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Summing up these two processes, the total Hamil-
tonian for the mixing eGect is expressed as

and

Ap= Up'
Ce 6g 6e 6P

(AS)

V02= (4s)'" P(r) V,g(r) jo(r)r'dr. (A6)

Here, it is assumed that V,q(r) is spherical; I'(r)

Ap
O'= P—e"~ "'&"&((a*~.+a~+—a*/~ —GQ—)S*

g n, k, k'

+a*I, ug~S+, +u*g.+ay S }, (A4)
where

is the radial part of q, (r); and jo is the zeroth-order
spherical Bessel function.

The value Ao in (A4) is positive. Comparing Eq.
(A4) with Eq. (5) in Sec. IV, we may conclude that the
mixing of the wave functions of conduction and localized
electrons gives the negative contribution —Ap to the
exchange integral. Then the sign of the exchange
integral J' is determined by the two competing eBects,
the direct-exchange integral, which is positive, and the
eBect of mixing, which is negative. Therefore a negative
J' is possible if the eGect of mixing is appreciably large.
It is possible that this mixing effect for the s-d inter-
action in e-type InSb is very large, since the energy
level of the localized state seems to exist not far from
the Fermi level, as discussed in Sec. IV.
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The band-to-band optical absorption is calculated for a direct-band-gap semiconductor that has one band
degenerate n or p type. The degenerate band is treated as a high-density Fermi gas. It is shown that exciton
states, arising from the electron-hole Coulomb attraction, still affect the optical absorption. The calculations
show that exciton states cause a logarithmic singularity in the absorption at the Burstein edge. This singu-
larity is present at a moderate density of electrons or holes in the degenerate band, but it gradually disap-
pears in the high-density limit. Lifetime broadening could make the logarithmic singularity diKcult to
observe at higher densities.

I. INTRODUCTION

VAL EN C E-band-to-conduction-band optical-ab-
sorption experiments have provided much infor-

mation about insulating or lightly doped semiconduc-

FIG. l. Optical absorption in
a semiconductor with a degen-
erate conduction band. The
onset of optical absorption is
at eo=Eg+pp'/2v, where Eg is
the energy gap, pJ is the elec-
tron Fermi momenta, and g is
the electron-hole reduced mass.

tors. Of particular fruitfulness has been the study of
exciton states, the electron-hole bound states which
drastically alter the shape of the absorption edge in
semiconductors where the lowest transition is direct.
The present calculation is concerned with optical-ab-
sorption processes in direct-gap semiconductors which
have one band suKciently doped that it can be viewed
as a degenerate electron gas at low temperatures. The
case where the conduction band is doped is indicated in

Fig. 1, where the transition of interest is from the heavy-
hole band. The results of this calculation show that
exciton sects, in the form of final-state electron-hole
Coulomb scattering, still drastically a6ect the optical-
absorption spectra. This seems to occur even in the
limit that the conduction electrons can be viewed as a
high-density electron gas.

Elliott' showed that optical absorption in semicon-
ductors should be viewed as the creation of an electron-
hole pair. In his calculation for insulating semiconduc-

tors, the electron-hole Coulomb interaction was included

by solving Schrodinger's equation for a hydrogen atom.
The inclusion of these Wannier exciton states provided

' R. J. Elliott, Phys. Rev. 108, 1384 (1957).
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an understanding of the fundamental absorption edge
of insulating semiconductors.

We now consider semiconductors which are doped so
that the conduction band becomes a degenerate electron
gas. As the density of electrons in the conduction band
is increased, these exciton effects should, in some fash-
ion, go away. This question is attacked by viewing the
conduction band as a high-density electron gas. The
inhuence of the electron-hole Coulomb interaction on
the optical absorption can then be investigated using
the formalism of many-body theory.

This calculation shows that exciton effects on the
optical absorption persist even into the regions where
the conduction band is a high-density electron gas. Were
it not for lifetime broadening, a real electron-hole
bound state would exist. Its binding energy would be
approximately

Ett= (2pv'/v)e 'ta

In(1+4p /vks, )s,
2rp trgtr

gn = esk /e v ~

where v is the electron-hole reduced mass, pv is the
electron Fermi momentum, and k, is the Fermi-Thomas
screening wave vector. This bound state would appear
in the optical absorption at a frequency Ace= Eg+pv'/
2s —E&, where E& is the energy gap, and the usual ab-
sorption edge occurs at Eg+pv'/2v. Since the minimum
energy an electron-hole pair can have is Eg+pvs/2nt„
the exciton state is metastable unless E»p, '/2rrt, .

As will be shown in Sec. III, this bound state obeys
a Schrodinger equation with a nonlocal interaction. The
existence of the bound state is related to the exclusion-
principle restrictions on the electron's scattering. The
nature of the bound state is similar to the Cooper pair' 4

state in the theory of superconductivity, because the
properties of both states depend upon the sharpness of
the Fermi surface.

The binding energy Ets vanishes as pv becomes large.
The exciton state gradually disappears in the high-
density limit. Because the bound state is so near the
Fermi energy, lifetime broadening eliminates the pos-
sibility of seeing a distinct line in the absorption spectra.
When the lifetime broadening is small, an absorption
resonance does appear at the Fermi energy. This reso-
nance has a logarithmic character. The calculations of
Sec. III demonstrate the nature of this resonance for
various values of electron conduction-band density.

As indicated in Fig. 1, the onset of optical absorption
is shifted to higher frequencies in degenerate materials

2 L. N. Cooper, Phys. Rev. 104, 1189 (1956).
'A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,

Quantum Field 1heory in Statistical Physics (Prentice-Hall, Inc. ,
Englewood Clifts, New Jersey, 1963).

4 L. V. Keldysh and Yu. V. Kopaev, Fiz. Tver. Tela, 6, 2791
(1964) I English transl. :Soviet Phys. —Solid State 6, 2219 (1965)j;
D. J. Thouless, Ann. Phys. (N. Y.) 10, 453 (1960).

because the absorption must lift the electron above the
Fermi energy. This was first observed by Tanenbaum

and Briggs. ' This "Burstein shift" was immediately

conhrmed and explained by Burstein. 6 Successive opti-
cal experimentsv "have confirmed the model, although

some tunneling data'4 "indicate that the band may also

shift rigidly down. All optical-absorption experiments

in degenerate semiconductors have been confined to the

low-energy absorption tail.
In order to see the exciton effects described below,

the optical absorption has to be measured above the

absorption edge. This is barely feasible in one quantum

absorption because of the high absorption constant. But
the measurements could be done by two-quantum ab-

sorption, '6 '7 or else by one of the ac-optical measure-

ments —piezoreRectance'8 or electroreflectance" '—
which also provide detailed information about e2.

II. ELECTRON AND HOLE ENERGIES

Before considering the Coulomb states of an electron-

hole pair created optically, we consider the energies of

each of them individually. The effects of electron-

electron interaction have been widely studied. The en-

ergy of an electron in a degenerate conduction band was

considered by Parmenter, "who examined the electron's

interaction with a single impurity. This leads to a down-

ward shift of the band. ""The randomness of the im-

purity locations allows the possibility that they can be

locally bunched, which leads to low-energy band tailing.

This has been studied by Kane, "Bonch-Bruevich, "
and recently by Lax and Halperin. 2'

A single hole in a degenerate electron gas is subject to
the same interactions as the electron. Its energy is

' M. Tanenhaum and H. B.Briggs, Phys. Rev. 91, 1561 (1953).
6 E. Burstein, Phys. Rev. 93, 632 (1954).
7 H. J. Hrostowski, G. H. Wheatley, and W. F. Flood, Jr., Phys.

Rev. 95, 1683 (1954).
8 R. Breckenridge, R. Blunt, W. Hosier, H. Frederikse, J.Becker,

and W. Oshinsky, Phys. Rev. 96, 571 (1954).' %V. Kaiser and H. Y. Fan, Phys. Rev. 98, 966 (1955).
W. G. Spitzer and J. M. Whelan, Phys. Rev. 114, 59 (1959).

"W.J. Turner and W. E. Reese J. Appl. Phys. 35, 350 (1964).
~~ D. E. Hill, Phys. Rev. 133, A866 (1964)."J.I. Pankove, Phys. Rev. 140, A2059 (1965).' R. N. Hall and J. H. Racette J. Appl. Phys. Suppl. 32, 2078

(1961).
"W. Bernard, H. Roth, A. P. Schmid, and P. Zeldes, Phys.

Rev. 131, 627 (1963)."J.J. Hopheld, J. M. Worlock, and K. Park, Phys. Rev. Let-
ters 11, 414 (1963);J. J. Hop6eld and J. M. Worlock, Phys. Rev.
137, A1455 (1965).

'7 D. Frohlich and H. Mahr, Phys. Rev. Letters 16, 895 (1966).
' W. E. Engeler, M. Gar6nkel, and J. J. Tiemann, Phys. Rev.

Letters 16, 239 (1966);W. E. Engeler, H. Fritzsche, M. Garfinkel,
and J. J. Tiemann, Phys. Rev. Letters 14, 1069 (1965).

'~ F. H. Pollak, M. Cardona, and K. L. Shaklee, Phys. Rev.
Letters 16, 942 (1966); 16, 48 (1966)."B.O. Seraphin, Proc. Phys. Soc. (London) 87, 239 (1966).

~' R. H. Parmenter, Phys. Rev. 97, 857 (1955); 104, 22 (1956)'"See articles by V. L. Bonch-Bruevich, P. A. Wolft, E.O. Kane,
E. M. Conwell, and B. W. Levinger, in Proceedings of the Inter-
national Conference on tlge Physics of Senncorvtnctors, Exeter (The
Institute of Physics and the Physical Society, London, 1962).

' P. A. Wol8, Phys. Rev. 126, 405 (1962).
E. O. Kane, Phys. Rev. 131, 79 (1963).

~5 B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966).
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shifted from the multiple interactions with multiple
impurities, because this raises, rather than lowers, the
hole energy. But valence-band tailing does occur from
hole interaction with phonons.

Another term which appears differently for the hole
than for the electron is the hole exchange energy

1 d'q g„(k+q)
Z, (k) =——Q v(q)

P »" (2&r)' e(q)

When one does the sum over q„, there results one term
proportional to the number of holes gv &(k+q), and one
term from the branch cuts of c(q). For the electron's
exchange energy, VVoE23 noted that the p&. term is the
most important, whereas, for the single hole, gpq=0.
The contribution from the dielectric function is

-0.5
CI

LLJ

II

-I.O

Z (k) =—Per&
7r2

dw dy(1 —y')

00 x/2

Xdx — dx x dy(2y —x)

X (1)
(x'+y) ' (ik &&,)/I&+—2xy 2Zxw—

~=k,m/p, 2=0 6634r„, .

( 3 )"'e'm.
~se=

&4~n, tp

X= 1+m, /nzs,

E=km. /p posy„

Een —e'm, /2eo'k'= donor binding energy

In deriving this expression, the denominator eg'+ cP in

—6Z

Im
~(q& Gl+v8) es'+ er'

is approximated by the Fermi-Thomas expression. The
integral (1) was evaluated for the real part of P, (k)
on the mass shell, ik„= $&,.The results for 0=0 are shown
in Fig. 2. The exchange energy is negative and, except

"G.D. Mahan and C. B. Duke, Phys. Rev. 149, 705 (1966).

1 QG0 4 g
Z, (k) = ——

„ee~—1 (2~)'

g
Im

ik»+N $y+s— e(q& co+$8)

The random-phase approximation is used for e(q).
Changing to the dimensionless variables x= q/pv,
zv=coss, and y=(~+x'p)/2+x, the cuts in e(q, &u) are
analyzed as before. ' The exchange energy becomes

l

0.2 OA 0.6 0.8 LO

Fxo. 2. The exchange energy of a k=0 hole in a degenerate I-
type semiconductor. The energy scale is in units of a donor binding
energy EzD. The electron-density parameter r, is dined in (1).

III. OPTICAL ABSORPTION

Elliott' showed that it was proper to view the absorp-
tion as the optical creation of an electron-hole pair. In
his calculation, the 6nal-state Coulomb interaction be-
tween the electron and hole was included by solving the
Schrodinger equation for a hydrogen atom. This simple
procedure is no longer possible when the conduction
band is degenerate. Because the electron's scattering is
limited by the exclusion principle, the resulting Schro-
dinger equation is nonlocal. The present calculation is
done using the diagrammatic methods of many-body
theory. 3

The optical absorption is related to a two-particle
correlation function, which is evaluated using the
Matsubara formulation. ' Denoting electron operators

for the dependence upon r„, of the order of the donor
binding energy.

Additional calculations have been done on the wave-
vector dependence of P, (k). For m, =m, a plot of
P, (k) versus k looks very similar to that for holes in-

teracting with optical phonons. For low k(k(pF), the
hole mass is increased. And, for k) p~, P, (k) falls off

rapidly as an inverse power of k. When the hole mass is
heavier, mq)m„ the k dependence of P, (k) becomes
less pronounced.

For the exciton calculations, the electron and hole
bands are assumed to be parabolic. This is valid since
most of the effects discussed above give rise to a band
shift or a change in the effective mass. The omission of
band tailing is allowable, since the present concern is
with e6ects at and above the absorption edge.
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by C~~, and hole operators by d&t, this correlation func-
tion is, for allowed dipole transitions,

(c)

~ ~ ~ ~

O,p

~(k,i~„)= —g dr e'"-&~"~
o

X(&,C,( )d,( )d', ( ')C,' ( ')) (2)

In the case of forbidden band-to-band dipole transition,
one instead evaluates the current-current correlation
function. The constant O,p contains the square of the
band-to-band matrix element and other factors. For
optical absorption, we can immediately set the electron-
hole center-of-mass wave vector k equal to zero. The
electron and hole Green's functions are

Be(p) = — —
y $sv= &ev ps

i „—$,v

FIG. 3. The ladder diagrams which are summed in evaluating
the correlation function (2). Figure 3(a) gives the absorption co-
eKcient (5) in the absence of electron-hole Coulomb interactions.
For insulating semiconductors, with negligible electron or hole
concentration, the ladder diagrams give all the important terms
for the electron-hole Coulomb interaction. For degenerate semi-
conductors, vertex corrections which are not ladder diagrams also
contribute to electron-hole Coulomb scattering.

tion is discussed using the Hamiltonian

3'.=Q p.vCvtCv+Q Paadatda+ Q V(g)Cvp, tCvda atda.

Electron-electron interactions are included by screening
the Coulomb interaction

V(q) = —4s e'/Leo(q'+k ')] (6)

The final-state Coulomb scattering'~ between the
electron and hole is included by summing the ladder
diagrams indicated in Fig. 3. For absorption in insulat-
ing crystals, where the conduction band is empty, the
result obtained by summing these ladder diagrams is
identical to Elliott's method of solving the hydrogenic
Schrodinger equation. The equivalence of the two ap-
proaches is shown below. Other vertex corrections be-
sides the ladder diagrams have a contribution which
depends upon the density of electrons or holes. They
give no contribution to the Elliott result for insulating
semiconductors. Their contribution to the absorption
in degenerate semiconductors is discussed in the next
section.

The sum of the ladder diagrams is expressed as a ver-
tex function

ga(k)=, $aa.= eaa I a-
zka faa

After evaluating s(iver„), the retarded function s;.t(ru)
is obtained by letting ia& ~ a& Eg p, —Isa+i—8. T—he op-
tical absorption is

A(m) =2 1m~,.(~). (3)

In the absence of any electron-hole Coulomb scattering,
the correlation function (2) becomes

Ap dp
~"'(i~-)=—Z,B.(y,ip-)8-( —p, ~-—~p-)

P v~ (2m-)'

This diagram is shown in Fig. 3(a). Doing the Matsu-
bara sum over p„gives

d'p 1
(~-)= o,-Z B.(yip. )

(2~)&P ..d'p Li —nv. (p) —eva(p))
s'0&(i(v„) = no-

(2s) ' ice —g. &av—
Xga(p, iver„—ip~) &(p,i~„), (7)

d'p' 1
V(p —p')- Z

(2~) P ..
Xg,(p', ip„)ga(y', i&a ip )F(p',i(a—) . (8)

It is assumed that the density of holes is negligible,
qva=0. Analytically continuing m +co Eg Ij,p Ija 1

—
(p ~—

)—1
+i8 gives the absorption, from (3),

A co&((o)= 2s-no (1—ev, (p))b((o —Eg—p'/2v) . (4)
(27r)'

The result (4) is

& "'(~)= (~o/2s )(2v) "'(a)—Eg)'"8((o—Eg—pv'/2v),

(t(x) =1 x)0 (5)
=0 x&0.

This is the standard result that the absorption is pro-
portional to the square root of the energy above the
band gap, and the electron's exclusion principle requires
that u) Eg+pv2//2v.

The Coulomb interaction between the electron and
hole alters the simple result (5). The Coulomb interac-

d'p (1 &,(p))r—(y,ia)„)
X' ZOP~ = —0!p

(2s)' is&„+p,+pa p'/2v—
(7')

d'p' V(y —y')(1 —&v (y'))1'(p' i~ )
F(p,ia) )=1+

(2n-) ' ~ +p.+pa —p"/2v
(8')

'7 J. Gillespie, Final State Interactions (Holden-Day, inc. , San
Francisco, 1964).

That I'(y, m„) does not depend upon p in (7) or (8)
is a convenient result of the instantaneous nature of the
Coulomb interaction. It also allows the Matsubara sums
to be done immediately:
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The generalized Legendre function" is

(p~2+p2+k 2) (p+p~)2+k 2

Q(
'

)=-,'in
2pp' i (p —p')'+k. '

This is abbreviated by Qp(p, p ). The equation for higher
partial waves gi(k, p) is given in terms of Qi(p, p'). Noyes
showed that the solution to (16) is"

yp(k, p) = 8(k—p)—

where

t(k) =(1+Ai(k)) '

2e'v (1—«pv. (p))
t(k) f(k,p),

spp k' —p'+i&

2e'v
A.i(k) =

n.ppQp(k, k) p

0—«iv(P))f(k, p)Qo(»P)
dp —,(17)

k' —p'+iB

Ap(k) =
mepk

(1-~"(p))f(k,p)
pdp

k' p'+H—
(19)

Note that ImAi(k)=ImAp(k). Now the exciton wave
functions can be expressed in compact form. The wave
function at r=0 is

and f(k,p) is generated by the equation

2e'v " (1—ev, (p'))f(k,p')
f(k,p) =Qp(p»)+ dp'

X'6p p kP P~P

&&[Qo(p,k)Qo(k, P') —
Q (P P')Qo(»k))/Qo(»k).

The function f(k,p) is real, and for k= p it is given by
the first term of this equation. It is also necessary to
define

The optical absorption from these continuum energy
states is

[1+A&(k)—Ap(k))'
A, (pi) =3 &p&(pi) (k=(2v(&o —E ))'i'.

(20)

The functions Ai(k) and Ap(k) are defined in (17)—(19).
The other contributions to 7«(ipse ) arise from the

bound exciton states, which occur for Ei,&pv'/2v. For
a bound exciton state of energy E;, the absorption is just

A;(pi) =2mnp d'«'E(r')P, («')tp;(0)6(Eg+E, —p&).

The magnitude of the absorption of these bound, states
is determined by the wave functions iA(r). These can
only be obtained by solving (11), which has not been
done. However, it is easy to show that the wave function
has a large extension in space, and that the relative
charge density at large distances has an oscillatory com-
ponent proportional to cos2pv«. The energies at which
the bound states occur can be obtained from the poles
of t(k). This exciton binding energy Ee= k, /2v is found
from

1+Ai(k;) =0.

Since ImA. i(k)=0 for k;(pv, this equation gives the
bound-state poles at real energy. The binding energy
for weakly bound states can be estimated by approxi-
mating A.i(k) in (17):

k —pv
Ai(k) = f(pv, p, )ln

rl aepv k+ pv

oo

4p(k, «=0)=- PdP&p(k P)=1-
k p

Similarly,

Ap(k)

1+A.i(k)

This gives a binding energy, measured relative to the
Fermi energy, of

E,= (2p, '/v)e-'~',

A=1(/2m pvae)ln(1+4pv'/k, ').
Ap(k)*

d'«'K(r')Pi, *(r')= (1—Nv. (k)) 1—
1+A.i(k) *

This last equation is just valid at zero temperature,
and for the scattering states with k) pv. Using the last
two equations, the scattering states contribute to
pr(«=0, i pp„) in (12) the amount

00 k'dk
pl g('i&de) =

27l' vv k /2v pppp pg

Li+Ai(k) —Ap(k))'
X

~1+A,(k) ~

'
3' Handbook of 3fathematical Functions, edited by M. Abromo-

witz and I. A. Stegun (National Bureau of Standards, Washington,
D. C., 1964).

"The normalization of f(k,p) has been changed from Noyes's
definition in Ref. 28.

It is interesting to compare these bound exciton states
with Cooper-pair states in superconductivity. Both sets
of bound states exist because the sharpness of the Fermi
surface limits the electron scattering. Yet the exciton
binding energy decreases in the limit of high electronic
density, while the superconducting gap usually in-
creases. Also, the exciton pole is at a real frequency in
the scattering amplitude, while the Cooper pole is at a
complex frequency.

The two parameters which determine A.i(k) and Ap(k)
are 2/n. a&pv and k, '/pv'. They can both be related to
the parameter «, =«„v/m, :

2/vraepv 0.3317«„——
k, '/pv' ——0.6634«, (m, /v) .

In doing these numerical computations, we set m,/v=1
in the expression for k, '/pv. '. This should not cause
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FIG. 4. The functions ReA&(k) and ReA2(k) plotted versus
E=k'/2v —e'~, in units of e~', where e~'= p~'/2v. The screening
parameter r, =1 is defined in (1). Various values of the damping
parameter F are indicated in parentheses. Increased damping just
rounds over the logarithmic singularities. The functions are de-
fined in (17) and (19). They are dimensionless, so their value is
given in absolute units. They were evaluated numerically, and just
the leading term of f(k,p) in (18) was used.

serious errors, since the screening parameter is always
contained in a logarithmic functions. Besides, the ap-
proximation m, /v=1 is not far wrong for heavy holes.
In evaluating Ar(k) and A2(k), we approximate f(k,p)
by the leading term in (18). The higher order terms in

(17) are oi order 0.16r„and are unimportant in the
high-density limit r, ~ 0. Even at lower densities, the
important logarithmic singularities involve f(p, ,p,),
which is entirely given by the first term of (18). The p
integrals in (17) and (19) were done numerically.

Finally, the Gnite lifetime of the hole must be in-
cluded. The absorption process creates holes with wave
vectors p~, and here the hole lifetime is a signiicant
parameter. Both the hole and electron lifetimes have
been included in a phenomenological way by introduc-

ing an energy uncertainty I'pp'/2v. The dimensionless

constant F has been inserted in the equations by chang-

ing the logarithmic and step functions to

In) Ql -+ ln(Q'+I')'I',
1 /k' —p~'~

1—X"(k)=0(k/p~) ~ l+- «n 'I
I p,mr)'

The effect of damping upon the functions ReA~(k) and
Re&2(k) is shown in Fig. 4 for r, =1.0. As expected, in-
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FrG. 5. The optical absorption calculated from (20) for three
values of r, and several values of F. The energy scale is measured
from the Burstein edge at ez'= p&2/2v above the energy gap, and
the energy is listed in units of ~& . The absorption is given in arbi-
trary units, but the same units were used for each value of r,.
Higher r& raises the back shoulder (the fiat trailing edge) of the
absorption to a higher value. Exciton e8ects cause the logarithmic
resonance at the Burstein edge. This resonance decreases for in-
creasing electron density (r, ~ 0) or increasing F.

creasing F just rounds over the logarithmic singularities.
The functions ReAr(k) and ReA~(k) increase in magni-
tude for larger r„and decrease with smaller r, .The mag-
nitude of Reh. m(k) is always larger than ReA&(k). For
r,&1, and for a reasonable value of F 0.1, no true
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bound states exist, since 1+ReAq)0. The resonances
observed in the absorption refer to metastable states.
It is not necessary to solve the bound-state problem in
order to calculate the optical absorption. One can just
use (20) with the damping constant included.

The optical absorption was evaluated using (20). The
results for r,=0.5, 1.0, and 2.0 are shown in Fig. 5.
Different values of I' are indicated in the figures. Energy
is listed in units of e~'= p p'/2v. The energy zero is op'

above the energy gap, which is the onset of the Burstein
edge. At low densities (r, =2.0), the exciton peak is
quite noticeable, but it gradually disappears in the high-
density limit r, —+ 0. Yet exciton effects are still notice-
able at r.~i, which is a high-density electron gas. Since
e-type GaAs at 5&&10'~ doping corresponds to r,
these effects should be observable in semiconductors.

IV. DISCUSSION

The calculations of the preceding section show that
exciton effects alter the absorption edge of degenerate
semiconductors. By viewing the absorption process as
the optical creation of an electron-hole pair, the electron-
hole Coulomb scattering was calculated in the final
state. This scattering causes logarithmic singularities in
the absorption spectra. These singularities decrease in
intensity as r, —& 0, which is the limit of high density.

The existence of real electron-hole bound states was
also considered. Were it not for the electron and hole
lifetimes, stable bound states would exist. Using a finite
lifetime causes the bound states to become metastable,
and smoothes over the logarithmic singularities in the
absorption spectra. Of course, for a large enough damp-
ing constant, this structure in the absorption is suK-
ciently smoothed over that it is eliminated.

It is important to appreciate that the exciton problem
is different in degenerate materials from that of an elec-
tron bound to an ionized donor. One usually solves the
donor problem by considering a one-electron Schro-
dinger equation with a local potential. The finite hole
mass prevents the exciton problem from being approxi-
mated in the same way, and leads to the nonlocal in-
teraction. For example, when evaluating the electron's

self-energy via Coulomb scattering from holes, one gets
terms which are logarithmically divergent in the mo-
mentum integrals for energies near the Fermi surface.
These divergences all cancel as mp, —&, which corre-
sponds to the donor problem. The occurrence of the
logarithmic divergences for finite m~ are related to the
existence of these weakly bound exciton states. As hole
masses in III-V semiconductors tend to be small, even
for heavy holes, it seems appropriate to use the for-
malism for finite mI, .

The only electron-hole scattering terms which were
considered in the calculation were the ladder diagrams
of Fig. 3. Other types of terms, which we call nonladder
diagrams, will also affect the optical absorption. There
is no possibility that these omitted terms will cancel the
logarithmic singularity which results from the ladder
diagrams. Just note that the diagram of Fig. 3(b) con-
tributes a logarithmic singularity by itself: Since it is
the only vertex correction in that order of coupling con-
stant, it cannot be cancelled by any other diagram. The
first nonladder diagram of interest is similar to Fig. 3(c),
except that the two Coulomb lines are crossed —or it can
be alternatively drawn so that the Coulomb lines are
vertical while the electron line is looped. It also contrib-
utes a logarithmic singularity to the optical absorp-
tion, although there is one less power of the logarithm
than from Fig. 3(c). That is, it contributes the same
type of logarithmic singularity as Fig. 3(b), but the
coupling constant is one higher power in r, . This means
that it is pointless to try to solve for f(k,p) in (17) to a
high power in r, without, at the same time, including
contributions from these nonladder diagrams. But the
ladder diagrams are the most important contributions
to the electron-hole interaction for r, &1, and it is in
this regime that the present results are valid.
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