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Exciton Structure and Magneto-Optical Effects in ZnS*tf
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The exciton structure in hexagonal ZnS has been studied in transmission and interpreted in terms of an
effective-mass formalism. The Ni = 1, 2, 3, 4, and 5 states of the first (1 &

—Fii) series, and the n2= 1,2, and 3
states of the second (I"&—F7) series have been observed and identified. From the series limits, a band gap
of 31 543 cm ' and a crystal-field splitting of =240 cm ' has been measured. Using a semiempirical theory
of exciton structure to interpret the behavior of the excited states in the presence of an external magnetic
field, band parameters for the I'q conduction band and the I'9 valence band have been obtained. We find an
isotropic electron effective mass m, =0.28&0.03, and an anisotropic hole mass with mq, ——0.49&0.06,
mq, ——1.4, where m, and mf, are expressed in terms of the free-electron mass. In addition, the conduction-
band electron is found to have a g value approximately equal to 2. The most interesting feature of the exciton
spectra is that interpretation of the first-series excited states requires the assignment of so-called forbidden
symmetry. It is shown that the occurrence of very strong forbidden transitions in ZnS is in line with the
trend exhibited by the exciton spectra of CdSe and CdS.

INTRODUCTION

'HE existence of exciton spectra and magneto-
optical effects in the Group II—VI compounds

provides a method for investigating the band structure
of these materials in great detail. Exciton ground states
for the three series derived from the single S-like con-
duction band and the three P-like valence bands in
ZnS have been observed in reQection by Birman et al.'
In transmission, Piper et a/. ' was able to observe the
m=1 states of both the first and third series and the
m=1, 2 states of the second series. This is to report on
the observation of higher excited states of both the first
and second series and the detailed behavior of the first
series in the presence of an external magnetic field,
since these states are suSciently narrow to provide
meaningful results. A quantitative comparison of the
observed energies of the 2S, 2Ppg, and 3D~&,~2 states of
the first series with an anisotropic-exciton-mass
formalism allows the evaluation of the electron and
hole masses and g-value parameters. ' In addition,
several exciton states are observed when the magnetic
energy is an order of magnitude greater than the
Coulomb binding energy for the states. Comparison of
these energies with a high-field approximation4'
corroborates the band parameters obtained from the
low-lying exciton states.

*Supported in part by the OfFice of Scientific Research, U. S.
Air Force.

t Based on a thesis presented to the faculty of the Graduate
School of Yale University in partial fulfillment of the require-
ments for the Ph.D. degree by John C. Miklosz.

f A preliminary report of this work is to be found in the Proceed-
ings of the 7th International Conference on the Physics of Semi-
conductors, Paris, 1964 (Academic Press Inc. , New York, 1964).
Therein the symmetry of some lines are incorrectly identified.

' J. L. Birman, H. Samelson, and A. Lempicki, G T R F. Res.
Develop. J. 1, 2 (1961).' W. W. Piper, P. D. Johnson, and D. T. F. Marple, J. Phys.
Chem. Solids 8, 457 (1959).

'R. G. Wheeler and J. O. Dimmock, Phys. Rev. 125, 1805
(1962).

4R. J. Elliot and R. Loudon, J. Phys. Chem. Solids 8, 382
(1959).

'R. J. Elliot and R. Loudon, J. Phys. Chem. Solids 15, 196
(1960).

An effective-mass formalism may be used to describe
the experimental situation if the following assumptions
characterize the electronic band structure of ZnS:

(1) The band extrema are at or very near ir=0, so
that the energy surfaces may be considered ellipsoidal
and the electron and hole masses expressed as diagonal
tensors. Casella' has shown that the secular determinant
defining the energy surfaces of a Fz conduction band
may contain off-diagonal terms linear in k. These terms
are quite small however and may be neglected to a
first approximation.

(2) The exciton-mass anisotropy and the dielectric
anisotropy are small, allowing first-order perturbation
calculations to be made for the exciton energy states
and magnetic field effects.

(3) The energy of the longitudinal optical phonon is

much greater than the exciton binding energy, allowing
low-frequency dielectric constants to be used with no
corrections for polaron effects. This is expected to be
the case for exciton states with m=3 and above which
have small binding energies and large orbital radii.

(4) The valence-band splittings are large compared
to the binding energies of the exciton states allowing
one to neglect mixing between valence bands.

While the first three conditions are believed to hold
for ZnS, there is some question as to the validity of
neglecting the interband mixing. This mixing has been
estimated to be proportional to '

(R/AE) a/ao*,

where R is the exciton binding energy, AE the interband
separation, a the lattice constant, and co~ the exciton
Bohr radius. As we shall see, R=250 cm ' and ao*=25 A
for the first-series exciton in ZnS. Using the crystal-held
splitting of =240 cm ' determined for the two upper-
most valence bands, we find a value of =0.2 for the

' R. C. Casella, Phys. Rev. Letters 5, 371 (1960).
J. 0. Dimmock, Se&niconductors and Semimetals (Academic

Press Inc. , New York, to be published), Chap. 3.6.' W. Kohn, Solid State Phys. 5, 257 (1957).
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TABLE I. Energies for H~~C: first series, Ni ——1,2,3. be written as' "
State Coe

2S

2Po

2P, I rI+I

2PgI

35

3Po

3Pq1 I'1+I'2

3Do

3D, I I'I+r~

3DpI

3Dp2 I'I+I'2

3Dg2

Energy a

1 3 1
Ef Io 1 +—a +—a + oHz~ +- (gh-. gez) poH

3 20 2

1 3 1
i +—a+—am +14aHz' a—(ghz —g-) puHz

3 20 2

3 9 1
E2o 1+-a+—a~ + 6aHz2+ —(ghz —gcz) puHz

5 28 2

1 9 1 1
E20 1 + a+ —a& +12oHz2 ~ ——-(ghz —gez) PoHz

5 140 2

1 9 1 1
E2o 1+ a+-—a& +12oKz~ & ——-(ghz+gez) PoHz

5 140 2

1 3 1
E3 1 +—a+—am +69a'Hz R (ghz gez) poHz

3 20 2

3 9 1
Ego 1+-a+—a2 +36oHz %—(ghz gez) poHz

5 28 2
1 9 1 1

1 +-a +—a'2 +72a'Hz'- + ———(ghz —ge-)
5 140 5g 2

11 9 1
E3o 1 + a +—a~ +30aHz +- (ghz —gez)poHz

21 28 2

3 5 1 1
E3o 1 +—a +—a +36oHz~ & (ghz —gez) poHz

7 28 2

3 5 1 1
1 +—a+—a2 +36a Hem 3= ————(ghz+gez) PoHz

7 28 2
1 1 2 1

E3 1 +—a+—a +54a H22 ~ ———(ghz+gez) PoHz
7 28 Dg 2

1 1 2 1
E3o 1 +—a +—a~ +54oHz2 & (ghz gez) poHz

7 28 2

pg isa Where a = ~1
——-],

Pz 2i

m m—=—+
Jgx mex mhg

1 e2, 1
o =— go'—c&g

4 mc' pg3

1 m m

meg mhx

mixing. Now this should be compared with =0.3 as
found for CdS and =0.05 for CdSe. Since the inter-
pretation of the exciton spectra in CdS yields band
parameters in agreement with measurements not re-
lated to exciton effects, the interband mixing appears
to be negligible at least as far as the band parameters
are concerned.

While it may be safe to neglect the interband mixing
in the determination of the band parameters, one
cannot neglect the effect of this mixing on the selection
rules for optical transitions. The occurrence of adjacent
valence bands destroys the simple conduction-band—
single-valence-band selection rules and gives rise to
strong forbidden (wave-vector-dependent) transitions.
In the case of CdS' " the forbidden transitions in the
polarization E~~C were stronger than the allowed dipole
transitions for the 2J' states, and as we shall see, a
similar situation exists for ZnS.

THEORY

9 J. J. Hopfield and D. G. Thomas, Phys. Rev. 122, 35 (1961)."D. G. Thomas and J.J. Hopfield, Phys. Rev. 124, 657 (1961).

In the ellipsoidal effective-mass approximation the
Hamiltonian for an exciton in the presence of an external
magnetic field parallel to the crystal C axis (H~~C) may

f' h2 1 82 1 cf2 1 82
x= + 2+

&2fff p, ax2 p, ays f, as2

e2 f ifz )-1/2-

~

x2+.y2+ ss
[

Crf
' k fiz

2 &2
—1/2 —I/2

x2 y' — —x' y'

1 1e2
+Po &*I—.+ -—&'(x'+y')

8mC2 p,,
+2PO(gezfrez+gszfrfsz)K ~ (1)

where m is the free-electron mass and

1 tf 1 1 1 (1 1—=ffs/ +, —=fff(
im. I„ e im. m ) (2)

Cylindrical symmetry about the crystal C axis, which
defines the s direction, is assumed, with e being the
dielectric constant normal to s, and cg the dielectric
constant along s.

The first term is simply a hydrogen-like Hamiltonian
generalized to include mass anisotropy with eigenvalues
related to the hydrogenic eigenvalues by

Aff f2z ~II

~2 62~ ~2

Dielectric and exciton-mass anisotropy are also repre-
sented by the second term. The effects of this term can
be written in terms of an anisotropy constant o., where

~=1—(f */f .) (1/o).

If the anisotropy is small, this term can be expanded in

powers of o. and treated as a perturbation. Energies for
exciton states with ei ——1,2,3 to second order in n are
given in Table I.

The third and fourth terms represent the linear and
quadratic magnetic field effects and have selection rules

aIld
an=0, ~t=o, ~m=0;

+2, Am=0.

"Reference 9 uses for the analysis of the exciton spectra of CdS
a similar theory containing slightly different transformations
than used in Ref. 3.

Unlike the linear magnetic field operator, the quadratic
field operator is not diagonal in e and hence mixes
exciton states of different principal quantum number.
For states with n =3 and above this mixing is significant,
and for very large magnetic fields the treatment of H
as a perturbation to the Coulomb interaction breaks
down completely.
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In the geometry HJ C the linear magnetic field
perturbation can be obtained approximately' from the
operator

Hi, iN ——Pp(a/6, )H,L„
where

hp=

H=0

I
=4

nl=5 $Dp~

with selection rules De=0, 61=0, Am= &1. The
quadratic perturbation for H J C becomes

1 e' 1
H, = ——H, '(y'+ s')

Smc' p,,

th
C
Cl

O

O
O

a0

5I 800 Bi 700 5I 600
Energy (crn )

3 I 500 5 I 400

with selection rules Al =0, &2; 3m =0, &2. As in the
H~~C case, this operator is not diagonal in e.

The first-order energies of observable exciton states
of principal quantum number ei ——1,2,3 with H~~C are
summarized in Table I. It should be noted that only
diagonal energy terms have been included. The effects
due to mixing between states of different e will be
considered in the discussion of the experimental results.
Because the linear operator for HJ C is not diagonal
in m, one must diagonalize a secular determinant in
order to find the energies of the exciton states in a
magnetic field, and no simple table analogous to Table I
can be made for states with m=3 and above in the
H J C orientation.

EXPERIMENTAL PROCEDURE

The experiments were performed on zinc sulfide
single-crystal platelets of 1—5 p thickness with the
crystal C axis in the plane of the plate, grown by
dynamic vapor-phase deposition at =1100'C from
luminescent-grade zinc sulfide powder with argon as a
carrier gas. The method is similar to that described by
Reynolds, "and used successfully for other II—VI com-
pounds. The phase transformation at =1020'C how-
ever makes the growth of pure wurtzite ZnS very
sensitive to the deposition temperature, gas Qow, etc.,
and crystals of adequate size and quality for the
observation of narrow exciton states are quite rare.

In order to verify the crystal structure and orienta-
tion, and obtain some indication of the strains present,
the crystals were examined by the single-crystal Laue
technique. Only crystals which yielded well-defined
Laue patterns were used in the experiments. Crystals
which did possess some strain showed inhomogeneous
Stark effects in the narrow exciton states. The samples
were mounted strain-free and immersed in liquid
helium at 1.8'K or lower for all experiments. A concave
grating spectrograph in a stigmatic Wadsworth mount-
ing was used in second order with a dispersion of about
2 A/mm. To obtain sufficient intensity in the ultra-
violet, an Osram high-pressure xenon arc lamp was used

"D. C. Reynolds, Arl and Science of Growing Crystals (John
Qjley R Sons, Inc, , New York, 1963), pp. 62-79.

E rG. 1. Absorption spectra of a crystal of about 2 p, thickness
with unpolarized radiation. The n1 =3, 4, 5 and the n~ = 1, 2, 3
states are indicated as well as the series limits.

as a source of continuous radiation. The magnet used
was calibrated to 0.1% with current stability of the
order of 1 part in 10'. The spectra were obtained from
Kodak type-0 spectrographic plates by a recording
densitometer.

EXPERIMENTAL RESULTS AND
INTERPRETATION

A typical absorption spectrum in the vicinity of the
second series for a crystal of approximately 2 p thick-
ness is shown in Fig. 1.The e2 ——1,2 states are indicated
and their energies agree with those observed by Piper
et a/. In addition to e2 ——1,2 we also observe the e2 ——3
state. An analysis of the second series will be tempo-
rarily postponed and we shall concentrate at present on
the first series to which the sharp lines above n~ ——1

belong. The ground state of the first series has also been
seen in the polarization EJ C but has not been shown.

From a tentative identification of the sharp lines
near 31513 cm ' and 31535 cm ' as m~

——3,4 states,
without regard to any particular orbital assignment, i.e.,
neglecting the anisotropy, an approximate value for
the effective Rydberg for the series can be immediately
obtained and one finds R,ff =250 cm '. With this value
of the Rydberg, the approximate location of the m&=2

states should be near 31475 cm—'. As seen from Fig. 1,
this places the n~ ——2 states at the edge of the second-
series ground state and are not observable in a crystal
as thick as the one from which this absorption spectrum
was obtained. Figure 2 however, shows both the
absorption and refiection spectra of a crystal of slightly
less than 1 p thickness in the vicinity of the e2 ——1S
state. In the spectra of this thinner crystal„the m& ——2
states are clearly evident on the wings of e2 ——1S in both
modes of observation.

If we are guided by the exciton spectra as seen in
CdSe' and CdS, ' the most plausible choice for the n~ ——3
states is 3D+2 and 3D~~ as labeled in both Figs. 1 and 2.
If we also take the m~=2 states to be 2S and 2Pgg,
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lgs
C
O

a
EP

CL

O

In Ref lecti

HE 0
E II C

In Ref lee

HE 0
EJ. C

In Tranem

HE 0
unpolarized light

30

2P~,
I s (r,+r,+r, )

TABLE II. Summary of the zero-field data for the first (I'g-I gl
exciton series. R,ff =247~2 cm '; o. =0.46+0.02.

State

1S
2S
2P~1
3D~1
3Dg2
4F„
5

Series limit

Observed energy
(cm ')

31 227.2
31 469.6
31 475.2
31 509.5
31 513.5
31 525.6
31 532.0
31 543~2

Calculated energy
(cm-1)

31 250.3
31 469.8
31 474.7
31 509.1
31 513.5
31 525.3
31 533.1

2 and 5 p, thickness, respectively. The observed energies
versus magnetic field for several crystal samples have
been plotted in Fig. 5. Now this diagram contains a
great deal of information, but for the present we confine
our attention to those states which have been labeled
3D+2 and 3D~~.

From the observed diamagnetic shift of the 3D+2
state, the x component of the exciton effective-mass
tensor can be obtained from (see Table I)

~2 1-1/3

P, = — gs' — (esgl)i fs.
4 mC2 a

(8)

l l l l l l l l l 1 I

3I 520 3l 500 3I.480 3I 460 31440 3I 420
Energy (cm ')

Fzo. 2. Absorption and reflection spectra of a crystal of less
than 1 p, thickness. The 2P+1 state of the first series is well defined
in reflection as well as the ground states of the second series.

Since mixing via the quadratic field perturbation of the
3D+2 states with higher n states is significant, one cannot
apply the first-order expression for the diamagnetic
energy of the 3D~2 state as given in Table I to extract
the quantity a from the measured shift. As a first
approximation we have considered the x=3,4 mixing

enough information is available to determine both the
eRective Rydberg and the anisotropy of this series.
Using the second-order zero-held energies for the states
as given in Table I, the parameters E,~f and n were
obtained by a least-squares fitting of the calculated
energies to those observed. The results of that fit are
summarized in Table II.

Having obtained the eRective Rydberg, one can
calculate the x component of the exciton eRective-mass
tensor from Eq. (3). Using the values" e=8.1 and
g= 1.1, we find

p, =0.16~0.02.

Effectively all the error in p, arises from the uncertainty
in the dielectric parameters.

In addition to the parameter p„we can also deter-
mine p,/lg„ the exciton-mass anisotropy, from Eq. (4)
and hence

H Il C

C

0
Ha35.0 Itilogauss

CL0

D, 2D,
(

Fzo. 3. Absorption
spectra for a 2-@,-
thick crystal in the
vicinity of the n&=3
states with the mag-
netic field parallel to
the crystal C axis.

lg, /lg, =0.59%0.05 .

The e~ ——3 and higher states of the first series as a
function of magnetic field in the H~~C orientation are
shown in Figs. 3 and 4 for two crystals of approximately

"Unfortunately the dielectric constants for hexagonal ZnS are
not known. We have therefore used the cubic value of 8.1 deter-
mined by D. Berlincourt, H. Jaffe, and L. R. Shiozawa LPhys.
Rev. 129, 1009 (1963lj and have assumed gt=1.1,

D~~ 4F~~ 4F
~

4D 4F

4F, '

3D, 2 3D, ,

3D
p

3I 580 3I 560 3I 540 3I 520 3I.500
Energy (cln )
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51 480—
I

In Transmission

H II G

E II C

O
C I

31 475~

10 20 30
Magnetic F ie I d (k ilogauss)

I

40

FIG. 6. Energy versus magnetic field for the 28~I state with
the magnetic field parallel to the crystal C axis.

the effects of H, and H&;„, respectively. Once again the
interpretation of the diamagnetic shifts is complicated
by mixing with higher n states through H„so as a first
approximation we have considered only the v=3,4
mixing and diagonalized the resulting 12)&12 secular
determinant varying (p,/p, )0 and Poa/6, to obtain a fit
to the experimental points. The best solutions have
been plotted along with the experimental points in
Fig. 8.

The two lowest states are the spin-split 3D0 and a
spin-split component of 3D+~, while the highest state is
a spin-split component of 3D+2. A linear spin-splitting
corresponding to

I g- I

= 2.2~0.2

provides the best 6t to these states. From the adjust-
ment of the parameters (p,/p, )0. and Poa/6, we find

p,/p. =0.62&0.04.

The agreement between the exciton-mass anisotropy
determined above and that obtained from the zero-field
data is excellent. It should also be noted that whereas
the zero-held determination required knowledge of the
dielectric anisotropy, the value obtained here depends
only on the ratio of the observed diamagnetic shift with
HJC to that observed with HIIC and is independent
of any dielectric constants.

From the theoretical 6t one also obtains the quantity
Poa/6, which involves all the exciton-mass parameters.
This quantity will be discussed again after we consider
the linear effects for HIIC.

In order to discuss the linear Zeeman effects in the
orientation HIIC, we must assign the proper symmetry
to the observed states. In HJ C, this was of no im-
portance since the hole has no resolvable magnetic
moment along x and only the electron spin produced
splitting. In HIIC however, both the electron and hole
spin contribute to the linear splitting and we must know
the symmetry of the observable states in order to
determine the associated g value (see Table I).

In CdS, ' states of both allowed symmetry (I'&+I'2)
and forbidden symmetry (I'5) were observed for 2P+i in
the polarization EIIC with the forbidden stronger than

H ~ 30. I kilogouss
H along - X

nl 3

CI
CJ

CL

O
H a long + X

D,

Dx

+ +
yDyDy D,

D~y Dlx

3I:580 3l 560 3l 540 3 I 520 31,500
Energy (cm ')

Fro. 7. Absorption spectra of a thin crystal with the magnetic
field perpendicular to the crystal C axis for two directions of the
magnetic field.

the allowed. For the n~ ——3 states, a pair of lines was
also observed which could be associated with 3D+2
(I'i+I'2). Although no other ni=3 states are identified
as either allowed or forbidden, distinct intensity reversal
effects were seen in the HJ C spectra of these states
indicating the presence of forbidden transitions of some
intensity.

As will be discussed in the conclusion of this paper,
since the interband mixing is comparable for both CdS
and ZnS and since the magnitude of the wave vector of
the photon which induces transitions in ZnS is approxi-
mately a factor of 2 larger than that for CdS, we also
assign F& or forbidden symmetry to the 2P+& state in
ZnS observed in the polarization EIIC. For the ei——3
states in ZnS, we note from Fig. 7 that intensity changes
upon reversal of the direction of the magnetic held far
H J C are almost nonexistent. This indicates, according
to the analysis of Hopheld and Thomas, ' that the
observed transitions must be predominantly all allowed
or all forbidden and not some combination of the two.
It is easily shown that assignment of allowed symmetry
to the observed n~ ——3 states leads to a set of band
parameters which are inconsistent with the observed
behavior of the n~ ——2 states and the magneto-optical
effects to be discussed presently. We therefore assign
F5 symmetry to 3D+&, 3D+j as well as to 2P+& in order
to obtain a consistent interpretation.

On this basis the linear splitting of the 3D+~ state
yields the quantity (from Table I)

2/A. ——', (gl„—g„)=3.0+0.1.
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3l 530

—3 I 520
I
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Daig
s

D—-—
0

3l 500
0
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De„Medium
+

De,

D~ Strong

Dz, Weak

D(,
S Medium

s
Dt S'lron9

D„Medium

D, Medium

D, V. Weak

l l I l I l t

10 20 30 40
Magnetic Field (kilagauss)

From this form we can draw a definite conclusion in
regard to the electron g value. We see that for ZnS,
where E, (the direct band gap) is =31 540 cm ' and
E„(the spin-orbit splitting of the valence band) is
=800 cm ', no reasonable value of m, alters the fact
that this expression gives an electron g value nearly
equal to 2. Cardona" has also considered the question
of the electron g value in ZnS taking into account the
interaction of a higher lying conduction band. He finds
a g value of about 1.8. In view of the fact that either
approach indicates a g value for the conduction electron
of about 2, we will assume that

g,.= 1.9+0.1.
FIG. 8. The energies of the ni ——3 states plotted against magnetic

field with the field perpendicular to the crystal C axis. Since no
significant intensity reversals were observed, no distinction has
been made between the data obtained from the two magnetic
field directions. D, labels the spin-split components of 3D0 while
D+I„y represent the Zeeman and spin-split components of 3D+&
and 3D+2, respectively.

This is the value of the splitting actually plotted in
Fig. 5. The 2P~~ and also the 3D+~ states do not split
even at the largest magnetic fields used, although some
broadening is detectable giving the quantity

1/6, —-', (gg.+g,.)= &0.3&0.1.
Again this is the splitting plotted in Figs. 5 and 6 for
3D+& and 2P~&, respectively.

If either the sum or the difference of the g values was
known then all the parameters involved in the splittings
could be evaluated. The difference of the g values could
be found from the linear splitting of either 3SF5 or 2$F5.
Unfortunately, no m& ——3 state has been observed which
could be identified as 3SF5. The 2SF5 state has been
observed, however, on the very edge of the second-series
ground state. Because of its position this line is barely
visible although it does not appear to undergo any
splitting in H~~C which indicates roughly that gl„=g..

The sum of the electron and hole g values could be
obtained from the observation of the behavior of the
1SF6 state. This state represents the exciton triplet
ground state with the electron and hole spins parallel.
In E~~C it is a second-forbidden transition and observ-
able only in very thick crystals. We have been unable
to detect any absorption in the vicinity of the ground
state which could be conclusively identified as 1SF6.
Although we have no experimental values for the elec-
tron or hole g values in the s direction we can still
interpret the H~~C splittings by drawing on the lr p
perturbation predictions for ZnS and our observations
ofg, forHJ C.

Roth" has shown that the electron g value in the
Group II—VI compounds should be nearly isotropic and

As mentioned earlier, the observed spin-splitting in
HJ C yielded a value of ~g, ~

=2.2&0.2. Since some
anisotropy is no doubt present in g, for hexagonal ZnS,
this result is in agreement with the k p prediction.

If we use the above value of g„ in the 21-'+~, 3D+~, and
3D~~ splittings we find two possibilities for the param-
eters 1/6, and gq„namely,

1/0„= 1.5&0.3, 1/6 =0.8&0.3;
gj,z=1 5&0 8 gg = —0.9~0.8.

The ambiguity arises because we do not know the sign
of the small quantity 1/d„——', (gz.+g,.) and the large
error in g&, is simply due to the accumulated errors in
g„and the linear splittings. There are however, indica-
tions that the pair associated with a positive-hole g
value of =1.5 is the best choice.

First, we have observed 2SF5 in transmission and it
does not appear to undergo the splitting necessary for
gq, = —0.9&0.8 or —(gl,.—g„))2.

Second, some recent work on the Faraday rotation in
cubic ZnS" indicates that (gq+g, ) lies between three
and four. While one expects the hole mass and g value
to be different for the two structures, the differences
are not so great as to change the rough estimate of
(g~+g.).

Finally, the choice of (g&,—g„) nearly equal to zero
will allow us to interpret the absorption spectra ob-
served above the band gap as shown in Figs. 4 and 5.

We are now in a position to evaluate all the effective-
mass parameters. Using the value of 1/p obtained from
the H~iC diamagnetic shifts, and the value of 1/6,
associated with the positive-hole g value, we find

m„=0.28a0.03,
mg, =0.49~0.06,

where m, and mh, are in terms of the free-electron mass.
From the HJ C diamagnetic shifts we were able to
determine p,/p, and having 1/p, we find

E
g, =2——1~

m, )3Eg+2E„
"I.Roth, Phys. Rev. 118, 1534 (1960).

(9)
1/p, =3.5&0.3.

' M. Cardona, J. Phys. Chem. Solids 24, 1543 (1963)."A. Kbina, T. Koda, and S. Shionoya, ISSP Technical Report,
1965 (unpublished).
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The value of 1/6, can be obtained from the splitting
term Ppa/6, determined from H J C using Eq. (6). We
Gnd

1/6, =4.0&1.0.

Unfortunately a large error arises here because of the
accumulated errors in 1/A„p, /p, „and a which are used.
to calculate 1/A. . Nevertheless, with the above values
we obtain

rn„= 0.27a0.04,
~
rn,.

~
)1.

The ambiguity in the sign and magnitude of m&, is due
to the large error present in 1/6, . For the electron-mass
values we note that within the experimental error, the
electron mass is isotropic, m„=m„.

So far in our analysis of the linear splittings of the
rs&

——2,3 states we have neglected any eRects arising
from the 6nite wave vector of the exciton. In the
orientation H~~C a term appears in the Hamiltonian (1)
which has the formo'

p (Po/~*)&o». ,

where K„is the exciton or incident-photon wave vector.
Since this additional perturbation depends on matrix
elements of the operator x, it is similar to an electric
6eld normal to the direction of motion of the exciton
and the magnetic field. The eRect of this quasielectric
field is to alter the observed Zeeman splittings. Esti-
mates of the effect of this perturbation on the band
parameters have been made and it is found that the
value of 1/6, determined from the linear splittings of
the 3D+2 and 3D~& states is decreased by approximately
10%.In view of this, the value given for 1/6, has been
corrected by this amount.

Although we are able to adequately treat the n&= 2,3
states in terms of the exciton Hamiltonian (1) by
considering the magnetic field to be small, we cannot
handle the e~ ——4 states in the same manner. At high
6elds most of the states are above the band gap and
are in a region where the magnetic energy is comparable
to the Coulomb binding energy, so that the magnetic
field cannot be considered as a perturbation. Further-
more, some of the e~ ——5 states overlap the e~——4 as
seen in Fig. 5, and the mixing through H, is then very
pronounced even at low fields. Unfortunately, the
magnetic field is not large enough for us to apply any
form of high magnetic field approximation. Neverthe-
less, the behavior of the m~=4 states can be interpreted
qualitatively on the basis of approximate diamagnetic
shifts at lower fields and linear splittings.

Neglecting quasielectric Geld eRects, m will be a good
quantum number for all magnetic fields and we should
observe two pairs of states with splitting approximately
equal to that of 3D+& and two states with splitting
approximately equal to that of 3D~&. In addition, the
possibility that states of allowed symmetry may also
be present should not be excluded. The curves plotted
for the m~=4 states in Fig. 5 consist of the calculated

6rst-order diamagnetic shifts for forbidden 4F+2, 4D+2,
and 4D~~ at low fields with the appropriate linear split-
tings preserved during a straight-line extrapolation to
high fields. The 4Ii~y state must be treated to second
order since it is mixed with 4I'+ j by the anisotropy and
H, . For this state, the low-field diamagnetic shift
indicates that the lowest e&——4 states observed may be
associated with F+~ allowed and the linear splitting
appropriate for this state has been plotted in Fig. 5.
Our interpretation of the ni ——3 states as 3D+2 and
3D~~ thus allows us to account for the behavior of the
m~=4 states quite well.

For the states above e& ——4 we may apply the high-
field exciton approximation developed by Elliot and
Loudon. ' ' As shown in Fig. 5 for H~~C, a large number
of absorption lines are observed above the series limit at
high magnetic fields. For these states the magnetic
energies are at least an order of m.agnitude greater than
the Coulomb binding energies of the exciton states from
which they arise, and it should be possible to treat these
states approximately by assuming the limit of infinite
magnetic field but nonvanishing Coulomb interaction.
In this case the exciton energy levels at high fields are
given by

mexC

~o(g'+g-)Po&. —(~/") (11)

dE/dH —(Pp/p, ) (2n+1) (12)

and the observable Landau states should have slopes
which depend only on 1/p, and the quantum number n.
Using the value of p, obtained from the preceeding
exciton analysis, lines for m=2, 3, 4, and 5 have been
plotted in Fig. 5 and agree very well with the experi-
mentally observed slopes.

To avoid the complications due to the Coulomb term
R/v' we consider only the magnetic Geld dependence
and examine the slopes of the magnetic levels.

In order to interpret the observed absorption on the
basis of this model we make use of the fact that the
total electron-hole wave function, which is a product of
the band wave functions and a spatial part derived from
solutions of the Hamiltonian (1) with the Coulomb
dependence omitted, has a symmetry determined only
by the band symmetries at k=0, or I'o+I"o for an
electron in a Fv conduction band and a hole in a F9
valence band. Since states with symmetry I'5 correspond
to first-forbidden transitions while states with symmetry
I"6 correspond to weaker second-forbidden transitions,
we assign F& symmetry to the states observed above
the series limit. For states of symmetry I'5 the total g
value (gz, —g„) is nearly zero. If we now admit the
selection rule on n, and e~ that de=0, the energy as a
function of H becomes
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The transitions for which e,=mI, do not account for
all the observed absorption lines however, there being
in general two weaker lines lying between each of the
allowed ones. If we now admit the selection rule
De=&1, the slopes of the Landau lines depend on
both 1/p, and 1/6, . Calculating the slopes of these
transitions, we find agreement with all of the observed
absorption lines.

In addition to interpreting the high-field absorptions
in H~~C, we can carry out an identical analysis for H J C.
In Fig. 9 we have plotted the experimental energies
versus magnetic field in the IIJ C orientation. In this
orientation the field dependence of the Landau levels
is given by"

3l 600—

3l 580—

H J. C

h~3

dE eA ek
(I,+-', )+ (n +-', )a ', g,g-o, . (13)

&II m c mg c

where 1/m, ' and 1/mi,
' are defined as

m. ' (m..m, ,)'i' mi,
'

(mi,.ma.)'"
(14)

~3I 560—
4
O

ld

Unfortunately we cannot directly fit the observed
slopes with the expression above because of the large
uncertainty in the value of mI„determined from the
exciton analysis. However, if we make the educated
guess that the uppermost line is probably associated
with e„eI,——4 we can use the experimentally deter-
mined mean slope of this split line to evaluate mI„, using
the known values of m, , m„, and m& . In this way we
find

3 I.540—

+
30gy

30py

We are now in a position to calculate the slope of the
m„eg ——3 state and we find that there is indeed another
absorption line lower in energy which has a field
dependence appropriate to an m=3 state. As in the
H~~C orientation there are additional lines between
the n=3,4. Once again admitting the selection rule
Am=&1 we can calculate the dependence for these
transitions and make a comparison with experiment.
In Fig. 9 we have plotted lines for both he=0 and
An=&1 transitions with a spin splitting equal to
~g„~ =2.0. The actual spin splitting appears to be
somewhat smaller than that for

~ g„~ =2.0, but in view
of the fact that the lines have not been well resolved,
the difference is within the experimental error. The
agreement between the observed field dependence of
the Landau states based on the identification of the
m=4 state is quite good, and in fact no other identifica-
tion of the states fits as well.

While analysis of the first-series absorption spectra
yields a complete set of electron and hole parameters,
this is unfortunately not the case for the second series.
Even in the best crystals available, the widths of the

'" W. Shockley, Phys. Rev. 90, 491 (1953).

3I 520 20 30 4o
Mggqetl|: Field (kilagauSS)

Fxo. 9. Energy versus magnetic field for a crystal of approxi-
mately 5 p thickness with the magnetic field perpendicular to the
crystal C axis. The Landau states and a component of the 3D
state are shown.

g2 ——2,3 states are much greater than the corresponding
first-series states as can be seen in Fig. 1.Furthermore,
since the second series arises from a I'7 conduction band
and a I"7 valence band, all the F2= 2 states are observ-
able with E~~C, i.e., there are 2S, 2PO, and 2P~i states
allowed symmetry 1'i+F2, and because of the intrinsic
linewidths no anisotropy splitting is seen. The problem
is even further complicated if we include the possibility
of forbidden states as well.

Because of the band symmetries, the situation is also
somewhat different for the e2= 3 states. There is now no
allowed D+2 state observable with E~~C since a D~2 state
for a I'7 —F7 exciton has symmetry F3+1'4+1',+21'6
although transitions to forbidden D~2 may occur. The
e2 ——3 state at zero field therefore consists of a 3P+~, 3D+~
and perhaps a forbidden 3D~2 state unresolved because
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TABLE III. Summary of the zero-field data for
the second (I'7-Fg) exciton series.

State

2
3

Assuming
Series limit
Using

Observed energies
(cm ')

31 455
31 702
31 745

n =0.45) Re ff —275~10 cm '.
31 780~10 cm—'.

&
——8.1, g = 1.1, p,, 0.18.

of the intrinsic linewidth. On this basis and assuming
an anisotropy equal to that found for the 6rst series
one can calculate approximately the effective Rydberg
and series limit, and using the value of e'g, determine

p, . These results are summarized in Table III. From
the series limits for both the 6rst and second series we

find the crystal-field splitting of the I'9—I'7 valence band
to be 240+10 cm '.

DISCUSSION

I.et us review the experimental results for the first
series. Identification of the ~z~=3 states as 3D+~, 3D+~
and the ei——2 state seen in transmission as 2P+~ has
allowed us to evaluate the reduced effective mass of
the exciton from both the zero-field positions of the
absorptions and the diamagnetic shift of the 3D~2 state.
The agreement between the value of p, obtained in both
ways is excellent considering the uncertainty in &'p.

Furthermore, the predicted diamagnetic shift of the

2P+~ state based on the observed shifts of 3D~2 and

3D~i accounts for the behavior of this state to within

10%%u~, so had we originally based our evaluation of p, on

the e~ ——2 state rather than n~ ——3, the result would still

agree with that obtained from the effective Rydberg.
This is an important point since it could be argued that
the effects of higher state mixing and quasielectric 6eld
effects could alter the diamagnetic shifts of the m~

——3
states. For the mi ——2 states however, these effects are
negligible.

With the magnetic field perpendicular to the crystal
C axis, we have been able to fit the observed absorption
lines for the m&

——3 states quite well and obtained the
value of p,/p, by comparing the diamagnetic shifts in

the two orientations H J C and H~~C. The agreement
between p,/p, obtained in this way with the value
calculated from the anisotropy splitting, based on the
identi6cation of the e~——3 states as 3D+i, 3D+~, is also
excellent considering the uncertainty in the dielectric
anisotropy.

By assigning the forbidden symmetry I'5 to the states
seen in transmission and assuming g„=1.9+0.1, the
linear splitting of the e~——2,3 states allowed us to
evaluate the parameter 1/3, and hence both m„and
mq using the value of 1/p, .

From the linear splitting in the orientation H J C we

directly obtained the electron g value along x and found

it to be nearly equal to 2. The splitting parameter u was
also determined and allowed evaluation of 1/6, . When
this quantity was combined with 1/p. we found that
m„=m„within the experimental error and this result
is in agreement with elementary k p predictions for
the hexagonal Group II—VI compounds.

Although the e~ ——4 states could not be treated
exactly, the observed behavior at high fields could be
well accounted for in terms of the splittings associated
with both forbidden and allowed transitions and
approximate diamagnetic shifts.

Finally, using the data obtained from the low-lying
excited exciton states we were able to interpret the
absorptions seen far above the band gap in terms of the
high magnetic field or Landau approximation for both
the H~~C and HJ C orientations. While the Landau
data for H~~C did not yield any additional information,
interpretation of the H J C data gave an approximate
value for mp„.

The most interesting feature of the exciton spectra in
ZnS is that interpretation of the excited states in terms
of the intensity reversal effects and the requirement for
internal consistency forces the assignment of forbidden
symmetry to the observed e& ——2,3 states. The occur-
rence of very strong forbidden transitions in ZnS can
however be accounted for on the basis of the interband
mixing. It has been shown that the interband mixing
and the presence of strong forbidden transitions in the
Group II—VI compounds are closely related so that in
a sense the interband mixing can be used as a measure
of the relative strengths of the allowed and forbidden
transitions.

In CdS ' it was observed that for the 2P+~ states the
ratio of the forbidden and allowed intensities was about
8 to 5. The magnitude of the photon wave vector
producing optical transitions in ZnS turns out to be
about twice that for CdS. Since the interband mixing
is comparable in both CdS and ZnS and the forbidden
transitions have intensity proportional to E', then to
a first approximation one should indeed expect to see
forbidden 2P transitions a factor of =6 stronger than
the allowed in ZnS.

For CdSe on the other hand, no forbidden transitions
were detected in the polarization E~~C although their
presence was indicated by intensity reversal effects.
In view of the discussion just given for CdS and ZnS
this is not surprising. Recall that the interband mixing
for CdSe is down by a factor of about 4 from that for
either CdS or ZnS. The wave vector for transitions in
CdSe is about —, of that for CdS so that to a first approxi-
mation the forbidden transitions should have intensity
about 5 that of the allowed and this is indeed in quali-
tative agreement with the observed behavior of CdSe.

We see then that the occurrence of strong forbidden
transitions is in line with the trend exhibited by the.
exciton spectra in CdSe and CdS. While we expect the
forbidden transitions for the e= 2 states to swamp those
allowed in ZnS, it is surprising that the observed 3D
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states are also forbidden. Whether or not ZnS represents
an unusual case could be decided experimentally by a
more careful analysis of the m&=3 states in both CdSe
and CdS.

At present there are no reliable experimental mass
values for ZnS with which we can compare our results.
Estimates of the effective electron mass using standard
k p perturbation theory have been made however, by
ourselves and Cardona. " In the latter calculation the
effect of a higher conduction band on the electron
effective mass was considered, and a value of m, =0.39
was found. Now this is to be compared with m, =0.28
as found in this series of experiments. The discrepancy

of about 25% may be due to a combination of factors.
First there is the inherent error of at least 10'~ in our
determination of the electron mass. Secondly, we have
neglected the effects of the interband mixing on the
exciton Hamiltonian and evaluated the band param-
eters in terms of a simple single-conduction'-band—
single-valence-band model. Finally, there exists the
possibility that the interband matrix elements involved
in the k p estimates of the electron effective mass may
not be equal for all the Group II—VI compounds. Con-
sidering these factors, we believe that no definite
conclusions can be drawn from the discrepancy between
our measured electron mass and the calculated value.
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Lattice Dynamics of Sodium Fluoride

W. J. L. BUYERS*

Chalk River Nuclear Laboratories, Atomic L'nergy of Canada Limited, Chalk Riper, Ontario, Canada
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Phonons in sodium fluoride have been studied at room temperature using inelastic neutron scattering
techniques. Consistent results were obtained using a cold neutron time-of-flight apparatus and a triple-axis
spectrometer. The time-of-flight results were interpolated on to symmetry directions from the observed
scattering surfaces. The frequencies in units of 10" sec ' of some typical phonons are: TA(0,0,1), v=4.39
~0.04; Lo(0,0,0.984), v =8.52&0.15; LA(0,0,0.972), v = 7.94&0.18; To(0.488, 0.488, 0.488), v =6.19
~0.07.The optical branches extrapolated to small wave vector are in agreement with the infrared absorption
frequency and the Lyddane-Sachs-Teller relation. Hardy and Karo's deformation-dipole model is in agree-
ment with the results to within 6%, but the rigid-ion model divers by as much as 19jo. The results are well
fitted by a shell model containing nine parameters in which the ionic charge is 0.91.

1. INTRODUCTION
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LKALI halides have been the subject of many
theoretical and experimental investigations of the

dispersion relation for vibrational modes. Models of the
solid have been developed which facilitate the calcula-
tion of dispersion relations without recourse to consider-
ation of the fundamental theory underlying the atomic
interactions. The extremely simple Born-Mayer model
used by Kellerman' was very successful in describing
the specific heat, while the various versions of the theory
in the dipole approximation, reviewed by Cochran,
are able to resolve difhculties in the optical and dielec-
tric behavior of the solid that existed in the earlier work.
The most complete confirmation of the reliability of a
particular model has been carried out on NaI and KBr
by neutron spectroscopy, ' while NaCl has been the sub-
ject of a recent x-ray investigation. ' It was found in

*Part of this work was performed at the Department of
of Natural Philosophy, University of Aberdeen, Scotland.' E. W. Kellerman, Phil, Trans. Roy. Soc. A238, 513 (1940).

'W. Cochran, in Lattice Dynamics, edited by R. I'. Wallis
(Pergamon Press, Inc. , New York, 1965).

3 R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B.
Woods, Phys. Rev. 131,1030 (1963);A. D. B.Woods, W. Cochran,
and B. N. Brockhouse, ibid. 119, 980 (1960).' W. J. L. Buyers and T. Smith, Phys. Rev. ISO, 758 (1966).

these studies that a general description of the observed
dispersion relations was obtained when models such
as the simple shell model' or the deformation-dipole
model, ' whose parameters were fitted to long-wave-
length data, were compared with the scattering results.
If, on the other hand, a model was fitted to the observed
frequencies, much better agreement could be obtained,
often within the experimental accuracy, but only at
the expense of losing the simple picture given by the
model. '

In NaI, NaCl, and KBr, the polarizability of the
crystal is higher than the average for alkali halides, and
the crystal polarizability of the negative ion is con-
siderably greater than that of the positive ion. It is
therefore of interest to see if, in a crystal of low polari-
zability, whose ions are comparable in size, the simple
version of the theory for alkali halides is more satis-
factory. Sodium fluoride is well suited for this study.
It was also chosen because it has favorable properties
for x-ray as well as neutron scattering, and could thus

' W. Cochran, Phil. Mag. 5, 1082 (1959).' A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024
(1963).' J. Tessman. A. Kahn, and W. Shockley, Phys. Rev. 92, 890
(1953).


