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Theory of Excitons Bound to Ionized Impurities in Semiconductors*
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The quantum-mechanical variational theorem is used to study the conditions under which an exciton can
be bound to a Coulomb center in a semiconductor. The model used is that in which the electron and the hole
constituting the exciton can be regarded as charged particles with effective masses m, and mI„respectively.
It is shown that an exciton is bound to a singly ionized donor if m, &0.2m', and to a singly ionized acceptor
if m, &0.25m', . Estimates are given of the binding energy of the exciton-impurity complexes, and they are
discussed in relation to experimental observations in semiconductors such as GaSb.

a singly ionized donor is computed within the approxi-
mation ns, &m~ using Teller's solution' for the wave
functions and eRective potential of the hydrogen
molecular ion H2+. The conclusion which follows from
this analysis is that an exciton can be bound to an
ionized donor if (ntt/m, ))1.4. It must be remarked,
however, that the numerical value 1.4 is only an esti-
mate of the limiting ratio rrtt, /nt, below which binding
ceases to occur. Similarly, an exciton can be bound to a
singly ionized acceptor if (m,/ntz)) 1.4. In many semi-
conductors, particularly in those considered later on
in this paper, m, (mh so that if the condition (rrt, /mt, )
&1.4 were the only one under which binding could
occur, then one would not expect excitoo-acceptor com-
plexes to exist in these materials. However, the optical
measurements of Johnson and Fane in GaSb (where

n/en=tt0.23) can be interpreted in a simple way assum-
ing the existence of these exciton complexes. It is the
purpose of the present work to investigate whether
excitons can be stably bound to Coulomb centers in
this and similar substances.

In Sec. II a study is given of the ground state of an
exciton in the field of a singly ionized donor. The present
calculation differs from that given by Hopfield in that
we have constructed a variational wave function for the
total system. In this way the dynamical effects as-
sociated with the finite effective mass of the hole, which
were neglected in Ref. 3, are taken into account. We
find that the exciton-donor complex exists if (rrt. /mt, )
&0.20 so that in this region the present analysis yields
results in considerable agreement with Hopfield's work.
We can immediately state that the exciton-acceptor
complex exists if (mt, /m, )(0.20. It would be incorrect,
however, to infer that, because an ionized acceptor is
able to bind an exciton when m.&5m~, this is the only
region in which this binding occurs. We have, in fact,
demonstrated that exciton-acceptor complexes can
exist if (rrt, /rrsh)(0. 25. This proof is given in Sec. III
together with an estimate of the binding energy as a
function of the parameter m, /nth. We have separated
the consideration of these two cases in this fashion for
convenience of presentation and to keep our ideas
fixed on semiconductors having m, &my, . Of course, from

I. INTRODUCTION

XCITONS bound to imperfections (or exciton-
~ imperfection complexes) in solids have been in-

vestigated theoretically and experimentally by several
authors. ' ' Hopfielda has considered several types of
bound excitons including the case of an exciton in the
presence of the Coulomb field of an ionized donor. This
author treats the exciton within the framework of the
effective mass approximation, i.e., as two oppositely
charged particles, an electron and a hole, moving under
the inhuence of their mutual Coulomb attraction. The
electron and the hole are supposed to have spherical
bands with effective masses m, and mj„respectively.
Within this approximation a free exciton has a hydro-
gen-like excitation spectrum with its ground state
lying at an energy tse'/2h'E' below the edge of the
conduction band of the semiconductor. Here tt=rtt, mt, /
(m,+mt, ) is the reduced mass of the exciton and E the
dielectric constant of the host crystal. We shall also
make use of this model in this paper.

The present work is concerned only with excitons
bound to singly charged point defects in semiconductors.
It is important to realize that an exciton can be eRec-
tively bound to a singly ionized donor only if the bind-
ing energy of the system composed of the exciton plus
the ionized donor exceeds the binding energy E& of
the neutral donor. If this were not the case, then the
exciton-donor complex would decay into a neutral
donor and a free hole. In the same manner, the ex-
citon-donor complex has a physical meaning only if its
binding energy is larger than that of the free exciton
E,. We need not, however, concern ourselves with this
comparison since ED& E,.

In Ref. 3, the binding energy of an exciton bound to
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a purely formal point of view, this distinction is un-
necessary. Finally Sec. IV contains a discussion of
some experimental results in relation to the theoretical
calculations presented in the preceding sections.

h2 ~2 g2 g2

P 2+
2m. Era Er. E'

I r.—ra
I

is just the Hamiltonian of the electron moving in the
combined Coulomb 6eld of the charged donor and of the
hole assuming that the latter is 6xed at position r~.
The eigenvalue problem associated with V(ra) is
identical to that of the hydrogen molecular ion H2+.
We transform the coordinates r,=(x.,y„s.) into the
into the parabolic coordinates p, v, q de6ned by

rap= r + I
r..—ra I, (4)

and q is the angle formed by the projection of r, on
a plane perpendicular to the vector rp, and by an
arbitrary Mucial line on this plane. The ranges of values
of these coordinates are j.&p& ~, —1&v&i, and
0(y&2~. Equation (3) can be rewritten as

j. p2 —v' —4p,
V(ra) = —~&. +-

p, —v

where we have taken a*=Eh'/m, c' as the unit of length
and e'/Ee* a,s the unit of energy. The Laplacian

II. EXCITON BOUND TO AH IONIZED DONOR

%e consider, as stated in the introduction, a simple
model of an exciton formed by an electron and a hole
at the edges of their respective bands. Ke now study
the nature of the ground state of the exciton in the
Coulonlb Md of a singly ionized donoi IIlaklllg use of
the quantum-mechanical variational theorem. The
starting point is the Hamiltonian operator

h2 e2 e2 e2

V,'+ — -- . (1)
2m, Era Er. Elr, ral—

In this equation, r, and rA, are the position vectors of the
electron and the hole, respectively, taking the origin
at the nucleus of the singly ionized donor, and 7'@2

and V,2 are the Laplacian operators with respect to the
hole and electron coordinates, respectively. The purpose
of the subsequent development is to estimate the bind-
ing energy of this system, i.e., the energy required to
remove the electron and the hole an infinite distance
from the donor and from one another. It must be remem-
bered, of course, that effective binding results only if
this binding energy is larger than E~,

We rewrite first Eq. (1) in the form

H = —(ia'/2ma) Vaa+ V(ra),

operator in Eq. (6) is

p 2—
r„a(~a ra)

8 8 8 8—(i '- 1)—+—(1-")—
8p - Bp- Bv - Bv

(a'-1)(1-")~a '

where A and 8 are functions of 8 and c. It turns out
that'

2 =$0'I 28(1+-',c+-',c'){2Ai(28)—622(26)+830(28))
+(16/15)c'2 o(28)j, (12)

8=Eo'L (1+-,'c+-,'c') {4Aa(28) —Aa(28) )
+(-',+-,' +—', ')A (28)j, (13)

with

rVO ' (1+-',c+xa——c')A a(2h) —(-,'+pc+vie')A o(28) . (14)

The factor Eo is related to the normaHzation constant
S by the equation

E=Eo(2/s ra') 'i' exp(b)

The functions Aa(x), 2 i(x), and A2(x) are given by

e! ~ x~

A„(x)=
g"+i a=o p!

(16)

We must now choose the function f(ra). We do this by
requiring first that f(ra) =f(ra) be invariant under rota-
tions about the origin. We set f(ra)=ra'i'F(ra), and

~ H. M. James, J. Chem. Phys. 3, 9 (j.935).
8 H. Eyring, J. WaIter, and G. E. Kimball, Quanfgm Chemistry

(John WiIey R Sons, Ine. , New York, 196j.).

A variational wave function for the Hamiltonian H
will be taken of the form

+=f(ra) g(ia, ~, v ),
where we assume f and g are normalized. Following
James~ we take

g(~;,v) =&exp( @)(1+—c"), (9)

where 8 and c are variational parameters and Ã a
normalization factor. Now the expectation value of the
Hamiltonian of Eq. (2) is given (in dirnensionless form)
by

VV= —k~&f1 ~"
I f&+&fg I V(ra) Ifg&

'(fg I
f-~-"g& (fg I

~a-f ~ag& (1o)

The quantity o is the ratio m, /ma. The third and fourth
terms arise because g is a function of r~ through the
normalizing factor S. The quantity (fgl V(ra) I fg& is
of the form

8
&fg I v(«) Ifg&=(fl —,—If)

~a
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select Ii to be a, solution of the differential equation l.4 "

a)-
f

P=RP
dry' &.„' r,J

(17)
l.2

Here p=0, 1, 2, is a quantum number and E„an
eigenvalue corresponding to the linear operator on the
left-hand side of Eq. (17). The eigenvalues associated
with Eq. (17) are given by'

E = —(28'/o)[2p+1+{1+(SA/o))"'] ' (18)

I.O
a

ELJ

0.8—
I

0.6—

O. l

I I

0.2 0.3
I I l

0.4 0.5 0.6

Remembering that g depends on r& only through the
factor rz 'l'2 some simple manipulations yield for 8'
the value Eo when the function f(ri,) is chosen as above.

The lowest energy state is found setting p=0 so
that the expectation value of FI in a state in which f
corresponds to the quantum number p =0 is (in ordinary
cgs units)

W'= —(4EnI3'/o)[1+ {1+.(SA/o)) '"] '. (19)

Recalling that A and 8 are functions of 8 and c we can
now minimize 8" with respect to these parameters. The
results obtained for the minimum value of 5' as a func-
tion of 0. are displayed in Fig. 1. We notice from the
graph in this figure that (—W/En) )1 if o (0.20. Thus,
exciton-donor complexes are expected to exist in semi-
conductors in which a satisfies the preceding inequality.
Needless to say the regions of the curve for which

(—8'/E&)(1 have no physical significance.

III. EXCITON BOUND TO AN IONIZED ACCEPTOR

We turn now to the study of the ground state of an
exciton-acceptor complex. The Hamiltonian operator
describing this system is

e2A2 h2
H= — V,2—

2m. 2

e2 e2

Vi, '— —— +, (20)
m, Zfr. r,

f

R—r, Rr,
'

e2A, 2 h2

V@2——V 2—
2M 2p Er

e2 e2

+ (21)
R fR—~rf R'fRyprf

Here M=m, +mi, is the total mass of the exciton,
n=(m. /M)=o/(1+o) and p=(mi/3f)=(1+o) '. We
now add and subtract from Eq. (21) the quantity

' L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Addison-Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1958), p. 128.

where the symbols have meanings similar to those of the
preceding section.

We first transform r, and r~ into R and r which are
the position vector of the center of mass of the exciton
and relative distance of the electron from the
hole, respectively [i.e., R= (m, r,+m&r&)/(m, +mi) and
r=r,—rq]. The Hamiltonian expressed in terms of
these variables is

Fn. 1. Ratio of the binding energy of an exciton bound to a
singly charged donor to that of the neutral donor as a function of
0.=m, /mf, .

(1—Z)e'/ICr where Z is a dimensionless parameter to
be determined later. We have

where

A2 O2 Ze'
VB V +hip

2M 2y Kr
(22)

e2

K
f
R o.r

f

—E
f
Rypr

f

(1—Z)e'
(23)

We adopt now the following procedure. Consider
first the part,

A Ze
Hp ————V„'—

2p I&
(24)

pZ2e4 OZ Eg
g (p)— (2~)

2A'K'e' (1+o.)n'

where I-'z (mi, e4/2h'E') is th——e binding energy of the
neutral acceptor. We attempt now to find a trial wave
function having the form 0'(r, R) = @„i~«&(r)C (R),
where we assume 0'

~
&'& and C to be normalized. The

expectation value of H when the system is in the state
4 is given by

8'= (C f

—(Ii'/2M) Va'+E„«'+FI„i„"'(R)
f C), (26)

where
FI„i &'& = (e„i„«&

f
hi

f
e„i„«&).

Clearly, in order to minimize lV it is advantageous to
chose e= 1, 3=vs=0. However 4 is still at our disposal.
Naturally one would like to choose C so that it is the
ground state of a system described by the Hamiltonian
(—fi'/2M)Va'+FIiwi"(R), but this turns out to be
impractical because of the difhculty encountered in
the solution of the corresponding Schrodinger equation.
We have then chosen C to be a solution of the equation

[—(h'/2M) V '+ V (R)]C'(R)=E C'(R), (28)

of the Hamiltonian H. The operator IIp is diagonal in
the representation %„~ ~", where these functions are
identical to the eigenfunctions of the hydrogen atom
except for appropriate scaling factors. The eigenvalues
of Hp are
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FIG. 2. Values of Vpq(R) and of Hlpp(" (R)—H1pp(') (0) as a function of R. The units of the

ordinates are eV. This plot is drawn for the case
0=0.23 which corresponds to the mass ratio ap-
propriate to GaSb.
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where
Upr(R) =DI 1—exp( —XR)7' (29)

and

Wl= (c I (H100 (R) Hipp"'(0)) —Vpr(R) I
c') . (36)

is a Morse potential with the para, meters D and X

chosen in such a manner so as to match the depth and
curvature of the actual potential Hippi'i(R). More
explicitly we require that

and
V (c ) =D=Hl 0 (~) Hlpp (0)

(a'V~(R) pa'Hioo"'(R) )
aR' a=p k aR' & a=o

(30)

(31)

We 6nd that

1 1 exp(iy q)
dq.

gf 2
(32)

e' Irt' 2RZe'mI, Zmj, e' 1
Hioo ' (R)=—expI- +

Z & Zoo Rao R

2RZe'm, Zm, eo 1 Z(1—Z)pe'
—exp- +

Eh' Eh' E. Kh'
(33)

~e remark that Upi(R) and Hioo "(R) are rather
similar as exhibited in Fig. 2. The evaluation of

Hipp "i(R) is carried"out using the identity

W= Wp+Wi+Wp, (37)

Remembering that both ll'p and 8'l are functions of the
parameter Z which is still at our disposal, we choose this
parameter to be such that 8'p is a minimum. Then we
compute 8' for the value of Z which minimizes lVp.
According to the variational principle, 8' is then larger
than the true ground state of the Hamiltonian II. It
is interesting to notice that the contribution of the
second term in Eq. (34) is rather small as compared
with 8'p. Nevertheless, it has not been neglected. In
Fig. 3 we show a graph of —W/E~ as a function of p

calculated in the way outlined above. From this graph
we see immediately that an exciton can be bound by a
singly ionized acceptor if 0-&0.25.

Since, after this minimization procedure, hl can be
regarded as small compared to the other terms in
Eq. (22) we can obtain another and presumably more
accurate estimate of the binding energy of the exciton-
acceptor complex using perturbation theory. We
take @(r,R)=%'„1„(r)C(R) where + 1 (r) divers from

&P&(r) in that we have included a first-order pertur-
bation correction arising from hl. Then we can write,
to second order in kl,

with
If we choose for C the eigenfunction associated with

Eq. (28) corresponding to the lowest value of Epr we find Wp=(C IH100"&(R)
I 4), (38)

where

W= Wp+Wi,

Wp E1 ++or+ H 100 (0)

and
(34 I(+.1-"'Ikil +10 "')

I

'
Hlpp (R)= Z . (39)

nlm&lpp g (p) g (p)
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The correction 8'2 has been evaluated for each o. for
the value of Z which minimizes LVO. The new value of

(—W/L&'A) is also shown in Fig. 3. We notice that the
value of 0 for which ( W—/EA) = 1 in the second-order
calculation is o-=0.29 which is fairly close to the value
0.25 found to first order. Numerical applications and a
comparison between theory and experiment form the
object of the next section.

IV. DISCUSSION

In this section we shall be concerned with the inter-
pretation of some experimental results that can be
accounted for by exciton complexes in which the exciton
can be associated with either an ionized donor or an
ionized acceptor.

Exciton complexes in CdS have been identified by
Thomas and Hopfield' and Collins et al, 4 In this
material m, =0.20 in units of the free electron mass,
being almost isotropic while the hole band structure
is not isotropic but has mI, I I

=5 and m»= 0.7 where the
subscripts

~~
and J denote the effective masses for

directions parallel and perpendicular to the hexagonal
axis, respectively. We assume that the appropriate hole
mass to use in a comparison with our theory is the
geometric mean of the principal effective masses, i.e.,
mq ——(mj„„mj„')'~'=1.4. Thus, 0.=0.14 so that an exciton
can be attached to either an ionized donor or to an
ionized acceptor. The experimental observations do
not seem to be consistent with the second alternative.
We therefore expect to find a bound exciton 0.0324 eV
below the edge of the conduction band (this leads to an
observed line at 2.550 eV in the absorption spectrum).
If an exciton-acceptor complex existed at all, according
to Fig. 3 it would occur at 2.26 eV above the valence
band.

Park et a/. " have observed similar optical lines in
ZnO. However, because the ratio o- is not known we can-
not give an adequate discussion of the relation between
these observations and the present theory.

Experimental studies on Ga.Sb by Johnson and Fan'
can be simply interpreted if one assumes the existence
of exciton-acceptor complexes. In GaSb, taking m,
=0.052 and m~=0. 23 we have 0=0.23 so that, accord-
ing to our calculations an exciton in this material can

10 Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds,
Phys. Rev. 143, 512 (1966).

2.2—

Fro. 3. Binding
energy —8' of an ex-
citon bound to a singly
ionized acceptor as a
function of 0 =m, /mh.
We plot the ratio—(W /L~'~), where P.'~ is
the binding energy of
the neutral acceptor.
The lower curve is ob-
tained from our varia-
tional wave function,
while the upper curve
is calculated using
second-order perturba-
tion theory.
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only be vound to an acceptor. The binding energy of
the complex (taken from Fig. 3) is 1.17EA=0.018 eV
taking K=14.4 and differs from the experimental posi-
tion of the y-line in Ref. 6 by less than 5%. In ZnTe
m, =0.09, m~ ——0.6 so that o-=0.15. Thus the binding
energy of an exciton-acceptor complex is 1.4E~——0.106
eV. The corresponding binding of the exciton-donor
complex, using K=10.4, is 1.02L~ ——0.0115 eV.

The level lying 0.0082 eV below the edge of the con-
duction band of GaSb cannot be regarded as being a
state of the exciton-acceptor complex since its binding
energy is less than that of the neutral acceptor. It
could be associated with an impurity state other than
the one responsible for the exciton-acceptor complex.

Finally, it is interesting to mention that in Si we do
not expect any bound excitons to exist because 0.=1.
This seems to be consistent with the observed results. "

ACKNOWLEDGMENTS

The authors wish to thank Professor Peter Fisher
and Professor Robert W. Knox for a critical reading of
the manuscript.

"J.R. Haynes, Phys. Rev. Letters 4, 361 (1960).


