterative calcula-
tion was obtained by neglecting pz(r) when calculating
the potential. With this approximation, the difFiculty
in treating the exchange potential was removed and it
was only necessary to calculate the spherical average
within each APW sphere of the charge density from the
Bloch functions. As a check on this approximation, the
potential from p (r) alone in the SFI case was used to
recalculate charge densities of a few occupied states.
The discrepancies thereby introduced in these charge
densities suggested a discrepancy in the total charge
density five or ten times smaller than the difference be-
tween psFz(r) and the final charge density of the
iterative calculation. The contributions of p (r) to the
remainder terms V~ and V~ were also neglected since
they seemed less important than those of py in the
SFI case.

The potential for each iteration was derived from an
average of the charge density from the previous itera-
tion and the charge density used to obtain the potential
for the previous iteration. " For the 3s and 3p valence
bands, the charge densities of the Bloch states were
summed on a cubic grid of 32 points in the first Brillouin
zone. The Is, 2s, and 2p charge densities of both ions
were assumed to remain the same as in the free ions.
This assumption was later checked by calculating the
core states of the self-consistent KCI potential and was
found to be justified. In the third and last iteration, the
contributions to the potential neglected in the previous
iterations were included approximately and the result-
ing band structure is shown in Fig. 1. The degree of
self-consistency of these results is characterized by the
differences of less than 0.01 Ry between the contribu-
tions of p (r) to the potentials for the second and third
iterations.

A comparison of the charge density from the second
iteration of the band calculation with psrz(r) indicates
that a good choice of the starting potential was made.
The increase of 0.1 electrons in the charge within the
Cl sphere suggests that the Cl ion in KC1 is slightly
compressed as compared with the free Cl—ion. The
similarity between the SFI and self-consistent charge
density in the interstitial region, shown in Table II,
suggests that a better restricted iterative procedure, at
least for KC1, would involve holding pf(r) fixed rather
than neglecting it during the iterative calculation.

V. DISCUSSION OF THE BAND
STRUCTURE OF KCl

A. Valence-Band Width

In Fig. 1 the energy bands from the third iteration
described above are plotted on the APW scale, on which
zero corresponds to the value of V (r) in the region
outside the APW spheres. The Cl 3p band has a width
of 0.0601 Ry as compared with a width of 0.0549 Ry
obtained from the SFI potential. These values differ
significantly from the width of 0.112 Ry or 1.52 eV
found by Howland. Since Howland treated the ex-
change correction exactly within the tight-binding ap-
proximation, the Cl 3p band which he calculated, results
in effect, from a k-dependent potential. However, it is
not certain that the discrepancy in band widths is to
be attributed principally to the k dependence of the
Hartree-Fock (HF) potential since the tight-binding
approximation used by Howland may also contribute.
Furthermore, a k-averaged HF potential might yield a
C13p band differing substantially from that obtained
in the HFS approximation.

Although there does not appear to be any clear-cut
experimental value for the valence bandwidth, owe

interpretatiorz of the Ee x-ray emission data of Parratt
and Jossem is that the width at half-maximum of the
Cl 3p band density of states is about, 0.33 ev.z4 While
the Cl 3p band of the APW calculation has not been
evaluated at sufFiciently many points to obtain an
accurate density-of-states curve, the width at half-
maximum of the density of states seems to lie between
0.3 and 0.5 eV, as compared with 0.87 eV found by
Howland '

B. Work Function and Band Gap

In the one-electron picture, the work function of the
crystal is the negative of the energy of the highest
occupied state on the energy scale for which the poten-
tial goes to zero outside the crystal, provided that a
suitable final state for a transition of this energy exists.
With the work function greater than the band gap, this
restriction presents no difFiculty if we assume phonon-
assisted indirect transitions or consider the large col-

'4 L. G. Parratt and E. L. Jossem, Phys. Rev. 97, 916 (1955).
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TABLE III. The free-ion valence energy levels are related to the
approximate average energies of the valence bands by adding the
Madelung shifts, ~4' /a= ~0.59232 Ry, to the free-ion energies.

Orbital HFS HF

K+ valence energies (Ry)
3s —3.4480'
3p —2.23078

—3.930b—2.341b

K+ ionization potential'= 31.81 eV =2.338 Ry

Cl valence energies (Ry)
3$ —1.062'
3p —0.1909'

—1.454~
—0.2971d

Electron aiTinity of Cl' (Cl ionization potential) =3.72 eV
=0.2735 Ry

Approximate positions of valence bands (in Ry) found
by averaging the energies of the bands and by shifting the
free-ion energies
Level Shifted HFS APWf Shifted HF Howlandg

K+3s
K+3p
Cl 3s
Cl 3p

—2.856—1,639—1.654—0.782

—2.88—1.655—1.660—0,778

—3.338—1.749—2.046—0.887

—3.333—1.75—2.01—0.84

a Calculated using the HFS program described in Ref. 6,
b D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A166, 450

(1938).
e R. B. Leighton, Principles of Modern Physics (McGraw-Hill Book

Company, Inc. , New York, 1959).
d D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A156, 45

(1936).
e M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford

University Press, New York, 1956), 1st ed.
f From SFI potential which has Vm(r) = —0.5152 Ry outside the APW

spheres.
& Reference 8.

"J.W. Taylor and P. I.. Hartman, Phys. Rev. 113, 1421 (1959),"E.A. Taft and H. R. Philipp, J. Phys. Chem. Solids 3, 1
(1957).

'7 A. R. Ruffa, Phys. Rev. 130, 1412 (1963).

lection of states close to the top of the valence band.
From the C13p band obtained from the SFI potential
of Eq. (5), the work function is 10.27 eV, as compared
with experimental values ranging from 8.1 to 8.7 eV.""
From a point-ion calculation of the E field at an ionic
site in a (100) surface of a KC1 crystal, and the ionic
polarizabilities of K+ and Cl, ' a surface dipole layer
producing a positive contribution of 0.5 eV to the one-
electron potential inside the crystal was found. In
addition, the I'»Cl 3p state went up in energy by 0.68
eV in going from the SFI to the self-consistent potential.
XVith these two corrections, the theoretical value of the
work function is lowered to about 9.1 eV.

The self-consistent band gap separating the FtsCl 3P
state and the I'1 conduction state is 6.3 eV, as compared
with the gap of 6.7 eV from the starting potential and
the experimental gap of 7.5 eV. One way to account for
the discrepancy of 1.2 eV is to claim that the Cl 3p
band is too high by roughly this amount as is the HFS
3p level of the free Cl ion. This interpretation is sup-
ported by the close association between the free-ion
one-electron energies and the positions of the occupied
bands in KC1 shown in Table III. A comparison of the

valence energies from the Herman-Skillman HFS atomic
program with the HF valence energies of the free ions
reflects most of the difference between the spacing of
the HFS valence bands and the spacing of Howland's
valence bands. Thus if we "correct" the position of the
Cl 3P band by the amount by which the HFS Cl 3p
energy differs from the experimental ionization poten-
tial of Cl or the HF Cl 3p energy, we obtain a band

gap which is in excellent agreement with experiment.
If, however, we lower the Cl 3p band by the difference

of 1.1 eV between the Cl 3p HFS energy and the
electron affinity of Cl," the work function is increased
to 10.2 eV. One can come close to resolving this diS.-
culty by supposing that the final state of the crystal in
the photoemission process involves a localized hole
rather than a Bloch hole. The energy of the final state
is then lower than the Bloch-hole state by the energy
of interaction of a hole localized on a Cl site with the
electronic polarizability of the neighboring ions." A
value of 1.3 eV for this energy has been obtained
assuming a point-charge hole and taking the jnduced
polarizations to be point dipole moments. " The fact
that 93% of the charge of the APW I'ts Cl 3p state is
within the Cl APW sphere lends some support to this
model. If the same correction is to be applied to the
energy of the system when an electron-hole pair is
formed, it is then necessary to raise the bottom of the
conduction band by the same amount to obtain the
correct band gap.

C. Character of the Conduction Bands

In view of a recent attempt to identify certain fea-
tures of the optical absorption and reQectivity spectra
with direct optical transitions between band states,
assuming nearly free-electron conduction bands, " it is
appropriate to begin a discussion of the conduction
bands by comparing them with the free-electron bands.
The state at the bottom of the conduction band is of
I'& symmetry as in the free-electron case and in the
neighborhood of F1 the band is of the form

(10)

By fitting the energies of the I't and At(0s0)ir/a states
to this form, an approximate value of 0.58 electron
masses is obtained for the effective mass m* from the
self-consistent bands of Fig. 1. A fourth-order fit in-
cluding also the point (010)rr/ts yielded a value of 0.55
for m* at I'1, suggesting that this fitting procedure is
reasonably reliable in this case. The value of m* ob-
tained in this way also seems insensitive to the differ-

"M. Born and K. Huang, Dynamics of Crystal Lattices (Oxford
University Press, New York, 1956), 1st ed.

' T. I, Kucher and K. B. Tolpygo, Fiz. Tver. Tela 2, 2301
(1960) LEnglish transl. : Soviet Phys. —Solid State 2, 2052 (1961)7."T. I. Liberberg-Kucher, Zh. Eksperim. i Teor. Fiz. 30, 724
(1956) LEnglish transl. : Soviet Phys. —JETP 3, 580 (1956)j."J.C. Phillips, Phys. Rev. 136, A1705 (1964).



ences among the potentials mentioned in Secs. III
and IV.

Additional contrast between the conduction bands in
KCl and the free-electron bands can be seen in Table IV,
where the free-electron and APW band energies relative
to the I'~ level are given at the three points of highest
symmetry. Only for those states such as r„r»., X4,
and X5., whose wave functions are dominantly s- or
p-like, is there reasonable agreement between the free-
electron and APW energies. This can be understood
qualitatively in terms of a pseudopotential formalism"
in which the conduction states having the same sym-
metry as occupied states experience a repulsive poten-
tial in place of the orthogonality requirement which
forces the s and p parts of the wave functions of these
states to have nodes inside the ionic spheres. In this
formalism, the effective wave functions of such states
are "smooth functions, "perhaps similar to plane waves.
From the fact that the energy of the F& state is 0.26 Ry
on the APW scale, it would appear that the average
over the unit cell of the pseudopotential for such states
would be of the order of 0.26 Ry higher than the
average HFS potential outside the APW spheres. For
the states which are orthogonal to the occupied states
by symmetry, the pseudopotential is just the HFS
potential which has an average value of about —0.75
Ry on the APW scale. This suggests that the d-like
states such as I'~5. , 7~2, and X3 should be on the order
of one rydberg below the corresponding free-electron
states.

The lower conduction bands presented here are in
qualitative agreement with those of a recent approxi-
mate OPW calculation although the band gap in the
latter calculation was 9.8 eV."Thus the proximity of
the d-like bands to the bottom of the conduction band,
made plausible by the above arguments, is established

by direct calculation and is the essential difference be-
tween the band structure presented here and that
assumed by Phillips. "

The complexity of the low-lying conduction bands is
such that one can have little hope of identifying optical
transitions between valence and conduction bands re-
liably. This difhculty is compounded by the fact that
the dominant features of the optical data are attributed
to excitons and other collective excitations'4 and by the
sensitivity of the conduction bands to the potential used
to calculate them. If, for example, the average potential
outside the APW spheres were arbitrarily raised in
order to bring the I'~5-I"~ spacing up to 7.5 eU, the d-like
states would move several tenths of an electron volt
closer to the bottom of the conduction band since there
is less probability density outside the spheres in the d
states than in the I'~ state. Thus the rapid rise in the

22 J. C. Phillips and I,. Kleinman, Phys. Rev. 116, 287 (1959).
"S.Oyama and T. Miyakawa, J. Phys. Soc. Japan 20, 624

(1965);21, 868 (1966)."H. R. Philipp and H. Ehrenreich, Phys. Rev. 131,2016 (1963).

TABLE IV. The free-electron energy, equal to k' in atomic units,
and the APW band energies relative to the APW F& energy.

Symmetry

~1
~25'

F2
P 25'

~15

Xg
X1
X2
X1
X4
XG
XG
X3

L2'
L1
L3
Lg
L1
Lgl

ka/x

0 00
2 2 2
0 40
2 22
4 04
2 2 2

—2 02
0 20—4 20—2 02
0 20—4 2 0—2 02
2 42

1 1 1
1 1 1

—1 —1 3—1 33—1 —1 3—1 —1 3

0.0
0.85
1,13
0.85
2.27
0.85

0.57
0.28
1.42
0.57
0.28
1.42
0.57
1.70

0.21
0.21
0.78
1.35
0.78
0.78

I;(APW) —S(r,)
0.0
0.20
0.23
0.61
0.70
0.95

0.09
0.21
0.28
0.32
0.21
0.36
0,63
0.66

0.18
0.21
0.31
0.38
0.44
0.45

density of states at the transition from s-like states
near I'j to d-like states may correspond to the beginning
of a rapid rise in the hole-electron recombination
luminescence as a function of incident photon energy
which is found to occur at 8.1 eV."

for the same potential V(r), they are orthogonal and
the total kinetic energy is therefore

(12)

where
(13)

The Coulomb terms in the total energy are

p, (r) V,.„('(r)d'r+-', Q V.'Z,
2 cr

where V„„~'(r) is the Coulomb part of the HFS poten-
tial, V'(r), derived from p, (r) and the nuclear charges,

"T. Timusk and W. Martienssen, Phys. Rev. 128, 1656 (1962).

VI. CALCULATION OF THE COHESIVE ENERGY

Within the HFS approximation it is possible to ob-
tain an expression for the total energy of the system
involving only the one-electron energies, one-electron
potentials, and the total charge density. We begin by
considering the expectation value of the Hamiltonian
of the crystal with the nuclei fixed, for a state repre-
sented by a Slater determinant of the occupied Bloch
states p, determined in the band calculation. Since all

P, satisfy the equation



SELF —CONSISTENT ENERGY BANDS 937

and V ' is the electrostatic potential at the site of the
0.th nucleus, of charge Z, produced by all other charges.
The exchange term,

TABLE V. Approximate corrections are added to the calculated
cohesive energy and the estimated uncertainties in these correc-
tions are given (in Ry).

—2Z

2
X P, *(2)—$, (2)d'»2 d'ri,

Correction for replacing V' by U
'

Convergence correction
Correction for summation on finite

grid of points in Brillouin zone
Uncorrected cohesive energy
Corrected cohesive energy

—0.0147a0.002—0.0206~0.005

—0.019 ~0.008—0.4600—0.514 ~0.015

+-', Q V 'Z, (14)

where V'(r) is equal to V(r) only if the band calculation
is self-consistent in the HFS sense. Equation (14) can
also be applied to obtain the total energy of a free ion,
(H)„, provided that all the free-ion orbitals satisfy
Schrodinger's equation with the same potential. "This
condition is satisfied by the results of the Herman-
Skillman program mentioned above. The cohesive en-

ergy per unit cell in the HFS approximation is then

U= lim
Qg~oo

p (r) V(r)d'»

involves the charge density of the state s multiplied by
the s-dependent exchange potential which is replaced
by the "p""'potential to obtain the HFS approximation
from the Hartree-Fock equations. If we make this same
replacement in the above exchange energy, the sum on
s may be performed and the total energy becomes

1
(H) =g E,.— p, (r) V(r)d'r+ — p, (r) V'(r)d'r

8 2

tion is obtained by replacing p, (r), V'(r), and V(r) by
their muffin tin" averages p, (r), V '(r), and V (r)
so that only radial integrations need by performed. An
approximate correction of the error thereby introduced
in the case of KCl is given in Table V.

One desirable property of a total energy formula is
that the calculated energy be fairly insensitive to the
assumed wave function of the system. In this case, the
assumed wave function is determined by the potential
V(r). A change bV (r) in this potential produces changes
bE, in the one-electron energies and a change bp, (r) in
the total charge density which in turn produces a change
bV'(r) in V'(r). From Eq. (14), the associated change
in the total energy is

b(H)=b P E, p, (r)bV—(r)d'r

bp, (r)[V(r)—V'(r)]d'r

1+- [p.(r)bV'(r) —bp, (r) V'(r)]d'r
2

+-', P b V.'Z. . (16)

1
+— p, (r) V'(r)d'»+~i P V„'Z„—P (H), (15)

2 n n

where the integrals and the sums on e are taken over
the unit cell and E~ is the number of points in the
Brillouin zone over which the one-electron energies and
charge densities are summed. Since most of the terms
in Eq. (15) are »U, it is appropriate to divide the re-

gion of integration into parts inside and outside the
APW spheres and to make use of the similarity between
the free-ion and crystal charge densities and potentials
within the spheres. Making use also of the close rela-
tionship between the band energies and the free-ion
one-electron energies shown in Table III, we can ex-

press U in terms of quantities which are & U and thus
the accuracy required for integrations involved is
easily attained. A further simplification of the calcula-

"J.C. Slater, Quantum Theory of Atomic Structzfre (McGraw-
Hill Book Company, Inc. , New York, 1960), Vol. II.

"This has already been done in relativistic atomic HFS calcu-
lations. See E. C. Snow, J. M. Canfield, and J. T. Waber, Phys.
Rev. 135, A969 (1964).

so that

bp, (r)
bVexch (r) Vexch (r) c

3p (r)

1
b(H) = —— bp, (r) V,x,h'(r)d'r.

3

Thus as self-consistency is approached, (H) does depend
linearly on the charge density, but only through a term
involving the exchange potential.

The two principal sources of uncertainty in the
numerical calculation are the truncation of the APW
basis set needed to obtain a finite secular equation, and
the use of a sum over a finite grid of points in the

The first two terms in Eq. (16) cancel in first-order
perturbation theory while the third is quite small if
V(r) is nearly self-consistent in the HFS sense. In the
remaining terms, the Coulomb interactions of bp, (r)
with p, (r) and the nuclear charges come in twice and
with opposite signs. Therefore only the exchange terms
remain and from the binomial expansion of [p, (r)
+bp, (r)]"' we have to first order
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Brillouin zone to approximate the limit in Eq. (15).
The error in U introduced by these approximations is
given by Eq. (16) without the term involving 8V(r),
and by the same arguments as were used to obtain
Eq. (18) this error is

SU=8 P E, 8p—, (—r) V,„,h'(r)d'r
8 3

5p, (r) [V(r) V—'(r)]d'r, (19)

where the 6 quantities are the errors introduced by the
above approximations.

In the calculation on KC1, V(r) was the "muon tin"
potential used for the second iteration of the band
calculation. The error introduced by using V '(r) and

p (r) in place of V'(r) and p, (r) was corrected approxi-
mately using Vz(r) from the SFI potential and a Fourier
series for p, (r) in the region outside the spheres ob-
tained from the APW wave functions. The summation
over the Brillouin zone for the K+ and Cl 3s and 3p
valence bands was done on a cubic grid of 32 points
weighted equally. The error introduced by this pro-
cedure was estimated by replacing the equal weights by
a set of weights based on Simpson's rule. Since the
wave functions of the core states are well represented
by Bloch sums of nonoverlapping functions, only the
integration of the radial Schrodinger equation inside
the spheres was needed to obtain the core charge
densities and one-electron energies. The error produced
by cutting off the APW basis set at wave vectors having
square magnitude equal to 55 in units of (vr/a)' was
estimated by recalculating some of the Bloch states
with larger basis sets. In Table V, these corrections are
listed together with their estimated uncertainties.

As a check on the sensitivity of the cohesive energy
to the wave function assumed, the difference between
the values of U from the first and second iterations was
calculated from Eq. (18).This difference, U(1)—U(2),
was found to be 0.032 Ry or about 6% of the cohesive
energy.

The value for the self-consistent-field part of the
cohesive energy obtained in Table V is equivalent to
—161&5 kcal/mole and compares very favorably with
the value of —160&3 kcal/mole obtained by Howland's
treating the exchange term exactly in the tight-binding
approximation. To compare with experiment, it is
appropriate to add a zero-point energy of 1 kcal-mole
obtained from the Debye model, and a van der Waals
energy of attraction between the ions of —7.6 kcal/
mole. ' Thus the calculated cohesive energy becomes
—168~5 kcal/mole as compared with the value of
—167.8&2 from the Born-Haber cycle. '

VG. CONCLUSION

On the basis of the above investigation, it appears
that no great enhancement of the accuracy of energy-
band calculations is to be obtained by improving upon
the APW method for solving the one-electron problem
because of the uncertainty in the periodic potential
used. If, however, a more reliable prescription for this
potential were to be found, then the refinements of the
APW method discussed here would be significant. We
have also seen that the iteration of the band calculation
to self-consistency and the calculation of the cohesive
energy from the energy band results are feasible, at
least within the HFS approximation. The comparison
of the calculated band structure of KCl with experi-
ment, while limited, is quite satisfactory in view of the
intrinsic limitations of the theory.
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