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TABLE II. Parameters for gold contacts on three semicon-
ductors. Values of g are from Table I. Values of @A were deter-
mined in situ by measurements of contact potential, while ~p,
results were derived from capacitance measurements.

Material

CdS
CdTe
ZnQ

(eV)

4.79
4.28
4.57

&Au

(eV)

5.59
5.08
5.59

X—4~u
(eV)

0.80
0.80
1.02

0.79
0.63
0.90

Table II. Fair agreement with Eq. (1) is obtained,
provided the appropriate metal work function is used.
One does not expect exact agreement with Eq. (1) since
it does not take into account modifications in the
surface double layers when the two materials are placed
in intimate contact.
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The high-frequency optical absorption of semiconductors of the diamond structure type has been in-
vestigated theoretically for the almost-free-electron energy-band model isotropically extended to three
dimensions. Model-independent arguments show that ignoring interactions between particles so that all
excitations are infinitely long-lived leads to calculated values of the absorptive part of the dielectric constant,
f2 (g

—+ 0, or}, well below the experimental results for Ge and Si. Within our model, we have investigated self-
energy and vertex corrections to e&(or) due to many-body effects resulting from the Coulomb interactions
between particles. Both these corrections significantly raise the theoretical value of e2(or), bringing them
substantially closer to experimental ones.

I. INTRODUCTION

HE subject of the optical properties of both metals
and semiconductors' is usually investigated ex-

perimentally through the determination of the reAect-
ance and characteristic energy-loss functions, which are
directly interpretable in terms of the complex dielectric
constant

e(q, ce) = er(q, a&)+see(q, ce)

in the optical (q —&0) limit.
Ehrenreich and Philipp have considered theoretical

analyses of their experimental results for the metals Ag
and Cu, ' and semiconductors of the diamond structure
type, such as Si and Ge.' In this paper we are interested

+ Supported in part by the Advanced Research Projects Agency.
I.Tauc, in Progress in Semiconductors, edited by A. I'. Gibson

and R. E. Burgess (Temple Press Books, Ltd. , London, 1965),
Vol. IX.

~ H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).' H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 i1963l.

in the latter set of experiments. Specifically, we concern
ourselves with the absorptive part of the dielectric
constant.

One of the main difficulties with a theoretical develop-
ment for es(a&) in the semiconductor case is that some
model for the electronic band structure must be con-
sidered, since an external photon of energy Pscq cannot
create an electron-hole pair in a free electron gas in the
q~0 limit without violating energy-momentum con-
servation. Therefore, es(ce) would vanish in the absence
of a lattice, as it does in the usual random-phase ap-
proximation (RPA)4 treatment of the free-electron gas.
Once crystal structure is introduced, however, momen-
tum need be conserved only up to a reciprocal lattice
vector, so that interband transitions give rise to a finite
value for es(a), for co's larger than the minimum inter-

David Pines, L'lementary I'.xcitations in Solids (W. A. Benjamin
and Company, Inc. , New York, , 1964), Chap. 3.
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Fio. 1. The electron-dispersion relations for the valence (—) and
conduction (+) band energies, given by Eq. (2.4).

band frequency. It is these transitions which we will

describe within our model for the semiconductor at
temperature T=0.

In Refs. 2 and 3, the properties of the dielectric con-
stant are dealt with mainly through an analysis of the
diferent contributions to the various sum rules which
the imaginary and real parts of e(ILn1) must satisfy. The
convenience of this method is that none of the details of
the Bloch functions need to be investigated, because the
individual oscillator strengths are not required. These
authors considered the sum rules and rely on an inter-
pretation and fitting of the data in terms of them to
determine in which regions of co the various transitions
play the most important role in obtaining a value of
e(ILId). In order to explain the data they 6nd it necessary
to introduce a finite band-state lifetime which is taken
for simplicity to depend only on the band indices and
not on the energies of the states. The magnitudes of the
lifetimes (10 "sec) needed in this rough calculation are
characteristic of those expected from electron-electron,
rather than from electron-phonon interactions.

The aims of our work on semiconductors are quite
difI'erent. We propose to explore systematically the di-
electric constant for a particular model of a semicon-
ductor including, as suggested by previous calculations, '
the interactions between electrons but ignoring electron-
phonon interactions. It should be noted that the inter-
action between electrons is Coulombic, and thus longi-
tudinal, while the incident electron-phonon coupling is
transverse. However, in the optical limit, (Il —& 0), the
distinction between the two disappears. For our model
we use a three-dimensional extension of the nearly-free-
electron gas model, which Penn' has employed in his
discussion of the static dielectric constant. We first con-
sider the polarization which would result if particles

' David R. Penn, Phys. Rev. 128, 2093 (1962).

propagated freely and determine the resultant optical
absorption es(il-+0, &o). This is done in Sec. II. By
formulating the calculation 6eld-theoretically we set up
a convenient perturbation expansion, representable by
Feynman diagrams. For simplicity this is done at
T=O'K; finite temperature corrections should become
important only when T becomes of the order of the gap
energy, which is typically several volts. We are then able
to consider in detail the various many-body effects
which alter the above unperturbed calculation of e(eI).

These many-body effects are of two distinct types.
The 6rst is discussed in Sec. III and involves the intro-
duction of a self-energy in the previously free-particle-

type propagators. This is not a simple constant lifetime,
but rather a frequency-dependent self-energy resulting
from the possibility of the initial electron-hole pair
which was created by the external field creating subse-

quent electron-hole pairs as a result of scattering o8 the
particles in the Fermi sea. The importance of this effect
and the shortcomings of the constant lifetime approxi-
mation of the previously cited references are discussed
in this section. The second type of many-body effect we
coIlslclcl' (Scc. IV) 111volvcs tllc scRt. 'tcl'lllg RgRIIlst cRcll

other of the initially created polarization pair. These
effects are in the nature of corrections to the polarization
vertices and approximate values for these corrections
are obtained.

As we have mentioned above, our explicit calculations
of self-energy and vertex corrections to e(cv) require a
model for the semiconductor. It is true that the model
is simple and cannot be said to describe realistically the
broad class of diamond structure semiconductors we

consider. However, what we are mainly concerned with

are the many-body effects reflected in es(eI). The possi-

bility of sorting these out experimentally arises from the
observed weak dependence of e(e&) on the details of the
band structure at photon energies ~ greater than about
5 eV. In particular, peaks rejecting singularities in the
joint band density of states disappear above this energy,
and the rate of the monotonic decrease of e2 with or is the
feature which the sum rules and constant lifetime ap-
proximations have been invoked to explain. We there-
fore work within the framework of one model and show

how the two e6ects discussed above alter the simplest
calculation of es(&e) based on this model. We find that
the self-energy and vertex corrections significantly raise

es(cu) above the unperturbed value, es(&e). The net effect
is to bring the calculated es(Ie) closer to the experi-

mentally observed one. We believe that diferent, more
complicated choices of model would show the same
qualitative enhancements of es(~). Results, conclusions,

and limitations are discussed in Sec, V.

II. (a) The Potential Model

For the one-dimensional crystal, we expand the lattice
potential, as usual, in a Fourier series,

V(x) =Q Vxe' (2.1)
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The K's appearing are the wave vectors of the reciprocal
lattice, the smallest of which has magnitude 2k'. Since
we are considering an intrinsic semiconductor charac-
terized by a single valence band, the quantity k+ is
identical to the Fermi wave vector. In the absence of
the potential (2.1), the unperturbed electrons are de-
scribed by plane waves. The introduction of the lattice
potential distorts primarily those plane waves having k
values near kp, modifying them most strongly through
the E=2k p component of the potential. We denote this
coeS.cient by h.

The isotropic extension of this model to three dimen-
sions consists of the perturbation's mixing the state k
with Ir+K, the vector K having magnitude 2kp and
direction opposite to that of k. First-order perturbation
theory gives the nearly-free-electron wave functions
for the conduction (denoted by +) and valence (—)
bands,

ii.+(r) = (1+(n.+)')-'&'(e'"'+ n1ae*&'+zr ') (2.2)

where

fe«pz —ea+L(e1+z —e«)'+4i)'j'") (2 3)
2A

The quantities eJ, are the unperturbed plane wave

energies measured with respect to the Fermi surface 6p

in terms of which the valence and conduction-band
energies are given by

~"=!{.+", ~L(", — )'+4&'j'"). (2.4)

Throughout we will work within the reduced zone

scheme so that in all of the above expressions k always has
magnitude less than k~. The electron dispersion relation
for this two-band semiconductor is shown in Fig. 1.

For the optical (long-wavelength) limit at finite fre-

quencies only the interband, i.e., umklapp, transitions
contribute to the imaginary part of the dielectric con-

stallt, & (tl ~ 0, or) .Tllcsc tl allsltloils ale Induced by 'tile

external field component e, exp(i«l. r), through the
interaction

V~„«(«t) = d'r g Ic„+p„*(r)+cwz+p„+*(r))(cr QI (r)+cr +z pr +(r))eire"",
p, p'

(1st B.Z.}

(2.5)

where c2,+ is the second-quantized Fermion operator creating a nearly free electron with wave vector p, and B.Z.
stands for Brillouin zone. The result of the r integration in (2.5) is

Qy Qjc

l ax«(V)=ee 2 cn+z cn
I:1+(~n')'j'"-Ll+ (~.—.)9" I:1+(o")'1'"-

(1st B,Z.}

+Crr Crr+Z +err Cir q+Cir+Z C&n e—)+Z r (2 6)—
Ll+(~ )'j'"-I:(1+~-+)'j'" l.l+(~1 )'j'"-

l'. «(«1) ~. «(—«1)

$g 'Ug

(2.8)

We see that as in Eq. (2.5) the bare interaction,
Ir, =4me'/g', is modified by factors expressing the
coupling between initial and 6nal states. The presence
of these factors in (2.8) will be made obvious in the
next section.

(b) Infinite-Lifetime Calculation

The main purpose of this paper is to exhibit the
sects of the interparticle Coulomb interactions on
e2 (ti ~ 0, or) . Preparatory to doing this, we consider
e1(or) in the absence of these interactions; i.e., in the case
where the single-particle excitations are infinitely
long-lived.

I = L'11—2&~(P/P) —«13+K (2 &)

The interparticle interaction is also Coulombic and
can be written as

Within the random phase approximation the complex
dielectric constant is given by'

e {«l,or) =1+tr&II(«Lor) = 1+4%u («L«0), {2.9)
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Fxo. 2. The equation for the complex dielectric constant,
given (within the RPA) by E«i. (2.9).

where n(«l, or) is the complex polarizability. This equa-
tion is expressed schematically in Fig. 2, where the
irreducible polarization, II(«l,or), is the sum of all

Feynman diagrams containing two external vertices
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k, g

k+ K+q
&

g+gp

(~)
FIG. 3. Lowest order

diagrams contributing
to the irreducible polar-
izability, II (q,o)). I'ig-
ures 3 (a) and 3(b) diGer
by the order of the ab-
sorption and emission
processes for the photon.

3 Q
O

—
ilIO (q,o)) =

(2ir)4
d'p de 2f(y, q)

which cannot be split into two parts by cutting a single
interaction line. For our problem the electron and hole
propagators in these Feynman diagrams represent
nearly-free-particle states with the coupling factors of
Eq. (2.8) associated with the vertices rather than with
the interaction lines.

The lowest order diagrams contributing to II(q,M) are
shown in Fig. 3. The presence of the two coupling
factors in (2.8) is now clear. The change of sign in the
value of q appearing in the two factors corresponds to
the photon producing the electron-hole pair being
absorbed at one vertex and emitted at the other. The
propagators in this diagram are given by

G+(y)(o) = Lo&
—E„+(1—ii/)]

—' (2.10)

where p= 0+. The E„+'s are just the almost-free-electron
values of Eq. (2.4). The contribution. of Fig. 3 to the
polarization, II(q,co), is therefore

l0 l5 20

FIG. 4. The real and imaginary parts of the dielectric constant,
~(q ~o, eu)=~I(eu)+&2(co), for Ge, as measured optically (solid
curves) and as predicted by the theory of noninteracting electrons
of Sec. II (dashed curves), Eqs. (2.15) and (2.20).

the coupling at the two vertices and is given by

2f(p, V) = D+ (~')'] '(L1+ (~.—.)'] '"
+LI+(~a )'] "'~.+~. )'+L1+(~n )'] '

&&([I+( .-')] '"+l.1+( ")'] '" . ')' (212)

with k defined by Eq. (2.7). The two terms in (2.12)
correspond to the two graphs of Fig. 3. Doing the ~

integration in (2.11) and using the definition (2.9), we

obtain for the imaginary part of the dielectric constant,

25q
d'p f(y, q) ~(~+E~. E~x) (—2 13)&& (~ E~x++/n) —'(~ ~ &~e /—'n) —', (2 1—1) e, (q,~)=

2.( )
where the multiplicative factor of two results from a sum
over spins and the wave vectors y are restricted to lie Using Eqs. (2.3) and (2.4) in the q

—&0 limit and intro-

within the Fermi sphere. The quantity f(y, q) represents ducing the dimensionless variable y= p/k/ we find

f(y) —=lim f(p, /I)/q'= (e/;/6)'(1+ (2e/;/6)'(1 —y)2] 2 cos (q y) kF 2

q-+0

We can then write (2.13) in the long-wavelength limit as

(~) (~ /2g)2LI (4+2/~2)] i/2 dy y2g[y 1+((P 4g2)1/0/4~ ]$1+(4~ 2/g2) (1 y)R]-2
3u0kP 0

16 M

("/»)'(»/ )' L1- (( /4")'-(~/2")')'"]',
3a0kP. (~2 4+2}1/2

(2.15}

where ao is the Bohr radius, ao ——1///ie . At this point we may use this expression to obtain numerical results for

eq(~) in the absence of the many-body effects to be described in the next section. The relevant parameter of Eq.
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(2.15) is the ratio (2h/e&). This could be obtained by matching Eq. (2.15) with an experimental point. In fact,
Penn, ' who has used this model, matches his expression for the static value c(0,0), to obtain (2A/ep) =0.36 in the
case of Ge. To make our work consistent with his, we also choose this value of (2A/ep). The results are shown in
Fig. 4, where we have taken aokp ——0.92, the value appropriate to four free electrons per atom at the atomic density
of Ge. In the following sections we take all energies and momenta in units of ep and k p, respectively. We 6nd that
this curve falls off much too rapidly with co when compared with the results of Ref. 3. This decrease arises both
from the falloG in the joint density of states and from the reduced interband coupling by the static lattice as band
states separated by progressively higher energies contribute. In the next two sections we will see how self-energy
and vertex corrections serve to bring about a more gradual decrease with co, lifting the theoretical curve nearer
the experimental one.

We can also calculate —at least approximately —the real part of the dielectric constant, e&, within the infinite
lifetime approximation. From Eqs. (2.9), (2.11), and (2.14) we have

k'
ex(q-+0, (a)=1— P dk [1+(2/6)'(1—k)']-'

o ~+&I—&I+rr
(2.16)

where P denotes the principal value of the integral. The substitution x= (2/6) (k —1) puts the integral into the form

(6/2)'x +Dx+ 1—I GS (1+x') '= P—
2 g(g co 2A(1+x ) 267 —tan '2/6

[(6/2)2 tan20+6 tan8+1] cosse
de

cos8—2A/&o
(2.17)

This is now in the form of a sum of standard integrals, and after some algebraic manipulations we find for co) 2A

tp2

eq (co) = 1— p
~ (LV/8) tan ' (2/6)+ (3/8) 5 tan ' (2/6)+ 5y'/63~1

+ (8y'/8h) (2y' —1)—(6/4) (1 y4)+ p [By/2+ (28y/3—A) (y'+2) —(6/3) (1—y')]

+p'[(~/')' "'" '('/~)+ ('j')[""'('/~)+~'»] —(»2)(' —~')]+p'["»~—~('—~)]
(1—p')'~' tan[~ tan '(2/h)]+1 —p+p'[5 tan '(2jA)]+ (1—p') 'I'[(6/2)'p'+ (1—LP/4) p'] ln
(1—p')'~ tanP2 tan '(2/d)] —1+p

p—Zp4 ln, (&1) (2.18)

where we have used for frequently occurring constants the symbols

p=26/(u 8=1 r9/4 —y= (1+6'/4) '".
For the values of 6 and kp that we have taken to describe Ge this becomes

er((a) = 1—0.068p+0.076p'+0. 086p'+0. 102p'+0. 182p'

0.713(1—p'}'~'+ 1—p
+(1—p2) ' (0.0060p +0.496p~) ln —0.022p4 ln

0.713(1—p )' —1+p

This is also compared with the experimental values for Ge in Fig. 4.

(2.19)

1 p
(2.20)

l p
—0.089

III. SELF-ENERGY EFFECTS

A single electron introduced into the conduction band at an energy less than 2A above the band minimum will
remain in that state, since the minimum excitation energy for the filled valence band (2h) is not available. A
similar statement can be made for a single hole in the valence band. However, at the higher optical excitation
energies in which we are interested, electrons and/or holes are readily able to scatter by Coulomb interactions
so as to conserve both the energy and momentum of the system. In a simple single-particle picture the results of
this scattering can be described in terms of the lifetimes of the states, but more generally it is necessary to deal
with the electron and hole self-energies in the many-body system. In particular, we want to consider optical
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absorption as proceeding in two steps —an optical transition to an energy-nonconserving intermediate state, then
scattering via the interparticle Coulomb interactions to the 6nal state. We erst ignore interactions between the
initially created electron-hole pair and investigate the effects of the interaction of each with the rest of the system.
The Green s function G(p, ~&) describing particle (or hole) propagation in the semiconductor, is related to the corre-
sponding propagator in a noninteracting system Gp(p, co), by the Dyson equation

G(p,~)=Go (p,~)+Go(p, (u)Z (p,~)G(p, ~) . (3 I)

As is clear from the iterative solution of this equation, the irreducible self-energy Z(p, co) describes all processes the
system can undergo, starting from and ending with a freely propagating excitation (p,co), without at any inter-
mediate point returning to that state. The resultant G(p, o&) thus contains just those effects we have proposed to
include at this point. If Z(p, &u) is frequency-independent, then propagation in time, as given by

dG0 1 de
G(p, t) = %Cd f

2m Gp '(p, &e) —Z(p) 27r &o—Ev—ReZ —i ImZ

=ie '&tv+a'z&'e&' z&' if t&0 and Ev+ReZ&0 or, t(0 and Ev+ReZ(0,

otherwise,
(3 2)

is describable in terms of exponential decay, with a lifetime r=
I
ImZ

I
'. In general, this is not the case; but it is

still true that the feature of central importance for us—that is, the fact that the occupation of a single-band state
does not represent an eigenstate of the system, but rather a linear combination of eigenstates with various energies—is manifested by a nonvanishing imaginary part of the self-energy.

The physical interpretation (as well as the mathematics of the calculation) is simplest if the appropriate quanti-
ties are written in a spectral representation. As in the previous section, we want to calculate the irreducible polariz-
ability, II, with the present approximation consisting of replacing the bare propagators Go by more accurate
Green s functions G (the diagram is the same, with this new interpretation of the lines). The analytic continuation
of G(p, &o) into the complex ~ plane is conveniently written in the form of a dispersion integral

G(p,~)= "A(p, v) dv

M v 2'r
(3.3)

The spectral weight function A (p, v) is given by

(2~) 'A (p v) =E I (~ I ev I+0) I'~(v —~-0"+')+Z
I (~ I ev I0) I'~(v —~ 0" ') (3.4)

describing the density of eigenstates of excitation energy v (and momentum p) in the state produced by the addition
of one-conduction-band electron p to the ground state IO). (The energy of the exact eigenstate I m), referred to
that of the ground state, is co e.) This is thus a convenient means for obtaining expressions for the polarizability
or dielectric constant directly in terms of the density of states available for the various scattering processes. The
physical Green's functions are to be evaluated always at frequencies infinitesimally removed from the real axis in
the first and third quadrants (so that particle states exponentially decay, rather than grow at large positive
times). Then, in particular, we have

dp de
lim —ie,ll(a&, q) = See' f(p) —G(p, e &v)G(p+K, e)—

(2~)'

8me'

(2n)'
d'p f(p) de dv

A (p, v) -A (p+K, v')
dv

e 67+zl/v v e+ zitv v

8xe'i
d'p f(p) dv dv'+

(2n)' 0 —ce —oo

A(p, v)A(p+K, v')
dv dv

0 %+V V +tg
(3.5)

'Por a thorough discussion of the Dyson equation and many-body field-theoretic methods in general, see A. A. Abrikosov, L. P.
Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Fidd Theory in Statistical Physics (Prentice-Hall, Inc. , Englewood Cliffs, New
Jersey, 1963).
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f2' =
4m'

d'p2f(p) A(p, v —~)A(p+K, v)dv. (3.6)
0

where, as before, &=0+. By Eq. (2.9) the real part of
this expression gives e2(cv) itself (within the present
approximation for II), and we find the readily inter-
preted result:

g2

I

pe +p'

li q
p -Qs +p' q

I I

I
)
I

I I

p-q~ cp q pe

A(p, v) =2 ImG(p, v —i~l). (3 &)

Thus, an initial electron-hole pair is created at p, p+E,
each of these then scattering from the rest of the system
to produce excitations of energies s and co—v, respec-
tively. The limits on the v integral simply ensure that
the state associated with p+Eis indee'd a particle
(v&0) and that the one associated with p is a hole

(v —co&0). We have seen that the noninteracting-
electron results lead to an absorption which falls off too
rapidly at large co. This was observed to be a result
largely of the rapid decrease of interband coupling [the
factor f(p)], as one moved away from the gap region.
We now see that if interactions lead to appreciable spec-
tral weight at high energies for momenta p near unity
(the gap edge) the predicted high-co absorption may be
suitably increased. In the corresponding processes the
initial pair would be created in an intermediate state
well off the energy shell and would scatter against the
remaining particles to produce a multiple-pair high-

energy Anal state. The spectral weight function is just
the density of such states.

The inadequacies of the constant-lifetime approxima-
tion are now apparent. The low-energy single-particle
excitations which should find it dificult or impossible to
decay because of the presence of the energy gap are
assigned lifetimes as short as those of high-energy
excitations. A more realistic assignment of lifetimes to
band states, however, although more satisfactory is still
insufficient. The shortest lifetimes (and therefore the
largest changes in spectral weight) must be associated
with the highest energy excitations, where the greatly
reduced oscillator strengths minimize the magnitude of
the final effect on e2(co). Furthermore, redistribution of
spectral weight at one momentum tends to be compen-
sated by that at another [e.g., reduction of the h func-
tion at the band energy co =E„in A (p,co) is in part made

up by the tails of A (p', co) for all other p' at &o=Ev]. In
short, it is necessary to introduce spectral weight at
high energies in a region of momentum space (p=1)
where the oscillator strength is large enough to affect
appreciably the absorption probability —and thus e2(co).

It is therefore essential to estimate the behavior of the
full self-energy function, including its explicit depend-
ence on frequency.

The central problem is then the evaluation of Z(p, &v).

From the spectral representation of G(p, &a) [Eq. (3.3)]
we see that

FzG. 5. Figure 5(a) illustrates the Auger-type processes leading
to the self-energy diagram of Fig. 5(b), the double dashed line
being the screened Coulomb interaction.

In terms of the self-energy this becomes

2 Imx(p, v)
A(p, v)=

(v—ReZ —E„)'+(Imx)'
(3.8)

It is the deviation of ImZ from an infinitesimal which
signals the presence of "lifetime" effects. The real part
of the self-energy essentially shifts the band energies
E„ to E„'=E„+RE(p,Ev'). We make the approxima-
tion that this is primarily just a rigid-band shift
[ReZ(p, Ev') independent of p], and other estimatesi
indicate that this is probably very nearly true in real
crystals (renormalization effects, represented by the
frequency dependence of ReZ, will be discussed later).
We then proceed to calculate the imaginary part, of Z,
representing the possibility for the single-particle (p,&u)

to scatter against the filled valence band so as to produce
a final state of energy co with all particles on the energy
shell.

We suggest that the dominant scattering process for
a high-energy conduction electron is the simplest one-
an Auger-type effect. The first electron interacts by a
screened Coulomb potential with the filled band, kicking
a valence electron up to the conduction band and
leaving a second hole in the valence band. For a real
absorption process both electrons and both holes must
be on the energy shell (each has the band energy Ev ap-
propriate to its momentum p). The process is illustrated
diagramatically in Fig. 5 (a) and the corresponding self-
energy diagram is shown in Fig. 5(b). The screening
should be adequately accounted for by the random-
phase approximation4 (the calculation of Sec. II, but for

7 That this approximation is valid for Si has been demonstrated
by an explicit band calculation by E.O. Kane, Phys. Rev. 146, 558
(1966).
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importantly only on the frequency variable. Further-
more, for energies up to several times the Fermi energy,
the frequency dependence was found to be monotonic
and could be rather closely approximated by a quadratic
function: Z(P, v)=nv'sgn(v) srsdePersdemf of P. As an
interpolation for the semiconductor we have chosen a
form with which we can conveniently calculate:

FIG. 6. The regions in momentum-energy space accessible as
6nal states through the types of scattering processes considered.
A continuum now exists for ) ca ) &3a, while only the original band
states exist for ~ro) &3&. The arrows indicate the various kinds of
transitions which can occur.

ImZ(P, v) = n(v+36)s,

= —n(v —35)s,

v& —3A
—36&v&0
0(v&36

v&36. (3 9)

general q), but even with this simplification a straight-
forward determination of Z is extremely dificult. In-
stead of proceeding directly at this point, we take ad-
vantage of the fact that particles of energy much greater
than 2d will be essentially unaware of the existence of
the gap, and we therefore expect ImZ(p, to) for these
high values of co to be the same as it would be in a free-
electron gas of the same density as the valence electrons
in the semiconductor. This simpler calculation has been
made. ' We know further that in the semiconductor,
ImZ(&v)=0 for ~te~(35, so we suggest a reasonable
interpolation between the value zero at ~a&~ =36 and
the asymptotic form obtained from the free-electron-gas
calculation as a sensible approximation for ImZ(p, rd).

Certainly the general features and correct orders of
magnitude of self-energy sects should be exhibited by
such an approximation. In a previous calculation we
showed that ImZ(p, ~e) in the free-electron gas depends

Since ReZ represents primarily just a shift of the zero of
energy we take ReZ=O. Substitution of Kq. (3.9) into
(3.8) then gives the spectral weight functions to be used
in Eq. (3.6) to fLnd es(co), as corrected for self-energy
effects. The regions in momentum-energy space where
there is spectral weight (those regions accessible as final
states through the types of scattering processes we have
considered) are shown in Fig. 6. We have indicated the
original band states of energy ~v~(36, which are
still good eigenstates in this approximation LA(p, +)
= 2mb(ce —E„)along these curvesj. There is, in addition,
a continuum of available states for

~
v~)36 at all

momenta p. There are no effects on es(te) for photon
energy co(46, since both electron and hole states are
infinitely long-lived here Lnote that A(p, v —&o) and
A (p+E, v) are both 6 functions in Eq. (3.6)

forego(4A].

Transitions between valence and conduction continua
can occur only if ~&6h. Between these limits, 46(co
(6h, Eq. (3.6) becomes

g2

62 40

4x'
d'P f(P)

2n(v —~0+3')s
dv ,(2 )3( -E )

(v oi E)'+n'(v —re+—3A—)'
3(5

dv(2s)b(v —a&—Ev) (2w)5(v —Ev+rr)

CO 2n(v —36)s
dv(2s)5(v —ro —E,),46(a&(66. (3.10)

36 (v—E~ )'+x'( nv3A)'

The three terms within brackets, each the integral of a product of electron and hole spectral weight functions, are

readily interpreted. We recall from Eq. (3.6) that the integration variable v represents the particle energy. Thus,
the second term is the contribution from optical transitions between those valence band states p and the corre-

sponding conduction band states p+K which are separated by precisely the right energy: Ev+z Ev=oi; only a-
single value of

~ p~ contributes. The first term represents transitions (always of the same energy ~) between the
valence continuum at p and the conduction band. These processes are also illustrated in Fig. 6.

The frequency integrals are trivial, and the only dependence on the direction of p is found in the coupling

factor f(p) Then we c.an simplify Kq. (3.10) to

4e2 n(E~x re+36)s—
dPP'f(P) 0(~—3~—E~x)

7i 0 (E~rr ~ E)'+v(En~ rei+r—3~)'
n (co+E, 36)s-

+rr8(3LL —Ev+x) b(Ev+rr —co—E„)+8(3h—oi —E„) ~, (3.11)
(~+E. E~x)'+n'(~+Ev —3~)'i—

'S. M. Bose, A. Bardasis, A. J. Qlick, P. Longe, and D. Hone (to be published).
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where f(p) is the angular average of f(p) and 8(v) is the unit step function

8(v) =1 if v&0
=0 if p&0. (3.12)

This final integral over p was carried out numerically on an IBM 7040 computer. Before discussing the numerical
results, however, we complete the analysis by giving the corresponding solution for the frequency range w&6h:

g2

es(~) =
4~'

35 2n(v —o)+36)s
d'p f(p) dv, (2~)&(v—E~x)

(v—a)—Ev)s+css(v —(v+36)4

4n'(v s)+—36)s(v+36)'
dp

Hv —~—Ev)'+~'(v —~+3~)'jL(v —E~x)'+~'(v+3~)'j

2cr(v —36)s
dv(2n) 8(v—co—E,) —,(co& 6h) . (3.13)

(v—E~x)'+~'(v —3~)'

There are no longer pairs of electron-hole band states
separated by these energies co, and the corresponding
term in es(co) has disappeared. The new feature, as
expected, is the presence of valence to conduction-
continuum transitions, represented by the second term.
This frequency integral is readily carried out by the use
of partial-fraction techniques. The 6nal integral over

~ p ~

is again done numerically.
The quantitative results are presented in Fig. 7 and

are compared with the corresponding curve for non-
interacting electrons, calculated in Sec. II. The only
new parameter characterizing self-energy effects is n,
the curvature of ImZ(co). This was chosen to give the
best fit to ImZ(co) for a free-electron gas of the density
appropriate to the valence electrons of Ge. We found
n= j~, with all energies taken, as usual, in units of eg.

We should point out here that the approximation we
have employed is not entirely consistent. In particular,
the Kramers-Kronig relations connecting the real and
imaginary parts of the self-energy are clearly not
obeyed. Although ReZ(p, ~) leads to approximately a
rigid-band shift on the energy shell (co= Ev), it will not
be independent of co for 6xed p. This must be taken into
account if the density of states in k space is to be
maintained correctly. The probability that the state
cv+~0} contains an eigenstate of energy ~ )given by
A(p, &u)j, summed over all &o, must be unity. Formally,
a consistent treatment of Z{p,co) must ensure satisfac-
tion of the sum rule

the gap (p=1)—the total spectral weight in the con-
tinuum is small, and these renormalization eGects are
unimportant.

There are no substantial self-energy effects in es(&o)

until transitions between valence and conduction con-
tinua are allowed (at co=66=1.1). There are discon-
tinuities in the slope of es(&s) predicted both here and at
co= 46, where transitions from band to continuum states
are 6rst allowed. The abruptness of these sects is
characteristic of the model, in that total isotropy implies
their onset simultaneously in all directions in k space.
Regardless of this artificiality, however, the magnitude
of our results suggests the self-energy e8ects do play an
important role in optical absorption in semiconductors
at phonon energies cv above the Fermi energy.

IV. VERTEX CORRECTIONS

In an effort both to be consistent and to include the
most important effects we have investigated the con-

1,50—

1.00—

0.75—
dM

A (pp))—=1.'
2x

(3.14)

It is clear, in particular, that the frequency dependence
of ReZ does in fact renormalize the 8 functions in A (p,&o)

describing the band states: their weight is reduced from
2s by a factor 1/(1 —BZ/8&v). This will reduce band to
band-state absorption somewhat, most strongly for E~
and E~rr just below 36. But for the regions of p space
important for the present calculation —namely, close to

0.25—

10
1 I

l4 16 18 20
t'ai(eV )

FIG. 7. The imaginary part of the dielectric constant, ~2(cy}, as
predicted hy theory including self-energy effects LEqs. (3.10) and
(3.13}g.The experimental (solid curve) and infinite lifetime theo-
retical (dashed curve) results are included for comparison.
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tributions of two additional diagrams. The Ward
identities, ' which are generalized statements of the
conservation laws, require the inclusion of certain
vertex corrections along with each self-energy diagram.
The formal statement

(8/Ba )Z(p ~ 0, ~)=r (p ~ 0, ~), (4 1)

where I' is the vertex function, leads in our case to the
diagram of Fig. 8. The intermediate state represents the
same physical process as before (an Auger effect). The
contribution to the transition probability from this
diagram is calculated in Appendix A, and it is found to
be an important correction for energies cv up to co=2.

There is another type of simple process we have not
yet considered, and which one would expect to be
important at somewhat lower energies than are the self-

energy corrections we have investigated in the previous
section. The electron and hole initially created by the
incoming photon, in addition to interacting each with
the rest of the system, can scatter against one another
to give a 6nal state on the energy shell. This can occur
for any excitation energy co) 2A, so we are particularly
interested in this process below the onset of appreciable
self-energy effects (at co=66). We consider, then, the
imaginary part of the contribution to the polarizability
represented by the diagram of Fig. 9.Before we evaluate
this contribution, however, we must point out that our
model, as it stands, is inadequate to describe the
processes as they occur in a real crystal. The electron
is scattered from k+K to k"+K, where both K's are
appropriate to k: K= —2kzk. The hole, meanwhile, is
scattered from k to k", and optical recombination can
take place only if k"+K and k" correspond to the same
reduced zone wave vector. This implies k"=k in our
model, restricting the sum over k" to a single term. The
contribution thus vanishes as 1/X. However, we realize

that our spherical Brillouin zone is an approximation to
some polyhedron, where states along any one face (and
not too close to an edge) are plane waves mixed pri-
marily with the single reciprocal lattice vector perpen-
dicular to that face. We can build this feature into our

k, v

FIG. 8. Vertex correction to the polarizability, accounting in 6rst
order for the screened interaction between electron and hole.

model simply by neglecting the difference between the
E's associated with wave vectors within some reason-
able solid angle, 50, of one another. The polarizability
will depend only linearly on this solid angle, so it will
not be unduly sensitive to the precise choice of a
numerical value for 80. The solid angle subtended by a
face of the correct Brillouin zone cannot be very
different from unity, so we shall use this number in the
6nal numerical evaluation. We shall thus perform the
calculation for fixed k (and k" therefore within 8Q of k)
and then sum over directions k.

We do the frequency integrals 6rst:

dv
G(k'+K, co+ z')G(k', p')

2Ã

n(k') [1—n(k'+K)] [1 n—(k')]n(k'+K)
+z . (4.2)

&+Eh' Ek'+K+z'g Ek'yx —Ep~ —M+zr)

We are interested in final states in which the pair
(k', k'+K) is on the energy shell. [The only other
possible final states for this diagram are those for which
either k and k+K or k" and k"+K are on the energy
shell. These are the states considered in Sec. II; the con-
tribution is small because of the coupling factor f(k).7
Therefore, we want only the real part of Eq. (4.2),

~ in (k'+K) —n (k')
~

b(&o —Ep+Ep ~x),

which ensures that k' and k'+K are in different bands
and that energy is conserved. We have used the fact
that nz(k) =n(k) at T=O' to simplify this expression.
The other frequency integrals are also readily evaluated:

dv dv
G(k+K, (o+ v)G(k, z)

2' 2'
XG(k"+K, (o+v")G(k, v")

n(k) 1—n(k)

(a+Ed Ep+x+izI .. Ez,+x—Ez cu+irz— —

n(k") 1—n(k")

k', v'

Fio. 9.Vertex correction to the polarizability due to multiple scat-
tering (here, to second order) between the electron and hole.

'F. Koba, Progr. Theoret. Phys. (Kyoto) 6, 322 (1951) gives
the generalized identities. For simplicity, Eq. (4.4) is written for
the special case, p=0.

~+Et~I Eg«+x+zq Epilyrr EI,ii —~+zq—
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Again, we can ignore those contributions for which the
pairs at k and k" are on the energy shell, so we take the
principal part of Eq. (4.3). The major contributions
occur when the initial and final pairs k, k+K and
k", k"+K are near the Fermi surface (because of the
coupling factors [f(k)f(k")]'"),so we take ~Ek Ek+—)i~
= ~Ek. Ek.+rr—=25. (This will be accurate aslong as
(p is appreciably larger than 2A.) The result of all

frequency integrals is thus approximately

[244 (k)-1][2)4(k")—1]
[p)—2A (244(k) —1)][p)—2~ (2)4(k")—1)]

X i
44(k'+K) —ri(k')

i
8(p)+Ek.—Ek.+x) . (4.4)

We choose k to be the polar axis for the k' integration.
Then the integrand is independent of the azimuthal

angle, and the polar angle 8' appears only in the factors
()(k—k') and t((k—k"). The 8 function in Eq. (4.4) is

greatly simplified if we recognize that k' is rarely at the
Fermi surface (once again, as long as we do not consider
(p too close to 2A), so we can approximate Ek, and Ek +x

by free-electron energies. The 8 function then gives

(p=4(1—k' cos8'). (4.5)

We have, in addition, the occupation number factor
requiring k' and k'+K to be in different bands. Since
(p)0, this in fact requires k'&1 and 1& ~k'+K~ &2,
which by Eq. (4.5) can be written as

1&
i
k'+ K i'= k"+4(1—k' cos8') = 0 "+(p&4. (4.6)

For 1&~&3 this gives no additional restriction of k',
but for (p&1 it puts a lower bound of 1—(p on ~k'~.
Finally, we note that Eq. (4.5) has a solution for

~
cos8~ &1 only if k'&1 —or/4.
Before writing down the explicit form for the final

momentum integrals, we need expressions for the Cou-
lomb matrix elements.

We approximate the states k' by plane waves, but the
restriction of k and k" to the neighborhood of the Fermi
surface requires a more careful treatment of these wave
functions. Using the notation of Sec. II we find for
ikey&1,

4me2
dPpdprr (pik r'++ —

4,4(k+K) ~ r')&—ik'r'

[1+(~k+)']'"[1+(~. )']'" ~

eiq ~ (r—r') 4xe2
X (p ik r+(k&—+(r—i(k+K) ~ r) i(k()+K') ~ r (4 7)

(k—k')' 1+1/(nk+)'

where we have used the relationship n&+n& = —1 [see Eq. (2.3)].The angular integral over k' just involves the
denominator (k —k )' and the 8 function of Eq. (4.4). We have already discussed the limitations the latter imposes
on the range of

~

k'
~

. In addition we write the 8 function in the form (1/4k')8[((p —4)/4k'+cos8'] and evaluate
cos8 accordingly in the integrand. From the definition (2.3) we see that n&+&1, and the factor in brackets in

Eq. (4.7) is —, at k=1 and increases toward unity as k is reduced. Although this variation does occur within the
range of k values which contribute appreciably to the integral, we make only a small error by approximating this
quantity by a constant; we conservatively take this to be the minimum value, 2. We have stated the arguments
for the case k&1, but it is easily seen that analogous statements can be made for k&1.

We can take k'= 1 in ()(k—k'). The only remaining k dependence is that of the external vertex factor [f(k)]'",
and the calculation reduces to a product of integrals over k, k', and k", with those over k and k" being identical.
From the factor [f(k)f(k")]'" comes the only remaining angular dependence, cos'8, if we choose the incoming
photon wave vector q as the polar axis (recall that k and k" are parallel to within 8Q). The sum over the direction
of k then gives

in-' 80 cos8 cos8"d0=2prbQ cos'Hd8= —(K) .
50 —1

280 — ' k2 2 P2 -2 1

happ((p) = dk (f(k))'" dk — (f(k))"'
3(k pap) rr p (r) 2A i (r)+26

dk'
i „(4 [1+k'—2(1—(d/4)]'

We can then write the total contribution from the diagram, using Eqs. (4.4), (4.7), and (4.8), as

(4 8)

(4.9)

where we have included a factor of 2 from the sum over spin directions, and we have re-expressed e' in the dimen-
sionless units of this calculation e'= (1/k pap) (24p/k p) ~ 2/k pap. The integrals are readily carried out; we find

250 1 6'- ~' 6' 4~ 2-
8pp((p) = — —1+in + 1—— tan '—~—

3(kpap)'6'm' p) —2A 4 6'+4 4

1 6'- 6'+4 6'), 2 2—1+in + 1——
~

tan-' —— (8/ppP —1/pp). (4.10)
(p&+26 4 LV 4I
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Fn. 10.vertex corrections to the imaginary part of the dielectric
constant. The solid curve is the difference between exponential and
infinite lifetime theory values for &2I'cu). The contribution from the
diagram of I'ig. 8 is represented by the dashed curve and from that
of I'ig. 9 by the dot-dashed curve.

Finally, we evaluate this expression for the model semi-
conductor parameters used above to approximate Ge:
6=0.18 and kpao=0 92

13.2 2

8e2(~) =
58.2w' co+0.36 co—0.36

This is plotted in Fig. 10 with the solid angle 80 chosen
as unity. As is clear from the functional dependence of
Eq. (4.ll) on &o, the absorption associated with this
eRect dies oR rapidly at high energies. We recall that in
order to make several of the approximations of this
calculation we had to restrict ~ to be appreciably greater
than 2A. It is therefore unreasonable to place any con-
idence in our results below M&0.6 or so, but the
numbers, which have been conservatively estimated,
certainly suggest that electron-hole scattering may be of
some importance in the absorption of photons of energy
&&1. However, for larger co the contribution of Ap-
pendix A dominates.

V. CONCLUSIONS

The suggestion' that electron-electron interactions
significantly modify the high-frequency optical absorp-
tion of semiconductors has been verihed. Although the
experimental results for the dielectric constant at these
frequencies show no dependence on band-structure de-
tails, the isotropically extended nearly-free-electron
model which we have used for explicit calculations is
sufficiently unrealistic that precise agreement with ex-
periment could not be expected (and has not, indeed,
been found) .We have already pointed out, in particular,
the sudden onset of each eRect, created by the exact
isotropy of the model and the resultant singularity in
the density of states. This spherical band structure is

not realizable for any crystal potential. In fact, we have
shown that in order to obtain sensible results for vertex
corrections it is necessary to Qatten slightly the spherical
zone boundary, with its associated continuously varying
reciprocal lattice vectors, into a more realistic polyhe-
dron. The model we have used in which only two plane
waves are mixed. in forming band states overestimates
the rate of decrease of oscillator strengths away from
the zone boundaries, as can be seen explicitly from more
accurate band structure calculations. However, let us
reiterate that the excessively steep dropoff of es(co) for
large ~ is a general result for even the most accurate of
band-structure calculations since it follows from the
general f-sum rule I In spite of these inadequacies of the
model we believe that the Auger processes and electron-
hole scatterings we have described are reasonable

- representations of effects that occur in real crystals.
Thus, the magnitude and general behavior of the con-
tribution to eI(su) which we have calculated are repre-
sentative of those from corresponding sources in real
semiconductors —with the structure we have found to be
smoothed out by crystalline anisotropy and by the more
complex nature and mixing of the actual band states.

We have used an admittedly deficient modd, but one
which contains the essential feature of allowed inter-
band optical transitions while remaining sufFiciently
simple to treat thoroughly in lowest approximation
(noninteracting electrons). We do not claim to have
given an exhaustive analysis of the corresponding
diagrammatic perturbation theory, but rather to have
examined a consistent set of graphs representing clearly
important physical processes. Very general arguments
have been used' to demonstrate the inadequacy of a
free-(Bloch)-electron picture; we have indicated that
consideration of the many-body eRects of the Coulomb
interaction between electrons substantially reduces the
discrepancy between theory and experiment.
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APPENDIX A: EVALUATION OF THE
DIAGRAM OF FIG. 8

For exactly the same reason as we discussed in Sec.
IV, with reference to the diagram of Fig. 9, the present
contribution vanishes within the pure spherical band
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FIG. 11. Contour for the v' integration of the Appendix. The
only poles crossed when the contour is shifted to the imaginary axis
are the two indicated at v'= + (an —2A+ig).

model. In this case it is the intermediate photon momen-
tum k—k' which can only be zero if the electron at
k'+K is to recombine with the hole at k' and emit an
optical photon (wave vector=0). We therefore modify
the model just as we did in that section, ignoring differ-

ences in reciprocal lattice vector for momenta within a
solid angle 6Q. The dominant momentum transfers k—k'

will still be small, so the appropriate screening is given

by e(q~0, i'), which we have calculated within the
RPA in Sec. II.

The integrals simplify considerably if we take into
account, as in Sec. IV, the rapid variation of the vertex
factor [f(k)f(k')j'I'. Only the regions k, k'=1 con-

tribute appreciably, and we can take e& =6[1 —2n(k) j
ea =6[1—2N(k') j.We then have for the v integration:

dp—([+ —'-~' (1-')X —'-~ (1- n)][+ -~+ (1- n)3[ -~ (1- n)3) '
2'

= im(k')
m(k) t

1i- 1 1

a)—2A i p' / pi+ v' 26+i g p—i—v' 2D+ig—
1—~(k)—

p&+ v' pi —2h km' 26+i—qJ ka&+ 2hI v'+ 2A irll ——

g(k) — 1 ( 1 1 1
+i[1—e(k')]

J— —26k '+26 —ig +26( ' —2lI+Al)

1—n(k) 1 1 1

pi+2& p' a)—y'+26 ig p&+v'+—2h iq—(A1)

The remaining frequency integral, over p, is to be computed along a contour determined by the singularities of

1/e(v ).The situation differs from that of the free-electron case, in that interband transitions make possible excita-
tions for all energies v & 2A, and the branch points in 1/e(v ) are at +26, as indicated in Fig. 11.We follow Quinn
and Ferrell in moving the contour to the imaginary axis: v =i,V, with V real. We use the property e(k,M) =e(k, —&o)

to rewrite the integral

F(iV) ~ " F(iV)+F( iU)—
i dV =- d'V

e(0,i V) 2 „e(0,&V)
(A2)

We now invoke the relation e(0,iV) =c*(0, —iV) to argue that this is pure imaginary. The only real part of the
polarizability comes from the poles of Eq. (A1) crossed when the contour is shifted to the imaginary axis. This
contribution comes from the first term only in Eq. (A1); we find for the contribution to e2(co)

d'k d'k' — ( 1 )' 1
5e2 (~) = 2 (4n.e')' [f(k)f(k')y' B(k)n(k')~

~
(k—k') '

(2s.)' gp (2s)' k(v —2h) e(0, a)—2g)
(A3)

As in Sec. &V the only dependence on the direction of k comes from the cos'8 in the vertex factor [f(k)f(k')]'~'. We
take k to be the polar axis for the k' integration, and we find

df4 (k—k') '=2s
1—50/2m

(k—k')'+2kk'bQ/2s.
d cos8'(k'+k" —2kk' cos8') '= log

kk' (k—k')'
(A4)

The integral over k' contains the factor [f(k')]'", which decreases rapidly from its value at k =1, effectively

restricting k' to a small region near unity. We therefore can put an upper bound on the integral by rcp&acing
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f(k') by f(1) for 1—a&k'&1 and by zero for smaller k', with n((1.We can then perform the k' integration trivially:

(k—k')'+ 2kk'5Q/2s.

(k—k')'

= ~~[1+k2(1—2y2)] ln(1 —2k7+k2) —K(1—a)2+k'(1 —2"Y2)] ln[(1 —a)2—2k'(1 —a)+k2]—(1—k2) ln(1 —k)

1—yk 1—yk —0.—[k'—(1—n)'] ln(k —1++)+kn(1—v)+27k(1 —v')'" tan ' —tan-', (A5)
k(1—y')'12 k(1—p')'I'

where we have set
1—80/2s —=y=0.84 (for M=1). (A6)

This must now be integrated over k. Again there is a vertex factor [f(k)]'", which we replace by its value at k= 1
in the range 1—o;&k&1. The difference between the two tan ' terms is small, so we simplify the integrand by
expanding

k(1—y')'" tan —'
1—yk —o,—tan ' =++0(n').
k(1—v')'"-

In the same spirit we make approximations of two of the logarithms, keeping in. Inind that k is restricted to the
interval 1—n& k&1:

ln(1 —2ky+k') = ln2(1 —y)+0(n),
ln[(1—n)2 —2k' (1—n)+k'] = ln2 (1—y)+0 (n) .

The 6nal integral over k is now straightforward. YVe find

(AS)

dkk [Eq. (AS)]=a' 1n2 (1—y) —2cP (1—n) inn+ (2+y)n'+0 (n') (A9)

We can now return to the expression (A3) for the contribution to the dielectric constant:

be2(co) = Im— &(Eq. (A9) .
3''k~ao LP (&a

—2A) e(0, ao —2h)

The dependence of this on cv arises entirely from the factor

(1/2) (a)—2h) —' 1m i/c(0, (o—2b,) . (A11)

The behavior of this function can be found either from the experimental curves for Im(1/e) or from our own RPA
infinite lifetime calculation of Sec. II. In Fig. 10 we have indicated the onset at co =46, (the smallest energy possible
for creation of two electron-hole pairs) and we have joined smoothly to the experimental values for Eq. (A11).
We see a rise to a roughly constant value =0.3 until the energy corresponding to the peak of Im1/e (at a& —2h =1.3)
is reached and then a rapid falloff due to both factors in the product (A11). The ratio of this function to Be2(&o)

depends on the precise choice of the cutoff parameter o.. For the reasonable value o.=0.1 we find this ratio to be
approximately unity. We must recognize, however, that the approximations make for f(k) may have introduced
errors of a factor of 2 or so in these results.


