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Low-Temperature Recombination of Electrons and Donors in
n-Type Germanium and Silicon*
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We give a revised calculation of the recombination cross section of a conduction electron and an ionized
donor impurity in n-type Ge and Si at liquid-helium temperatures. The energy-band structure of Ge and Si
is taken into account and we show that the polarization of the phonons, which are emitted during the
recombination process, is of great importance. The calculated cross sections agree reasonably well with
experiment as regards temperature dependence, although the order-of-magnitude agreement is not as good.

I. INTRODUCTION

CLASSICAL theory of electron-donor recombina-
~ ~ ~

tion in semiconductors was 6rst discussed by Lax, '
and later by Hamann and McWhorter~ (HM). With re-

gard to the quantum-mechanical formulation, a model

for the electron-donor recombination process has been

developed by Ascarelli and Rodriguez' (AR), and later

modified by one of the authors. ' In a forthcoming

paper, 5 one of us has shown that the purely classical

theory of HM apparently contains a number of serious

defects.
The purpose of the present article is to present an

improved and more comprehensive version of the work

of AR. In particular, the eGect of the energy-band struc-

ture of Ge and Si on the form of the electron-lattice
interaction is taken into account.

Following AR, we calculate the recombination cross

section of a conduction electron, having a spherical

eQective mass m*, and a donor impurity whose bound

states are taken to be hydrogen-like. Recombination oc-

curs with the initial capture of a conduction electron in

an excited (but not necessarily a highly excited) donor

state followed by successive transitions to lower lying

states, each such transition occurring with the emission

of a single acoustic phonon. Only those donor wave

functions corresponding to s states are used, ' ' since

electron capture in these states is more probable than in

states having higher angular momentum.

It is worthwhile emphasizing that the theory of AR
requires that the conduction electrons are in thermal

equilibrium with the lattice. Experimentally, this im-

plies that, initially, the donor electrons are excited into

the conduction band by a weak transient external field,

*This article is based on a thesis presented by Ronald A. Brown
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Advanced Research Projects Agency.
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2 D. R. Hamann and A. L. McWhorter, Phys. Rev. 134, A250

(1964).' G. Ascarelli and S. Rodriguez, Phys. Rev. 124, 1321 (1961).
4 R. A. Brown, Ph.D. dissertation, Purdue University, 1964

(unpublished), available from University Micro61ms, Ann Arbor,
Michigan.' R. A. Brown, Phys. Rev. 148, 974 (1966).

either an electric 6eld or extrinsic radiation. Once the
exciting field has been removed, the electrons quickly
come into thermal equilibrium with the lattice by means
of collisions and then recombine with the ionized donors.
Also, Auger (or impact) recombination of electrons' has
been neglected; this approximation is valid at low tem-
peratures, using weak exciting Gelds, and for samples
having low donor concentrations. The question as to
whether the various experiments on electroo recombina-
tion conform to these restrictions, so as to make a com-
parison with the theory meaningful, is discussed
elsewhere. '

In Sec. II we calculate the capture cross section for a
conduction electron in an excited donor state. Section
III deals with the probability that once an electron is
captured it will stay bound to the donor. Section IV is
concerned with the total recombination cross section of
electrons and donors and with a comparison between
theory and experiment. Finally, a brief summary of the
results is given in Sec. V. Mathematical details are
relegated to the appendices.

II. CAPTURE IN EXCITED STATES

Let o,(n) be the cross section for the capture of a
conduction electron in a stationary state, having prin-
cipal quantum number n, of a donor impurity (only s
states are considered). Using the principle of detailed
balance one can show that7

7r'0'p„ I.q
0,(n) = — exp

m*(kT)' kTP

where I„is the ionization energy of the eth bound donor
state and P„ is the probability per unit time for the
thermal ionization of an electron in the eth state. The
symbol T stands for the temperature in degrees Eeking
and k is the Boltzmann constant.

In connection with the calculation of p„, it is known3'
that the fastest mechanism for thermal ionization is
that which is associated with the absorption of a phonon.
AR have made the simplifying assumption that only the

6 G. Ascarelli and S. Rodriguez, Phys. Rev. 127, 167 (1962).
7 For the details of this and of other derivations, the reader is

referred to Ref. 4.
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Hr,
' Er divs(r), —— (5)

which is exactly the interaction Hamiltonian used by
AR, who considered only the effect of longitudinal
phonons on the recombination process. Thus, H'(Ge) is
separable into two parts BL,' and H~', which take into
account the effect of the longitudinal and transverse
phonons, respectively. To a erst approximation, Hl, '
and H~' can be considered as corresponding to inde-
pendent interactions, and thus treated separately. For

s Equation (2) includes a factor of 1/v2 which was erroneously
omitted in Eq. (17) of AR.' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

longitudinal acoustic phonons effectively interact with
the donor electrons in the ionization process. Upon close
scrutiny, this assumption turns out to be valid for the
case of Si but not for Ge, as will now be discussed. The
electron-lattice interaction is described by means of
deformation potential theory. Let s(r) be the displace-
ment of an atom of the lattice which occupies an equi-
librium position at r. We may expand s(r) in terms of
operators representing the creation and destruction of
phonon modes as follows':

fr ) 1/2

s(r) =I ——
I

&2&U)

&&exp( —iq r)+H.c. (2)

The quantities e,„, a&,„, and a,„t(a,„) are, respectively,
a unit polarization vector, the angular frequency, and
a creation (annihilation) operator associated with a
phonon having wave vector q. There are three possible
polarizations fi(@=1, 2, 3). The assumption is made
(valid only for an isotropic elastic continuum) that for
each value q there are two possible polarizations at
right angles with g and a third parallel to q. V is the
volume of the crystal and p its density.

Let H' be the change in energy of an electron in the
deformed lattice. According to Herring and Vogt' the
interaction Hamiltonian for Ge, for the case involving
both longitudinal and transverse phonons, is given by

H'(Ge) = L(- s+-s'- „)(u„+u„„+u,.)
+a=.-(u,.+u-+u*s)] (3)

Here, u„=8s,/Bx, u „=r)s,/By+r)s„/Bx, are compo-
nents of the strain tensor with analogous expressions for
the remaining terms. The Cartesian coordinate system

hays is chosen so that its axes are parallel to the cubic
axes. „and q are the deformation potential constants
as defined by Herring and Vogt. Equation (3) can be
rewritten as

H'(Ge) =Hr, '+Hr ',

where Hl, ' and B&' are, respectively, the erst and the
second term in (3).Since the bulk deformation potential
of Ge is defined by Er (s+sr „), it is seen —t—hat

the case of Si, the shift of the energy of a valley along
the x axis is

H, '(Si)=L s(u„+u„„+u„)+ „u„]. (6)

This assumes, of course, that Ejp=o for Si, which turns
out to be an accurate approximation. From the work of
Sham, "and of Aubrey et a/. ,

' it is found that „=8.3
eV and d 2.5 eV (ex——perimental estimate), so that
Eil, 6.6 eV for Si.

For the calculation of the maximum values of cJ. and
c~ for Ge and Si, one uses the standard determinantal
equation for the velocity of sound as a function of the

' R. W. Keyes, I&M J. Res. and Develop. 5, 226 (1961)."L.J. Sham, Proc. Phys. Soc. (London) 81, 934 (1963).J.E. Aubrey, W. Gubler, T. Henningsen, and S. H. Koenig
Phys. Rev. 130, 166'7 (1963).

For the case of Ge, the procedure for calculating P„,
using Hl, ', has been established. With a few simplifying
assumptions, this same procedure can be used for the
transverse part Hr'. Equation (6) for Si presents no
additional difhculties. B~ will contain, as a factor, the
expression (e,z,q„+e,i„q,+ ).To first order, H&' can
be considered as having only two components, say along
the x and y axes, each component being treated sepa-
rately. In this manner, Hz' can be treated analogously
to the treatment of Hl, ', except that in the transverse
case there will be an additional multiplicative factor of
2 corresponding to the two possible polarizations of the
transverse phonons. In this approximation, we are ne-
glecting to average the quantities e,i;q, (i, j=a, y, z;
s&j ) over the angles of e,i,; with respect to the crystal-
line axes x, y, s. Also, one should be careful to use the
correct values of the longitudinal and transverse speeds
of sound cl, and cz, respectively, which are appropriate
to the particular phonon polarization under considera-
tion. As will be seen later, the recombination cross sec-
tion varies as a high inverse power of the speed of sound;
the maximum values of cl. and c~ are used, in order that
the cross sections be of minimum value. This will show
clearly the effect to be produced by any further im-
provement in the calculation. In actuality, cL, and c~
should represent suitable averages for the longitudinal
and transverse waves.

Let X~I„and E~z be the effective deformation poten-
tials for the longitudinal and transverse cases, respec-
tively, in analogy with the bulk deformation potential
Et as given in Eq. (5). For Ge, Et&,=( &+s „);it is
known with reasonable accuracy' that E~L,= —2 eV and
Err =6 eV. With regard to Si, (6) can be rewritten as

H, '(Si)=L( s+ „)uss+Esu„„+ „u„]. (7)

In order to transform (7) into a form similar to that of
(5), and realizing that it is the square of the matrix ele-
ment of H' that enters into the calculations, we define
the mean longitudinal deformation potential for Si as
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Tszx,z I. Values of P (sec ') for Ge.

Upper value transverse, lower value longitudinal phonons.

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

7.0

8.0

9.0

10.0

2.61
0.37
9.26X10
I 32X10
1.02 XIO'
0 15XIO'
5.74X10'
0.83X10'
2.II X104
0.31X10'
5.87X104
0.85X104
1.34X105
0.20XIO'
4.65X105
0.68X10'
I.I4xioe
o.17X10'
2.26X10'
0.34X Ioe
3 88X Ioe
0.58X10'
6 01X10'
0.90X ipe

1.49X10'
0.03X105
7.96X10'
0.15X10'
2.49X Ipe
0.05X10'
5.68Xipe
0.13X10'
1.07X10'
0 03Xioz
I 76X10'
0.05X10'
2 64X Ipz
o.07X10'
4.95XIoz
0.15X Ipz
7 88X ioz
0 25 X ioz
1.13X10'
0.04X Ios
1.52 X ips
0.05 X Ios
1.94X10'
0.07X Ios

8 53X10'
I 77X105
2.89X ioe
0 47X Ipe
6.76xio'
0 94X ipe
1.27 X10'
0 15XIoz
2.06X10'
0 23 X ioz
3.05xioz
0.31X10'
4.22Xipz
0 41Xipz
7.00X10'
0.62 X Ioz
1.03X10'
0.09X ios
1.39Xios
0 11X ios
I 78X Ips
0.14XIos
2 20X Ios
0 17XIos

1.52 X ioz
0.07X10'
3.04X ioz
0.14XIpz
4.97XIOz
0.23 X ioz
7 22 X10'
0.34X10'
9.74xipz
O.46XIOz
I 25X ips
0.06X Ips
1.54XIPs
0.07XIos
2.16Xios
0.10Xips
2.82 X ios
0.13X ips
3.51Xios
0.17X Ips
4 23X ips
0.20X Ips
4 96Xips
0.23X ios

4.10XIoz
0.14XIpz
6 54X Ioz
0 26X ipz
9.69XIO'
0.39X ioz
1.27 X10'
0.05 XIos
1.63Xips
0 07X10s
2.OOXIOs
0.09Xips
2.41X10'
O.IOX 10'
3.14Xios
0.14X10s
3 97X ios
O.ISXIOs
4.83X10'
0.21X10'
5.61X10'
0.25 XIps
6 60X Ips
O.29XIOs

5.32 X ioz
0 24X 10'
8.50X Ioz
0.39Xioz
1.20XIos
O.O6XIOs
1.58X ips
0.07XIos
I 97XIO'
0.09Xios
2.38X Ips
0.11Xips
2 79XIos
0.13X Ips
3.65X ios
0.17X ios
4.52 X10'
0 21Xios
5.41XIos
0.26X10'
6.31X ips
0.30Xips
7.22X10'
0.34X Ios

gn
T('K)Q

2.0

2.5

3.0

4.0

4.5

5.0

6.0

7.0

8.0

9.0

10.0

4.60XIO '4

0.65XIO '4

3.51XIO-I4
0.50X10 '4

2.80xip '4

0.40XIO '4

230XIO '4

0.33XIO '4

193XIO '4

O.2SXI0-~4
1.65XIO '4

0.24XIO '4

1.43XIO '4

0.21XIO '4

1.12XIO '4

0.16XIO '4

9.00XIO "
1.33XIO "
7.45XIp-~e
1.11X10 'e

630XIO '5

0.94X10 '6

5.42XIO "
081XIO "

2.12XIO "
0.04XIO "
1.61XIO "
0.03XIO "
1.28XIO "
0.03XIO "
1.05XIO 's
0.02XIO "
8.78XIo-~4
0.22XIO ~4

7.52XIO '4

0.20xip i4

6.54XIO '4

0.18XIO '4

5.14X10 '4

0.16XIO '4

42PXIO ~4

0.14XI0-~4
3.53XIO '4

0.12XIO '4

3.03XIO "
0.11XIO '4

2.65XIO '4

010XIO i4

4.49XIO '4

0.93X10 '4

4.17XI0-~4
0.69XIp '4

3.85XIO '4

0.53XIO '4

354XIO "
0.43XIO '4

326XIO '4

0.36xio '4

3.01XIO '4

0.31XI0-14
2.79XI0-~4
0.27XIO ~4

2.42XIO ~4

0.22X IO-~4

2.13XIO i4

0.18XIO '4

1.90XIO '4

0.15XIO "
I 71XIO '4

0.13XIO "
1.56X10 '4

0.12X10 '4

1.74X10-»
O.OSXIO-»
1.29XIO-»
006XIO "
1.02XIO 's
0.05XIo-~s
843XIO '4

0.39XIO "
717XIO '4

0.34X10 '4

6.24XIO '4

0.29XIO i4

5 52XIO '4

0.26XIO '4

4.49X10 '4

0.21XIo-~4
3 79XIO '4

018XIO '4

3.28XIO ~4

015XIO '4

289XIO '4

0.14xio '4

2 59XIO '4

012XIO '4

TAaxz II. Values of o,(a) (cm') for Ge.

Upper value transverse, lower value longitudinal phonons.

4.69XIO "
0.16X10-»
278XIO "
011XIO "
1.99XIO "
0.08XIO "
148XIO»
006XIO "
120XIO»
o.05XIO-»
9.99XIO '4

0.43XIO "
8.67X10 '4

037XIO '4

6.54XI0-~4
0.29XIO &4

5.33XIO '4

0.24X10
4.51XIO '4

0.20X 10 '4

384XIO '4

0.17XIO '4

3.44X 10 '4

0.15XIO '4

1.61XIO "
0.07XIO "
125XIO "
o.o6xio-»
1.02XIO "
0.05XIO "
8.62xip '4

0.40XIO i4

747XIO '4

035XIO '4

659XIO '4

0.31XIO '4

5.89XIO-'4
028XIO '4

4.87XIO '4

023XIO ~4

4.16X10 '4

0.20X 10 '4

3.36XIO '4

0.17xio-&4
3.22XIO "
0.15XIO '4

289XIO '4

014XIO '4

direction of propagation of the sound wave relative to
the crystalline axes."Using a computer to obtain the
velocity eigenvalues, the maximum speeds of sound are
found to be cc=5.59X10' cm/sec and cr ——3.59X10'
cm/sec for Ge, while cx,=9.20X10s cm/sec for Si. The
various approximations made above are reasonable for
an order-of-magnitude calculation, and will not affect

» C. Kittel, Introduction to Solid State Physics (John Wiley k
Sons, Inc. , New York, 1956), 2nd ed. , p. 94.

the temperature dependence of the cross sections sig-
nificantly in any case.

Some of the details regarding the calculation of the
capture cross sections are given in Appendix A. The re-
sults have been obtained for n &~7 using Coulomb wave
functions for the states in the continuum, and are listed
in Tables I through IV. For Ge, the separate contribu-
tions due to the longitudinal and transverse cases are
listed. In order to obtain the total value of P„or o,(n)
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TABLE III. Values of P (sec ') for Si.

QN
T( K)X

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

5.90X10 "
6.22Xio s

3.08xio 5

2.64X10 '
754X10 '
1.04
8.49
2.03X10R
1.99X108
1.12X104
4 32X104
1.28X 10'

7.28xio '
4.65
7.69xio
5.89X10'
2.80X10'
9.69X10'
2.68X10'
1.30X10'
4.26X10'
1.08X10'
2.27X10'
4 21X ios

2.51X10'
3.17X104
1.72X10'
5.83X10'
1.46X10'
3.00X10'
5.34X loe
1 30X ioz
2.49X ioz
4.07X ioz
6 14Xioz
8.53X10z

2.92X105
1 39X108
4.03X10'
8-75X10'
1 58X ioz
2 54X ioz
3.74X10'
6 82 X ioz
1.07X10'
1.52 X10s
2 03X ios
2.S9X1Os

1.92X10'
6.54X10s
1.49Xioz
2 70X10z
4 OSX10'
5 75X10z
7.84X10'
1.25X10'
1 80X10s
2.42X10'
3 08X10
3 90X ios

6.61X10'
1.65 X ioz
3.12X ioz
S.O2X1Oz
7.31X ioz
9.91X10z
1.28 X ios
1.92 X10s
2.63X10'
3.39X10'
4 19X10'
5.02 X10s

TmLE IV. Values of o, (n) (cm') for Si.

gn
T('K)Q

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

1.36X10-»
1.07X10 "
8.79X10-i4
7.43X10 '4

6.42X10 '4

5.63X10 '4

5.00X10 '4

4.07xio-
3.40X10 '4

2.90X10 '4

2.52X10 '4

222X10 '4

2.01X10-14
1.47X 10-'4
1.15X10 "
9.55X10 "
8.26X10 '5

7.38xio "
676X10 "
598X10 '5

5.51X10-»
519X10 "
4-95X10 "
4.75X10 "

1.04X1O-
8 74X10 '4

7.31X10 '4

6.18X10 '4

5.27X10 '4

4.58X10-~4
399X10 '4

316X10 '4

2 60X10 '4

2.18X10 '4

189X10 '4

1.66X10 '

206X10 "
1.48X10»
1.13X10-»
9.05 X10-&4

748X10 '4

6.34X10 '4

5.48X10-~4
428X10 '4

3.49X10 '4

294X10 "
254X10 i4

2.23xio ~4

148X10 "
1.19X10 "
955X10 "
7.88X10-14
632X10 "
S.37X10-14
474X10 '4

3.76X10 '4

3 13X10 '4

269xi(j '4

235X10 "
2.16X10 '4

1.34X10-»
102X10»
8.22X 10-i4
645X10 '4

5.86X10-14
5 11X10 14

4.53X10 '4

3.69X10 '4

3.12X10-i4
2 70X10 '4

2.38X10 '4

2.12X10 '4

in this case, one needs only to add together the contri- in the state e will make a transition to the state n, it
butions due to the two phonon polarizations; for ex- follows that
ample, the total value of Ps at 4.5'K is 1.81X10r sec '.

P =W„„/( Q W„„+p).
III. STICKING PROBABILITY

Once a conduction electron has been captured in a
bound state it may either remain attached to the im-

purity center or it may be reionized by the absorption
of a phonon. Let I"„be the probability that an electron
in the bound (s) state characterized by the principal
quantum number e will not be ionized into the conduc-
tion band; I'„ is called the "sticking probability" of the
electron in the eth bound state. Let E &"& be the prob-
ability for ionization after v transitions of the electron
between the state e and other bound states e'&m. It
follows that, for each n,

Also,

ll' Hn
n, m'& 7

P-")=P-i( Z ll..+P.), (12)

Thar, E V. Values of P for Ge.

gvv.
T('K)Q 2 3 4 5 6 7

where P„ is given by Eq. (A17). Accordingly, in order to
calculate the sticking probabilities I'„, it is necessary to
obtain the transition rates 5" ', once these latter quan-
tities are known, Eqs. (9) through (12) can be solved to

P +g P„(.)=1. (9)

P (v) — Q P,P, (v-&)

m' Hn
m, n'& 7

(10)

If lV„„ is the probability, per unit time, that an electron

Further, let I' ~ be the probability for the electronic
transition from the bound state m to the state e', so that

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
90

10.0

1.000 1.000 0.998 0.993 0.970 0.928
1.000 1.000 0.994 0.982 0.948 0.905
1.000 0.999 0.987 0.964 0.930 0.887
0.999 0.998 0.975 0.927 0.875 0.828
0.998 0.995 0.960 0.884 0.810 0.742
0.995 0.990 0.941 0.856 0.772 0.697
0.990 0.984 0.919 0.814 0.715 0.630
0.973 0.966 0.868 0.741 0.629 0.540
0.950 0.943 0.814 0.627 0.473 0.358
0.922 0.918 0.761 0.498 0.323 0.201
0.894 0.893 0.711 0.371 0.210 0.107
0.866 0.864 0.666 0.287 0.127 0.037
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TABLE VI. Values of P for Si.

2 3 4

2.0 1.0000 1.0000
2.5 1.0000 1.0000
3.0 1.0000 1.0000
3.5 1.0000 1.0000
4.0 1.0000 1.0000
4.5 1.0000 1.0000
5.0 1.0000 1.0000
6.0 1.0000 0.9999
7.0 1.0000 0.9995
8.0 1.0000 0.9988
9.0 0.9999 0.9975

10.0 0.9998 0.9953

1.0000
1.0000
0.9999
0.9996
0.9989
0.9977
0.9959
0.9901
0.9812
0.9695
0.9548
0.9382

1.0000
1.0000
0.9995
0.9988
0.9970
0.9940
0.9882
0.9637
0.9330
0.9003
0.8670
0.8347

1.0000
1.0000
0.9991
0.9978
0.9935
0.9860
0.9750
0.9297
0.8725
0.8157
0.7620
0.7183

1.0000
1.0000
0.9984
0.9966
0.9890
0.9780
0.9590
0.8877
0.8125
0.7347
0.6650
0.6000

TABLE VII. Representative values of W„„.(sec ') for Ge.

of the closest neighboring ionized donor, so that the
concept of a localized bound state breaks down. Assum-
ing a random distribution of the ionized donors, ' the
maximum value of the principal quantum number mo is
found to be no(Ge)=10 and mo(Si)=7, for Ge and Si
samples having acceptor concentrations of 10"cm ' and
IO'4 cm ', respectively. These acceptor concentrations
are representative of those of samples used in electron-
donor recombination experiments, as will be discussed
later. In the present paper, F0=7 is assumed, for
simplicity.

IV. RECOMBINATION CROSS SECTION AND
COMPARISON WITH EXPERIMENT

The electron recombination cross section 0 „is given by

8'42 lV23

Upper value transverse, lower value longitudinal phonons.
X~so

7'('K)Q Wgm ~g4

7

0.„=g P„o.,(e).
n=2

(13)

2.0 2.92 X10'
3.44X Tp~

2.92 XTO'
3 44X107
2.94X10'
3.47X107
2.99X109
3.52XTO7
3 05XTO~
3 59X107
3.13X10'
3.69X107
3 22XTO~
3.80X107
3 33X10'
3.92XTO'

0 3 44X Tpf'

4.05X107

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1.03X103
1.60XT05

3 40XTO'
5 20X10'
6.40X 103
9 92X105
9 80XTO'
1.52X10'
1 34X104
2.08X10'
1.72X104
2.66XTO'
2 10X104
3 25XTO'
2 49X104
3 86X10'
2 88X104
4 46X10'

5.40X108
2.49XT07
5.40XTP8
2.49X107
5.41XTO'
2.50X107
5.44XTP8
2.51XTO'
5 48X108
2.53X107
5.55 XTO'
2.56X107
5.64X 108
2 60X107
5.74X Tps

2.65 XTO'
5.86XTpg

2.71X107

2.34X10'
2 76XTO'
5.44XTO'
6.41X104
2.64X 107
3 11X10'
6.87XT07
8,09XTO'
1 32X108
1.55X10'
2 11X108
2 49X106
3.05XTps

3 59XTO'
4.09XTp&

4 82 X106
5 2TXTps
6.14XTO'

TABLE VIII. Representative values of lF (sec ') for Si.

Q~aa
r('Klg W4s

2 0 2 5TXT07
30 2 5TXT07
4.0 2.54X107
5.0 2 58X10'
6.0 2.65X107
7 0 2 73X107
8.0 2.82 XT07

90 2 92XT07
100 3 03X10'

3.77XTO'
6.66X10'
3 11X106
7.64XTO'
1 41X106
2 21X106
3.13X10'
4.13X106
5.21X10'

1.24XTO '
4 68X10
3.10X10'
3.48X104
1.86X10'
6 14XTO'
1.51X106
3 05X106
5.34XTO'

8 10X10s
8.10X10'
8.10X10'
8 TTXTOs
8 TTXTOs
8.11X108
8.12XTps

8.14X10'
8 16X108

yield P . Some of the details of the calculations of 8' „
and P„are given in Appendix B.Values for P„are listed
in Tables V and VI, while representative values of 8'
are listed in Tables VII and VIII. In Eqs. (9) through
(12), the condition e,e' ~& 7 comes from the interimpurity
cutoff, as will be discussed in the next paragraph.

With regard to overlap, it is evident that not all of
the excited donor states need be considered in the elec-
tron recombination process. This is because an excited
donor state having a sufficiently high principal quantum
number n can have a radius which overlaps the nucleus

The quantity E„o,(e) represents that portion of the
capture cross section 0,(e) which corresponds to the
electron not being ionized from the bound state e. In
Eq. (13),capture into the ground state (e= 1) is ignored,
since it results in a negligible contribution to 0, For
example, in Ge, an approximate calculation including
the effects of both transverse and longitudinal phonons
yields 0,(1)=$0.6X10 '4/T('K)jcm' which can be
safely neglected (P& ——1 to a high degree of accuracy).
For temperatures suQi. ciently above 10'K, capture in
the ground state would become important compared to
capture in the excited states, since the sticking proba-
bilities P„decrease rapidly with increasing e and with
increasing T (see Tables V and VI).

In the calculation of P for As and Sb donors in Ge
and Si, the energy of the ground state (v=1) of the
donor can be taken from experimental values or by using
the simple theoretical (Coulomb) binding energy. In Ge,
for example, E,(As) =1.27X10 ' eV, E;(Sb)=9.6X10-'
eV, and E;(Coulomb) =1.17X10 ' eV. The only place
where E; enters into the determination of P„ is in the
calculation of 8'„~. In general, 8"

~ is small compared
to W„„.or P„; again in Ge, at 5'K, W'4q(transv. +long. )
=3.6X10' sec ', while W42(transv. +long. )=5.7X10'
sec ' and p4(total) =4.6X10r sec '. From the manner in
which P was calculated in Sec. III, it is easily seen that
small differences in 8"„~, due to the particular ground-
state energy used, will have little effect on the calculated
values of P„, since 5 „& will be relatively small regard-
less of the value of E, used. This assumption was veri6ed
by explicit calculation, which showed clearly that a.„
has no signi6. cant dependence on the donor binding en-
ergy. For temperatures sufaciently greater than 10'K,
one should use the correct experimental donor binding
energy since capture in the ground state becomes pro-
gressively more important, and capture in excited states
progressively less important, as the temperature is
raised.
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FIG. 1. Experimental and calculated values of the cross section
for recombination, in Ge. Notice that the scales on the right and
left of the graph are different (KBS=Koenig-Brown-Schillinger).

There have been a number of experiments on electron-
donor recombination in n-type Ge'~'~ and Si ""How-
ever, many of these are such that a detailed comparison
between theory and experiment is somewhat dificult.
The cases of Ge and Si will be discussed separately.

A. Germanium

In Fig. 1 the theoretical curve of o-„ is compared with
the experimental values as determined by Koenig'4 (K),
Ascarelli and Brown" (AB), and Koenig, Brown, and
Schillinger'r (KBS).The theoretical curve (solid line) is
taken from Table IX and does not include any e6ects
due to impurity conduction. 5 The sample designation in
Fig. 1 (and other figures) is as follows: sample 1.4—
.14—13, for example, has a donor concentration E~= 1.4
)&10" cm ', and an acceptor concentration X~=1.4
X10"cm '. From Fig. 1, it is seen that the experimental
and theoretical curves agree reasonably well in the tem-
perature dependence of r„, although there is a disagree-
ment in the absolute magnitude. This disagreement is
not thought to be serious, since the calculated capture
cross sections were deliberately minimized by choosing
maximum values of the appropriate (transverse or longi-

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
90

10.0

1.13X10-»
7.76X10-»
5.88X10 "
4.63X10 "
3.72X10 "
3.11X10-»
2.61X10 "
1.92X10-»
1.36X10-»
969X10 '4

7.49X10 '4

5.39X10 '4

2.5

T=5 K

Pn

I.O

—0.7

—0.5

—0.3

tudinal) speeds of sound, in order to show clearly the
effect to be produced by any further improvements. In
Figs. 2 and 3, o,(n)P„ is plotted as a function of n, at
5 and 10'K, respectively. It is seen that for the states
having 7&m~& 10, there is expected to be a certain con-
tribution to o.„which, however, is small at the higher
temperatures (a simple cutoff procedure becomes valid
in the limit of high temperature). Finally, the experi-
mental results are subject to some uncertainty, as in the
work of Levitt and Honig" (LH) on Si. In the work of
LH, the expression for determining o., contains the con-
ductivity mobility p. LH measured the Hall mobility
@II and set @11=p although, as LH remarked, the ratio
r= ijrr/p is known to be in the range 1(r(2.By setting
r=1, the results for o., by LH could be too large by a
factor of 2. A discussion of the various experiments (on
Ge) is given by KBS.

Regarding the effect of impurity conduction, none of
the experimental curves in Fig. 1 show a T '~' depend-
ence of o„mainly because the temperatures were not
suKciently low. ' The calculated curve for o-„does not
contain the effect of impurity conduction. Michel and
Rosenblum" have obtained a temperature-independent

"S.H. Koenig, Phys. Rev. 110, 988 (1958)."G. Ascarelli and S. C. Brown, Phys. Rev. 120, 1615 (1960).
16 R. E. Michel and B. Rosenblum, Bull. Am. Phys. Soc. 6, 115

(1961)."S.H. Koenig, R. D. Brown, and %. Schillinger, Phys. Rev.
128, 1668 (1962)."R. S. Ievitt and A. Honig, J. Phys. Chem. Solids 22, 269
(1961).

's M. Loewenstein and A. Honig, Phys. Rev. 144, 781 (1966).

I.5x IO
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Fro. 2. P„o,(n) at 8'K for Ge.
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TABLE X. Values of 0, (cm') for Si.
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Fio. 3. P„o,(a) at 10'K for Ge.

3. Silicon

recombination lifetime" in a highly purified Ge sample;
unfortunately, however, a detailed account of their in-
vestigation is not yet available.

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

748X10 "
5.78X10-»
4.63X10-»
3.83X10»
3.20X10 "
2.75X10 "
2.40X10 "
1.87X10 "
1.50X10 "
1.24X10 "
1.04X10 "
8.93X10 ~4

order-of-magnitude comparison of theory with experi-
ment, it must be remembered that the values of 0-, as
determined by LH are probably too high, by as large
a factor as 2 (see the section on Ge). Also, the calculated
values of 0-„have been minimized. Since the theoretical
and experimental approximations are such as to bring
a closer agreement in the magnitude of o-„, it is felt that
the disagreement in magnitude as shown in Fig. 4 is not
serious.

With regard to the temperature dependence of 0-„,

the results of LH show that o.„~T 'i' (with the excep-
tion of sample 4.5—0.15—16), while the calculated curve
yields r, ~ T '. This difference probably arises because
the calculated curve does not include the eGect of im-

purity conduction on 0,. The reason why the calculated
curve (see Table X) yields o„~T ' is that for suffi-

ciently low temperatures, the excited donor states effec-
tively act as ground states (P„—1, see Table VI), and

Experiments on electron recombination in e-type Si
(P-doped) were first carried out by Levitt and Honig"
(LH). More recently, Loewenstein and Honig" ob-
tained the capture rates of photoexcited electrons by
ionized phosphorous, arsenic, antimony, and bismuth
donors, as well as by neutral boron, aluminum, gallium,
and indium acceptors in Si, at liquid-helium tempera-
tures; since this work is quite detailed and comprehen-
sive, it is best to discuss it separately, in a future paper.
Only a few remarks will be made here.

The experimental values of a „due to LH are shown in
Fig. 4, along with the theoretical curve; the calculated
values for o-„do not take impurity conduction into ac-
count. The effect of impurity conduction on the recom-
bination cross section is apparently signidcant to ac-
count for the temperature dependence of r„, and will be
discussed in a future publication. With regard to an

l.67x IO
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8.3
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5
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b"
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IO
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IO
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E
EQ
CL

st
I

M

b

"IfAuger (impact) processes are neglected, the electron recom-
bination lifetime is given by rL, = (aN~) ', where a is the capture
probability and Nz=acceptor concentration. For T sufBciently
less than a critical temperature (Ref. 5) T., vL, , and therefore n,
becomes temperature-independent. Since a, =o./(v) where (e) ~ T'"
is the average thermal electron velocity, 0 ~x: T '" in the extreme
low-temperature limit.

I
0-ia

8,$xIO

T ('K)
5 7

Fxo. 4. Experimental and calculated values of the cross section
for recombination, in Si. The eBect of impurity conduction is not
included (LH =Levitt-Honig).
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it is known" that for the capture of a conduction elec-
tron into the ground state of a donor impurity, 0.,~ T '.
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APPENDIX A

Here, we calculate P„ for Ge using the transverse-
phonon interaction Hamiltonian IIr (Ge). The longi-
tudinal cases for Ge and Si follow analogously. Prom Kq.
(2), and using the expression for the transition proba-
bility between two quantum states within the Born
approximation, it follows that

Ej,p'm*
ps=

2(2z)spcs she r„
d(AM)(ACo) rt(Ate)K

V. CONCLUSIONS

The theory given above appears to verify, in general
outline, the "giant trap" model of electron-donor recom-
bination due originally to Lax, ' although Lax's purely
classical treatment is not thought to be sufhcient for
a completely accurate understanding of the recombina-
tion process. In the present work, a consideration of the
energy-band structure of Ge and Si leads to the conclu-
sion that the polarization of the phonons, emitted during
the recombination process, is significant. In general, the
calculated and experimentally measured recombination
cross section agree reasonably well with regard to tem-
perature dependence, although not as well as regards
order of magnitude, at least for the case of germanium.
For silicon we have seen that the calculated tempera-
ture dependence of the recombination cross section is in
disagreement with experiments below 4.2'K. One of the
authors' has given a discussion on the causes of this
disagreement. It is suggested in Ref. 5 that this is due
to the effect of impurity conduction.

Recently, Beleznay and Pataki" (BP) have given
detailed criticisms of both the theories of Hamann
and Mc%horter, ' and of Ascarelli and Rodriguez. '6
However, several aspects of the work of BP have been
previously recognized, '" and BP have neglected to
discuss certain aspects of the recombination process,
namely the effects of impurity conduction and of energy
band structure. The work of BP is discussed in more de-
tail in Appendix D, below,

is the wave vector of the electron in the continuum
state.

The lower limit of integration for P in Eq. (A1)
should, more properly, be Ate= (I„Ir—), because of the
cutoff ass= 7 (see Sec. III). The absorption of phonons
having energy (I„I7)—&~ha&~&I„will allow for transi-
tions between the bound state n and the states between
Ir and zero (bottom of the conduction band), these
latter states being considered as continuum states be-
cause of the nature of the interimpurity cutoG in the
higher excited states. However, an approximate calcula-
tion shows that, by using the lower limit Ate=I (rather
than IgI7) 1n E,—q. (Ai), an error of roughly 20% ls in-
curred; this error is not signi6cantly large compared
with the errors incurred by other theoretical approxi-
mations and appears to be within the experimental error,
and is thus felt to be consistent with the order-of-mag-
nitude calculation presented in the present paper. The
error is such that the values of P„as determined by Eq.
(A1) (see Table III, for Ge) are somewhat low.

In Eq. (A1), n(A(o) =
I e»(hto/kT) —1j ' is the num-

ber of phonons in a mode of energy Ace at temperature
T. The differentials «(q/ItlI), dQ(x/I xI) are elements
of solid angle along the directions of the unit vectors
q/ItlI and x/IxI, respectively. The matrix element
3ff(x,n) is given by

M(st n) = V'~s dr4 * exp(itl. r)4 (A3)

The wave function 4„ is the Coulomb wave function
corresponding to the wave vector x:
4, y—r/s{2s&)r/sL1 exp( 2„&)j—res

Xexp(ix r)PLt'7 1 s(sr —x r)j (A4)
where

and a*=Ebs/csee', is the effective Bohr radius of the
donor, E being the static dielectric constant of the host
crystal. 4' (r) is the hydrogen-like wave function describ-
ing the nth bound donor (s) state:

4 „(r)= (rrrs'a*') —'"exp{—r/Nue)

XI'( &+1, 2, 2r/N—a*). (A6)

The function F(a,b,s) in (A4) and (A6) is the confluent
hypergeometric function, '4 which can be written in the
form"

«(tl/Itll) «(~/I ~l) l~(~ ~) I' (A1)

s=
I
st I

= L(2m*/A')(Ate —I„)j'fs (A2)

"H. Gummeiand M. Lax, Ann. Phys. (N. Y.) 2, 28 (1957)."F. Beleznay and G. Pataki, Phys. Status Solidi 13, 499 (j.966).
2' R. A. Brown, Bull. Am. Phys. Soc. 9, 62 (1964).

where the contour of integration contains the points

'4 See, for example, L. D. Landau and E. M. Lifshitz, gleeful
Mechanics (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1958), p. 4966.

"Reference 24, p. 498, Eq. (d.g) )Eq. (A'I) in the present work
is obtained by making the substitutions f =2i' and y = 1 in (d.8).j
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&=0 and /=1 in the complex l plane. One can obtain terms of J (X) as given by (A13): from (A13),
M(x,n) as a linear combination of derivatives, with re-
spect to a dimensionless parameter X, of the expression J& (~) (~+n) 4n~ +4n~ Q"+J (~) — ~'+Q ' (~'+Q ')'

(A18)

J (X)= drr 'exp i(v.—q) r-
eu*

XF[iy,1,i(~r x—r)j, (Ag)

evaluated at X=1. It is not dificult to show that

J (~) 4~n2a+2P 2+ (K Q )2ji~l

XLQ '+(X—iE )'j '& (A9)

Using partial fractions, (A18) becomes

J "&(X) —
tr 1 1

+
J„(x) &x+ iQ„z—iQ.)

n(1—cosH) n(1+cos8)
+ . (A 19)

(X+iQ )' (X—iQ )'
with

K.=na*x,

Q =na*q.

Finally, it follows that"

M*(|I:pn)= —
I

1—exp( —2Ã7)j 'I'(2y/na*) '~'

Taking the vth derivative of (A19) with respect to X
(A10)

(A11) dv J (y)(g)-
(—1)"+'v t

dX" J„(X)

g=2Acr/a~kT, (A15)

2" n 1—
X P I I

J.&"+", (A12).=o (v+1)!4

where J„'"' is the vth derivative of J (X) with respect to
X evaluated at ) =1.The limit y -+ ~ is taken, since at
low temperatures the bulk of the contribution to the
integral in (A1) occurs when ~&I„, or when ~~ 0.
In this limit, (A9) becomes

J (X)=47m'a~'/(X'+Q ')

2Xn 2niQ cos8
Xexpl (A13)

g2+Q 2 !I2+Q 2

where 9 is the angle between x and q. Finally, setting

M*(x n) =MR*(27r/Ka*)' '(7rna*) ' 'J~ (A14)

X -+ +(—1)"(v+1)!
(x+iQ.)"+' P.—iQ„)"+'

1+cosH
Xn +

(~+iQ-) "+' (~—iQ-)"+'—
1—cosO

(A20)

The left-hand side of (A20) is determined by using
Leibniz's formula. Remembering that J ~"'(X=1)=J„~"&, Eqs. (A19) and (A20) enable one to solve suc-
cessively for J„'"' (v= 0, 1, , n), after which one can
determine the quantity M„*in (A14) and (A17).

The angular integrations in (A17) can be performed
easily. It is not dificult to see that 3f„*is of the form

M„*=[A+I3 cos'8+C cos48+ +i
XCOSH(A'+8' cos'8+ )j, (A21)

so that IM„*I' will contain only even powers of cosH.
Letting dQ(q/Iql)=sinHqdH~dc~ and dQ(x/Iv. l)=sin82
)(d02d42, one can write

it is found that

2x'p A'cz'

h=E,/kT,

dy y'Lexp(y) —1j '

(A16)
Pg(cosg) = Pg(cosHy)P((cos82)

g (i—m)!
+2 P Pp(COSH')Pp(cos82)

m=~ (1+m)!

exp( —4n/I 1+(2ny)/g7')
X «(q/I ql)

L1+(2ny/g)'j'

X d&(~/I ~ I ) IM-*I ' (A17)

Through the use of a simple iterative procedure, one
can obtain the quantities J„~"&(X) (v=0, 1, , n) in

"Equation (A12) in the present work corrects a misprint in Eq.
(A13) of the work of AR.

Xcosl m(c q
—%)g, (A22)

where Pg, P'~ are the Legendre polynomials and the
associated Legendre functions, respectively. Since
I
M ~l ' contains only even powers of cosH, and one can

write terms such as cos'"8 (p= 0, 1, ~ ~ ~ ) in terms of the
Legendre polynomials, it follows easily from the ortho-
gonality properties of P&, P&, that

(4s.)'
d0(q/Iql)dfl(n/I ~I)cos'v8= . (A23)

2p+ 1



LOW —TEMPERATURE RECOM DILATION

Accordingly, (A23) can be used to eliminate the angular
integrations in (A17), after which (A17) can be pro-
grammed for a computer. Also, (A17) must be multi-
plied by a factor of 2, to account for the two possible
transverse phonon polarizations, this factor being absent
for the case of longitudinal phonons.

APPENDIX 3
We shall Grst indicate some of the steps in the calcula-

tion of t/l/"„„. for the case of transverse phonons in Ge,
it being assumed for simplicity that n& e'. Since for this
case a phonon is created during the electron transition
m —+ m', the interaction Hamiltonian is

H'= —iEgr(A/2pV)"'q(a) )-'"a t exp( iq —r) .(81)

Setting A~„„=(E„E„.), an—d using the Born approxi-
mation as in Appendix A, it follows that

~1T nn'2 3

W„„.=
l

1—exp( —A(o„ /kT) j-'
Sm'APCT'

X did(q/lql)l(n'lexp( —iq r)ln)l' (82)

Using (88) through (810), one can perform an exact
integration of (86), thus determining W„.Also, from
the principle of detailed balance,

W =W „exp(—Acr„„/kT). (811)

Finally, since W„„and p„can be calculated, it is

possible to solve for P „and P„&'~ from Eqs. (11) and

(12), respectively. Next, the assumption is made that
E'1=1, which is reasonable at liquid-helium tempera-
tures. For example, kT=3.45)&10 4 eV at T=4'K, so
that kT((E;, where E; is the binding energy of the donor
ground state (E;=10 ' eV for Ge and is larger by about
a factor of 4 for Si). Since kT represents the average
thermal energy available to the electron from the lattice,
it is highly unlikely that an electron in the ground state
o$ a donor will be thermally ionized into the conduction
band. Also, one can reasonably set P1( ) =E'1( ) =P1( )

=P~&+=0. With these approximations, Eqs. (9) and

(10) reduce to a system of linear homogeneous equations
in the unknowns I'. „, P„(2&, P„(3), E (4', which can be
solved by the method of determinants.

Defining

p „=rja*= (a*/Acr)(E„E;), — (83)
APPENDIX C

g=r/a*,

and realizing that the initial and 6nal states are s states,
the matrix element in (82) takes the form

4Inn
(85)(n'lexp( —iq r)ln)=

p (nn')+'
where

~1 1~-
dp p»n(P- p) exp pl -+—I—

0 kn n'i

&(F(—n+1, 2, 2p/n)F( —n'+1, 2, 2p/n') . (86)

Thus, (82) becomes

8E„2p...ll..l'

vr Apcr'a*'(nn')'$1 exp( A~„„/—kT)]—

n—1

F(—n+1, 2, 2p/n) = g c.( n+1, 2)—p", (88)
v=o

where
co=~p (89)

Equation (87) must be multiplied by a factor of 2 to
account for the two possible transverse phonon polariza-
tions. Notice that this factor is absent in the case of
longitudinal phonons. In (86), the hypergeometric func-
tion Ii is given by

0„=Q f 0.(n)P . (C1)

(a= 1, ~ ~, 4) be the wave vector from the center
of the Brillouin zone to the nth minimum of the conduc-
tion band, in Ge. In harmony with the notation given
earlier, x is the wave vector of the electron in the con-
tinuum state, or

l
x

l

= (2m~/A') ' '(Al —E /n') 'I'
l see

Eq. (A2) of Appendix Aj. From the derivation of P„
given in Appendix A, it is seen that in order to calculate
the degeneracy factor f„, one must evaluate the
quantity

In the work of AR, the capture cross sections o, (n)
were multiplied by a degeneracy factor of 4 to account
for the degeneracy of the conduction band edge in Ge,
the necessity for such a factor being given in Appendix
C of the work of AR. In this section, the degeneracy fac-
tor will be calculated approximately for the case of Ge,
since the computations are most straightforward in this
case.

It is known4 that the original treatment of AR is only
approximately correct, although their expression for p„
is reasonably accurate, particularly for Ge. Thus, we
shall use their treatment in order to get a rough idea of
the degeneracy factor f„where f„enters the definition
of a, in the form

M*(x,n'; n, n) = V'~' drC„(r)C„*(r)

(810)
)&expL —i(q+R —R .) rj. (C2)1 &~v &~ (n —1) .

2 "(n—1)(n—2) (n v)—
c„(—n+1, 2) =

n (v+1)!v!



900 R. A. BROWN AND S. ROD RI GUEZ

One can show'4 that (C2) is approximately given by

8'x2

where
Q„'~& 188/n', (D2)

l M(x,n'; n,n')
l
'=

nsaesxl q+K.—K.,
l

8

Xexp — . (C3)
na*'lq+K. —K. l'

From Appendix A the degeneracy factor f„, in the nth
bound donor state corresponding to the 0,th minimum, is
given by

f.=(& IM(~,~' «) I')/IM(««) I' (C4)

where M(L,n; n,n) —=M(x,n) is given by (A3). In (C4),
the angular brackets ( ) mean that one should average
over the angle 8 between q and (K —K ). Also, we
know that'4

8'm2

lM(x, n; n,n) l
'= exp — . (C5)

SKqs+46 Zq 2++2

Using Eq. (C4), f„ is found by explicit calculation to
be very nearly equal to unity for 2 ~& e ~& 7, which implies
that intervalley impurity scattering is not a signi6cant
eGect. However, it must be remembered that the present
treatment is only approximate; for example, the periodic
part of the Bloch wave function has been neglected.

APPENDIX D

Recently, Beleznay and Pataki22 have calculated the
quantities W, &,

"'" (n&, n&~&7), which are the rates for
the transition of an electron between the bound states
having quantum numbers (n~l~) and (n~lm); accordingly,
they have included bound- to bound-state transitions
involving states having angular-momentum quantum
number l& 0, in contrast to the present work where only
s states are included. Using the values for 0,(n), P„,
speed of sound c„and (longitudinal) deformation poten-
tial E~ as given by Ascarelli and Rodriguez, BP claim
that the sticking probabilities E„are greatly reduced
from the corresponding values as calculated by AR. By
using the approximation of AR, that

0,(n, l) =0,(n)/Q„", (D1)

BP conclude that the cross section for capture in the
bound state (nl), or 0..(n, l), is small compared to the
cross section for capture in the state (n0), or 0.,(n,0)
=0.,(n). In this way, BP claim that the decrease of the
sticking probabilities in the excited states, due to the
inclusion of states having nonzero angular momentum,
results in a considerable decrease in the recombination
cross section in Ge from the values as stated by AR. In
fact, the values of the recombination cross section as
taken from Table 6 of BP indicate that r, T 4 for
3'K~& T~& j0'K and that their result for O.„differs from
experiment in absolute value by more than one order of
magnitude.

It is the contention of the present authors that the
work of Beleznay and Pataki, although relevant to the
original work of AR, is sot relevant to the present work.
In the 6rst place, Eqs. (D1) and (D2) of AR are known
to be approximate and are not used in the present work.
Furthermore, the values of P„Land thus of 0,(n)j have
been recalculated in the present paper, and are rather
diferent from the corresponding values as given by AR
(See Ref. 3). Then too, BP use the values c,=5&(10'
cm/sec and E~=20 eV given by AR; these values have
been changed considerably in the present work, par-
ticularly since here (in a calculation involving the band
structure of Ge) a distinction between the longitudinal
and transverse cases is made. Also, as has already been
mentioned (see Ref. 8), a factor of 1/K2 was errone-
ously omitted from Eq. (17) of AR, and has been cor-
rected in the present work; however, since the formalism
of AR was used by BP, their values of P, 0,(n), and
W„& "2'& are all too small by the factor 2. Normally,
the sticking probabilities would not be affected by the
factor of -'„since it acts as a scaling factor and cancels
out in Eqs. (9) through (12).However, when the polari-
zation of the phonons is taken into account, one must
include a multiplicative factor of 2 for the transverse
case when calculating the quantities (P„,etc.) mentioned
above, this factor being absent for the longitudinal case.
Thus, in the present paper, the factor of -,'will not cancel
as a scaling factor, since both the longitudinal and trans-
verse cases are considered; since BP used only the longi-
tudinal case in their calculation of the sticking proba-
bilities, their results are not strictly comparable to the
present results.


