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Impurity-Band Tails in the High-Density Limit.
II. Higher Order Corrections
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In an earlier paper, I, the authors presented a theory of the low-energy tail of an electron band in a semi-
conductor in the presence of a high density of impurities. This theory was based on the approximation that
all the local potential fluctuations binding states of a given energy have the same shape. We now discuss
corrections to the density of states p(E) and the spectral density A (k,E) by treating the difference between
the actual random potential and the average well shape as a small perturbation. An Okrug@ higher-order
energy correction to the density of states is proposed, which displaces all energies by the average diGerencc
between the perturbed and unperturbed energies, and the calculation of this correction is discussed for the
limiting case of a random potential obeying Gaussian statistics. We also discuss the complete second-order
correction proposed by Zittartz and Langer, which leads to the exact asymptotic form of p (E) in a Gaussian
potential, and we show how the formulas can be extended to impurity potentials of nonzero range. For three-
dimensional Gaussian models, the approximate density of states of our earlier paper had the form p(E)
~e 'A(Z) exp) —B(E)/(2P)g, where p is a parameter proportional to the density of impurities and to
the square of the strength of the individual impurity potentials. The corrections described in the present
paper modify the function A (E), but not B(E}.Ke also discuss brieQy corrections to the momentum de-
pendence of our earlier approximation to the spectral density A (h,E).

j.. INTRODUCTION
' 'N Rn earlier paper, ' the authors presented an ap-
~ ~ proximate method for calculating the density of
states p(E), and the momentum-dependent spectral
density, A(k, E), in the low-energy tail of an electron
band of a semiconductor, in the presence of a high
density of impurities. The states in the low-energy tail
are bound in wells in the random potential, arising from
large fluctuations in the local density of impurities. The
assumption used in I was that all the eigenstates at a
given energy in the tail have the same shape, or equiva-
lently, that RIl thc corrcspoIldlng potential wells hRvc
the same shape. This assumption is not exact, of course;
it is only a first approximation. In fact, the approxima-
tion leads to a small overestimate of the energy of each
eigenstate, and an underestimate of the density of
states.

In the present paper, we shall discuss methods for
improving the approximation of I. In principle, we may
calculate the correct energy of each eigenstate from
perturbation theory, using as a zeroth-order potential
the "typical well shape" of I, and using as a perturba-
tion the difference between the actual random potential
and the typical shape. The "average higher-order

energy correction" described in Sec. 3 of the present
paper changes the approximate density of states by
displacing every energy calculated in I by the expecta-
tion va1ue of the energy correction due to the difference
between the true Hamiltonian and the unperturbed
Hamiltonian. In the limit of an in6nite density of im-

purities, where the random potential may be described

by Gaussian statistics, third and higher terms in per-
turbation theory make no contribution to the density
of states in the low-energy tail, and the average higher-

order correction may be calculated. explicitly, as shown
ln Scc. 4.

When the bulk of this paper was essentially com-
pleted, the authors received a preprint of a very
interesting paper by Zittartz and Langer, ' which studies
the low-energy tail of the density of states of a particle
ln R Gaussian-white-Qolsc potcIltlal ln onc) two~ Rnd
three dimensions. The method of ZL, in CBect, exactly
includes the second-order correction to the unperturbed
energy, including glcflafioms of the energy correction
about its expectation. value. In Sec. 5 of the present
paper we rederive the ZL results from our own point
of view, and show how a slight generalization of ZL
can be used to calculate the complete second-order
correction for Gaussian potentials other than white
noise (i.e., where the impurity potentials have nonzero
range).

In I, we calculated an approximate density of states
for a one-dimensional model of an inhnite density of
weak point scatterers, (a white-Gaussian-noise poten-
tial), for which the density of states is known exactly.
The approximate density of states pt(E) was found to
be (l/+5) p„(E) where p„(E) is the asymptotic form
in the tail of the exact density of states. %ith the
average-second-order correction, given in (4.23) of the
present paper, the density of states ps(E) is found to be
0.92 p„(E). When the fluctuations in the second-order
correction are induded, the resulting approximation,
ps(E), to the density of states becomes p„(E) itself, as
was explicitly veri6ed by Zittartz and Langer. Indeed,
Rs wc cnlphaslzc Rt thc bcglIinlng of Scc. 5 this result,
ps(E) =p„(E), verified for a one-dimensional potential
with delta-function Rutocorrelation can be expected to
be valid for any Gaussian potential, inc1uding three-

r B.I. Halperin and M. Lax, Phys. Rev. 148, 722 (1N6). Here-
after referred to as I.

' J.Zittartz and J.S.Langer, Phys. Rev. 148, 74j. (1966).Here-
after referred to as ZL.
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dimensional potentials with general autocorrelations of
arbitrary range.

The relatively small changes in the density of states,
as one goes from p&(E) to p2(E) to p~(E), demonstrates
the physical soundness of calculating the density of
states, deep in the tail, by the "minimum counting"
methods of I.

The assumption in I of a 6xed shape for the wave
functions at a given energy led at once to an approxi-
mation for the form of the momentum dependence of
the spectral density A (k,E). Corrections to this form,
due to deviations of the wave functions from the uni-
form shape calculated in I, are discussed brieAy in
Sec. 6.

K= V'+ V(x), (2.1)

where W is a "kinetic energy" operator, equal to the
sum of the energy of the electron in the pure host
crystal plus the average potential of the impurities, and
where V(x) represents the fluctuations of the total im-

purity potential about its mean value. The potential
V(x) is a random function which depends on the posi-
tions of all the impurities. 3

We shall assume that the wave functions vary slowly
from one lattice site to the next, so that the kinetic
energy has an effective-mass form, and the position
variable x may be treated as a continuous variable.

The density of states p(E) is defined by

2. GENERAL THEORY OF THE
LOW-ENERGY TAIL

A. The Model

We shall assume a one-band Hamiltonian for the
electron, in which explicit electron-electron effects are
replaced by a screened Coulomb interaction. The im-

purities are represented by a model potential that in-
cludes the proper effective intraband matrix elements of
the original Hamiltonian. We shall write the one-
electron Hamiltonian in the form

minimum eigenvalue of V, which we denote by Eo. The
low-energy tail of the actual system occurs when 8 is
suKciently lower than Eo so that an unusually large
negative fluctuation in V(x) is required to bind a state
with energy K The required negative Quctuation or
"well" in V(x) may be caused by an unusually large
local density of attractive impurities, or by an unusually
small local density of repulsive impurities.

P, (x)=f(x—x;), (23)

where f is a fixed function which depends in a continu-
ous way on the parameter K The point x;, the "center"
of the ith wave function, will be different, of course, for
each state. The wave function f; will be localized in
the crystal in the vicinity of a potential well of the
correct size to bind a wave function of the prescribed
energy E. Ke are interested here in the case of a high
concentration of impurities; this means that there will

be many impurities within the range of the wave func-
tion f,, or many impurities which contribute to the
corresponding potential well.

Ke shall suppose, for the moment, that the form of
the function f(x) is known for the given value of the
energy K

The function f(x—y) can be used' to define a varia-
tional energy Er(y), which is the matrix element of the
Hamiltonian X in the state f(x—y):

Ef(y) = f(x—y)Kf(x —y)dx. (2.4)

The variational energy is itself the sum of two terms

(2 5)

B. The First Approximation

The central assumption of I was that all the eigen-
states, at a gimn energy E in the low-energy tail, have
the same shape. In other words, we assume that for all
eigenstates P;, such that E,=E, we have

(2.2) (2 6)

where E; is the energy of the ith eigenstate of the
Hamiltonian, 0 is the volume of the crystal, and the
angular brackets indicate an average over an ensemble
of impurity positions.

In the absence of the Quctuating potential V(x), the
density of states would vanish for energies below the

'Although vre speak of the particle in our problem as an
"electron, " the same model may be used to describe holes in a
valence band. A similar model may also be used to describe
tightly bound excitons interacting anth a random thermal de-
formation potential in a lattice of infinitely massive atoms.
Application of the methods of I and the present paper to the
exciton case are discussed in B. I. Halperin, Ph.D. thesis, Uni-
versity of California, Berkeley, 1965 (unpublished).

V, (y) —= f(x—y)'V(x)dx. (2.7)

4 It is always possible to choose the eigenfunctions of 3!to be
real, and eve shall therefore assume f to be real. %e also require
that f be properly normalized, and, for the sake of uniqueness,
that f have its maximum vrhere its argument equals zero.

The kinetic-energy term 8 is independent of the choice
of y, whereas the ("smoothed" ) potential term V, is
an average of the random potential V(x) in a certain
region centered about y, and will depend on the choice
of y. The function V, (y) may be thought of as a
smoothed version of the original potential and will
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exhibit a large negative fluctuation in each region
where there is an unusually large local concentration of
attractive impurities or small local concentration of
repulsive impurities, that is, in each region which binds
a low-energy eigenstate.

If (2.3) is assumed to hold, then the points x; which
are the centers of wave functions P, with E,=E must
satisfy

Eg(x;) =E. (2 8)

Furthermore, it was shown in I, that x; must be a point
such that Ey(y) is a local mieimum at x,. LThe reason
for this is that (2.4) is a nariatiogal estimate of the
ground-state energy of the local potential well. We are
always interested in the local gromd state, because
potential wells strong enough to bind a wave function
in the low-energy tail will be few and far between; the
probability of finding two overlapping wells, or of
finding one isolated well so deep that we must consider
the first excited state of the well, is negligibly small. ]
One also finds that there will be only one local minimum
in Ey for each deep potential well and thus there will
be a bound state f; at each local minimum satisfying
(2.8). It, therefore, follows from assumption (2.3) that
the density of states at energy E is equal to the ex-
pectation value of the number of local minima in E~(y),
per unit volume, such that Ey at the minimum falls in a
unit energy interval about E.

Let {y, ) be the set of all points such that Ey(y) is a
local minimum at y= y;. Then the density of states
which corresponds to the assumption (2.3) may be
written

pf(E)=—(~LE—Er(y)] 2 ~(y—y )) (2 9)

'We shall assume here that this choice of f is unique. The
complications which occur if this is not the case are discussed in I.

LThe result for pq(E) is, of course, independent of the
choice of y, as long as the system is statistically
homogeneous. ]

If the random potential V(x) is the sum of potentials
due to independent, randomly distributed impurities,
the quantity p~(E) can be evaluated with a computer,
for any given function f Thus the app. roximate density
of states could be calculated, if the correct function f
were known for each value of E.

As was shown in I, the best choice of f is that which
maximizes the value of p~(E).' The fact that Ey(x;) is
equal to or larger than the true energy E;, together
with the fact that the density of states in the tail de-
creases rapidly with decreasing energy, implies that

(2.10)

The equality sign in (2.10) would hold only if Er (x,)=E;
for all the wave functions with E,=E, i.e., if assumption
(2.3) were exact for the function f in question. Although

(2.3) will not be exact, we get the best possible approxi-
mation to the true density of states by choosing f to
maximize p~(E). Thus we have the approximation

p (E)=—max p (E). (2.11)

The function. f chosen in this way will be a function for
which the difference ~g, (x)—f(x—x,) ~

is, on the aver-
age, as small as possible, and f may be interpreted as
the "average" or "typical" shape for the wave functions
at energy E. The choice of f will be different for each
value of E.

p(E') = p(E'I E)r i(E)dE. (2.12)

The essential step in finding an improved approxima-
tion. to the density of states is to make a good approxi-
mation for p(E'~E). If the difference ~f, (x)—f(x—x~)

~

is generally small as we believe, it is logical to try to
simplify the problem somewhat by using a perturbation
expansion, in which f(x—x,) is the unperturbed wave
function.

Let us define the function Vo(x) by

so that

Vo(x) —=[(E—&)f(x)]/f(x), (2.13)

$V'+ Vp(x —x')]f(x x )=Ef (x x) . (2.14)—
The assumption that an eigenstate f, (x) has the form

f(x—x,) and energy E,=E, is equivalent to the assump-
tion that the true potential V(x) is equal to Vo(x—x;)
in the neighborhood of x;. Assumption (2.3) is thus
equivalent to the assumption that all the potential
wells which bind a state of a given energy E have
exactly the same form, Vo(x—x,). Although (2.3) is
not exact, it is still true that the function Vo(x), corre-
sponding to the function f which maximizes py(E),
should be in some sense the "average shape" of poten-
tial wells which bind an eigenstate of energy E. If
(2.3) is a good approximation, then the deviations of
the potential wells from their average shape will be
small. We shall therefore expand the difference E;

C. The Difference between the Exact and
Variational Energies

In order to improve our approximation for the
density of states, we must consider the difference be-
tween the variational energy Ey(x,) and the true energy
E; of the corresponding eigenstate. It is convenient to
define a function p(E'~E) which is the conditional
probability that E;=E', when it is known that E~(x,)
=E, where f is the function which maximizes py(E).

At energies deep in the low-energy tail, the one-to-
one correspondence between eigenstates and minima in

Eq(y) will be extremely good. It is therefore essentially
exact in the low-energy tail to write
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Ej E+el+ ep+ ep+ ' ' (2.15)

—Er (x;) in powers of the perturbation V(x) —Vp(x —x;).
We write

pressed in the form «y)&s by

p(E IE)= «~(E -E')». , (3.2)

where e„ is of order (V—Vp)". The 6rst term may be
written

where E; is the exact energy of the eigenstate corre-
sponding to the local minimum at y.

We define the "average higher-order energy, "S(E),
by

f(x—x,)[V(x)—V, (x—x,)]f(x—x,)dx S(E)—= (&E;—E» . (3.3)

= V, (x;)—[E—8].
(2.16)

The condition that Er(x;)=E implies that el vanishes.
The second. -order term in the perturbation expansion

(2.15) may be written

ep
—= f(x—x,)[V(x)—Vp(x —x;)]G(x—x;, x'—x,)

X[V(x')—Vp(x' —x,))f(x'—x,)dxdx', (2.17)

where 6 is a "modi6ed Green's function" of the un-

perturbed Harniltonian, dedned by6

[E—r—V, (x)]G(x,x )=~(x—x') —f(x)f(x). (2.1g)

We may also write down expressions for ee and
higher terms. When Gaussian statistics ar'e applicable,
however, we shall 6nd that ~3 and higher terms are
negligible in the low-energy tail, and it suffices to
consider

3. AVERAGE HIGHER-ORDER ENERGY
CORP% CTIOH

A. De6nition

The simplest way to include some of the effects of
the difference between the true energy E; and the varia-
tional energy Er(x~) is to correct all energies by the
average IIulle of the difference between E; and EI(x;).

I et us use double angular brackets with subscript E
to indicate the conditional expectation value of a ran-
dom variable, when it is known that Ey has a local
minimum at y with EI(y) =E. Thus for any random
variable y, we have

«v» =—&v&[E—E (y)]Z, ~(y —y)&[p (E)] ' (3 1)

where y; are defined as in (2.9), and where f is the
fllllctloll wlllcll xllaxlmlzcs pr (E).Tllc condltlollRl pl'oba-
bility distribution p(E ~E), de6ned in Sec. 2C, is ex-

'An alternative de6nition of G may put (2.1'I) in a more
familiar form. %'e know that f is the ground state of a particle
in the well Vo(x). Let the excited states be denoted by 4 (x),
e= 1, 2, ~ ~, and let the corresponding energies be denoted by co,.
The energies co, form a continuum for energies greater than Eg,
and may include one or more bound states between E and Eo.
The function G can now be written G(x,x')=Q~LC'~(x)4'~(x')gj
(E—eu,).

Then we may de6ne an approximation p2 to the density
of states, which includes a correction for the "average
higher-order energy shift" S(E), by inserting the

appl oxll11atlon

p(E' ( E)=b[E'—E—S(E)]

in (2.12). We obtain

(3.4)

pl(E) =pr[E—S(E)] (3.6)

Even if S(E) is small, however, there may be a signi6-
cant fractional difference between pp(E) and pl(E),
because p& is a rapidly varying function of its argument.

The difBcult step in the evaluation of p2 is the
calculation of the quantity S(E). By expanding E;—E
in the perturbation series (2.15), we see that S(E) is
determined by the conditional expectation values

«V(x))&sf &(V(x)V{x'))&II, etc., the 6rst e functions
being required to evaluate (&e ))x. If the random poten-
tial V(x) is the sum of potentials due to independent
randomly scattered impurity atoms, it is possible, in
principle, to calculate each of these conditional expecta-
tion values. The calculations are extremely dificult,
however, except in the very high density limit, where
one may use Gaussian statistics for the random poten-
tial V(x). It is probable that the calculation of S(E)
will not be practical except under the Gaussian assump-
tion. I"urther details of the calculation in the Gaussian
case will be given in Sec. 4.

B. Relation to the Exact Density of States

Wc know that E; ls always smaller tllR11 Er(x;), Rnd

therefore S(E) is always negative. Since the density of
states lllcl'cases with lllcl'caslllg cllcl'gy, pp(E) will al-

ways be bigger than pl(E). Nevertheless, pp(E) will

still be smaller than the true density of states p(E),
deep in the low-energy tail, as we may see by the
following argument.

I.et us 6rst note that the probability distribution

pp[E+S(E)]=pl(E)dE/d[E+S(E)]. (3.5)

Since we shall 6nd that dS(E)/dE is small compared to
1 in the low-energy tail, we shall replace the derivative
on the right-hand side of (3.5) by unity. In most cases,
it turns out that S is suKciently small so that we may
neglect the difference between S(E) and S[E—S(E)].
In this case:



806 B. I. HALPERIN AND M. LAX

p(E'
~
E) must satisfy the relations

p(E'i E)dE'=1, (3 7)

where

ao'—= x %' x—x' x' 'dxdx', (4 3)

p(E'I E)E'dE'=E+S(E). (3 g)
and where 0 i, 0 2', and o 2 are the three eigenvalues of
the tensor

If the magnitude of E; Er(x,—) is always a small
correction to the energy difference Er(x,)—E2, then the
conditional probability p(E'~E) will be a much more
rapidly varying function of the di6erence E'—E than
of the sum E+E'. Accordingly in (2.12), we may
replace p(E'~E) by p(2E' E~E'—). We may now use
(3.7) and (3.8) to put (2.12) in the form

p(E') =pittE' S(E')j+— p(2E' —E
~

E')

X{pi(E) —piPE' —S(E')j—LE—E'+S(E')j
Xpi'Ã' —S(E')j)dE (3 9)

where pi' is the ffrst derivative of pi. If pi(E) is concave
upwards in the region of integration, as it must be if
the low-energy tail is smooth, then the integrand in
(3.9) is non-negative. Using (3.6) we find that

p(E') &p2(E')

4. GAUSSIAN STATISTICS

A. The Approximation pi(E)

We shall now discuss in greater detail the case in
which the random potential V(x) obeys Gaussian sta-
tistics. The statistical properties of a set of Gaussian
variables with mean zero are completely determined by
the second moments of the distribution. The properties
of V(x) are thus determined by the autocorrelation
function (V(x) V(x')). It is convenient to write

(V(x) V(x') )—=&W(x—x'), (4.1)

where the parameter $ is proportional to the concentra-
tion of impurities and to the square of the strength
of the individual impurities, and where the function
W(x—x') depends only on the shapes of the impurity
potentials, and may be normalized in any convenient
fashion. (See discussion in I for further details. )

An energy E will be in the low-energy tail if Ep —E
is large compared with the Quctuations in the smoothed
potential V, (x). Thus, as discussed in I, the terms that
are important for properties of the low-energy tail in a
Gaussian potential are those which are important in
the limit $ —& 0, when the energy E is held ffxed. Except
for terms which are negligible in this limit, the approxi-
mate density of states p~ is given by Eq. (3.23) of I:

K= — f(x')'W(x —x')VVf(x)2dx'dx. (4.4)

The matrix K is symmetric and positive dehnite. The
three coordinate axes can always be chosen so that K
is diagonal and the eigenvalues are the diagonal ele-
ments. In the case of spherical symmetry, the matrix
K is proportional to the unit tensor, and it is only
necessary to evaluate one diagonal component. ~

In the low-energy tail, the important factor on the
right-hand side of (4.2) is the exponential factor. When.
trying to find the function f which maximizes pr, it
suffices to use the function f which maximizes the
expression

r(E,f)= (ii—E)2/~, 2. (4 5)

Application of variational calculus to (4.5), leads to a
differential equation for f of the form (2.14), I V'+ Vp jf
=Ef, with V2(x) itself given by

Vp(x) = —p W(x—x')f(x')'dx'. (4.6)

In (4.6), p is a Lagrange multiplier which is determined
by the requirement that J'f(x)'dx=1. The value of p
is related to 8 and ao by

p = (~—E)/~2', (4.7)

as shown in I, Eq. (5.17).
The pair of Eqs. (2.14) and (4.6) may be solved for

f(x) and Ii by an iterative procedure described in I.
Numerical results for screened Coulomb interactions
have been plotted in I. The approximate density of
states pi is obtained when this function f is used to
evaluate the quantities 0, ao, a&, 02, and az, that appear
in (4.2).

Note that the function f, and consequently the
quantities 0, ao, etc., depend on the energy E, but are
independent of the strength parameter $. For three-
dimensional models, the function pi(E) therefore has
the form

p (E)=P'~(E) expL —&(E)/26, (4 g)

where A (E) and B(E) are independent of $.

020202 (8—E)' 8 E'—
pr(E) =

(22r)2 $20 22

( )
exp —,(4.2)

2/022

7Formula (4.2) is given for the case of a three-dimensional
model. For one-dimensional models, pf contains an exponential
factor identical to that in (4.2), but the form of the prefactor is
different than in the three-dimensional case.
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&~~[E-Ef(y)3&l «.(y)jde«~V. (y))
&h))s= . (4.9)

&~[E-E (y)j~[«.(y)jd.t»V. (y))

Ke may also define a di6erent conditional expectation
value ((p))o by

&b))'= (4.10)

The new quantity &(y))x is the conditional expecta-
tion value of the variable y, when it is given that V, (y)
=E 9, and V V,—(y) =0. The difference between «p))E
and «y))II arises from the weighting factor dctVVV, (y)
which is present in the latter. As shown in I, this
determinant is equal to a constant, (8—E)'ol2o22op/oos,

plus a random term whose deviations from zero will be
of order Pl', when it is known that Er(y) =E. Thus, to
lowest order in $, we may cancel the weighting factor
detVVV, .(y) from thc numerator and denominator of
(4.9) Rnd wc 111Ry wl'ltc

(b))x= &6))'. (4.11)

Conditional expectation values of the form «y))o
are relatively simple to evaluate because they involve
only linear constraints. Under linear constraints, the
conditional probability distribution of V(x) is still
Gaussian, and aH the properties of the conditional dis-
tribution are determined by the first two moments.
These moments may be evaluated by the methods of I,
Appendix A. We find for the first moment;

«V( ))).=L«( )V.(y))/&V. (y) )j(E-~)
= Vo(x—y).

Thus the conditional expectation value of the random
potential V(x), in the vicinity of the local minimum in
the smoothed potential, is given by the "unperturbed
potential" Vo(x—y). This confirms our earlier remarks

B. Conditional Exyectation Values

We shall now develop some techniques necessary for
the calculation of corrections to the density of states
pl(E) for Gaussian models. Note that the logarithmic
derivative of p(E) behaves like g, in the limit $ —+ 0.
When computing corrections to the density of states
due to the difference between E; and Ez(x;), we may
therefore neglect all terms in the energy shift which are
of higher order than the first power in the parameter $;
the percentage error in the density of states due to such
terms will disappear in the limit of small $. As we shall
see shortly, this means that we need only keep the
leading term in E;—EI(x;).

In order to evaluate the average-higher-order-energy
correction, we must calculate conditional expectation
values of the form (&y))II. Using relation (3.4) of I, we
may write definition (3.1), of the present paper, in
the form

that Vo represents some kind of "average shape" of the
potential wells which bind a state with energy K

Using again the methods of I, Appendix A, we find
that

&(LV(x)—Vo(x—y) j[V(x')—Vo(x' —y)]))'
= &Io(x—y, x' —y), (4.13)

where

C. Average Higher-Order Energy Correction

We are now in a position to calculate the average
higher-order energy correction for the Gaussian case.
The average energy difference S(E) will be equal to
(&cm))s, except for terms which are negligible in the
limit $ —+ 0. An expression for ((el))s can be written
1mmcdlatcly fl'onl (4.13) slid (2.17).Wc fllld tllat,

&(E)=-«(E),
where C(E) is independent of $ and is given by

(4.15)

C(E)= — f(x)G(x, x')f(x')w(x', x)dx'dx. (4.16)

Io(x,x') =W(x—x')

V, (x)V, (x') l D.V, (x)jD.V, (x'))
(4.14)

a I g +aa

The summation in (4.14) is over the three coordinate
directions, and the axes are assumed to have been
chosen so that the tensor K is diagonal.

We see that the "perturbing potential" [V(x)—Vo(x—y)$ is of order P". The second-order energy
e2 is thus of order ], the term es is of order $12, etc. It
follows that for a random potential obeying Gaussian
statistics, only the term ~2 need be considered in the
density of states.

Note that the situation is more complicated if we
cannot assume Gaussian statistics for V(x). In this
case, there is no simple parameter, comparable to g,
which tells us rigorously which terms are important in
the low-energy taiL It will still be true that «V(x)))II
ls Rppl'oxlIllatcly Vo(x—y)) Rnd tllc colldl'tlollal 1'oo't-

mean-square deviation of V(x) will be relatively small
in many cases. However, even if e2 is small, it is not
necessarily true that es and higher terms are propor-
tionately smaller still. If V(x) does not obey Gaussian
sta, tistics, the higher moments of the distribution are
not determined by the first two moments. In particular,
although the perturbing potential [V(x)—Vo(x—y))
is small on the average there may be regions where it
is large. If we are dealing with a finite density of im-

purities, such regions can occur in the neighborhood. of
each impurity site. A region of strong perturbation may
make a contribution to e3, e~, etc., that is as important
as the contribution to ~~. In any case, even the calcula-
tion of «el)) will be diillcult for the non-Gaussian
situation.
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If e is any quantity of order ], it is exact, in the limit

$ —+ 0, to write

pi(E—e) =pi(E) exp[eB'(E)/2&], (4.17)

one finds

f(x) = (~/2)'" sech~x, (4.23)

(4.24)

where B'(E) is the derivative of the function B(E) of
(4.8). We know that B(E) is equal to value of F(E,f),
where I' is defined by (4.5), and f is chosen to minimize
F(E,f), for the given E. When E is varied, we have

where

x = (—2E)'I'. (4.25)

The approximate density of states pl was found in I
to have the form

dB(E)= (BI'/BE)dE+ (bF/bf)8 f . (4.18)

But f has been chosen so that bI'/hf=0 We . have
therefore

4~' 4 ~'

pi(E) = —exp
+5s) 3 $

(4.26)

B'(E)= (BI'/BE) = —2p, (419)

where p, is given by Eq. (4.7).
In order to find the corrected density of states p2(E),

we substitute (4.15) and (4.17) in (3.6). We find

p2(E) =pi(E) exp[pC(E)]. (4.20)

The most diKcult steps in the numerical evaluation
of the average higher-order energy correction are the
calculation of the Green's functions 6, and the evalua-
tion of the integrals (4.16) for S(E). In models where
W and f are spherically symmetric, these calculations
can be simplified by decomposition into spherical har-
monics. Calculations are currently under way for the
model of an infinite density of weak screened-Coulomb
impurity potentials, which will illustrate the computa-
tional techniques. (We plan to publish these calcula-
tions in Paper IV of the series. )

The average higher-order energy correction to the
density of states is a factor which is independent of $.
The $ dependence of p, is therefore the same as that of
pi, given by Eq. (4.8). The function B(E) is the same
as before; only the function A(E) is changed. As we
shall see in Sec. 5, the exact asymptotic form of p(E)
still has this form, with a slightly different function
A (E).

D. One-Dimensional White-Gaussian-Noise Model

The theory we have developed for the approximation
p2 can be applied to the one-dimensional model of a
white-Gaussian-noise potential, for which p~ was calcu-
lated in I. The white-Gaussian-noise model arises as
the limit of an infinite density of weak point scatterers.
The potential V(x) obeys Gaussian statistics, with

W(x—x') =-', b(x—x'). (4.21)

V'= —-', (d'/dx') . (4.22)

The pair of Eqs. (2.14) and (4.6) can be solved exactly
for the function f(x), in the one-dimensional model, and

It is convenient to choose the unit of mass so that the
kinetic energy for the one-dimensional model has the
simple form

The density of states for the white-Gaussian-noise
model can be calculated exactly at all energies by
specialized one-dimensional methods, unrelated to the
low-energy tail approximations we have discussed
here. ' "In the low-energy-tail limit, $~ 0, or E~ —~,
the density of states has the exact asymptotic form

4]P 4 K'

p„(E)= exp—
3 $

(4.27)

It follows that

C(E)= (13/72).-'.

p2(E) =pi(E) exp[13/18]
= (0.921)p..(E).

(4.30)

(4.31)

Thus we find the result, quoted without proof in I, that
the approximate theory of the low-energy tail, including
average higher-order energy corrections, reproduces the
exact asymptotic form of the density of states except
for a uniform error of 8%.

H. L. Frisch and S. P. Lloyd, Phys. Rev. 120, 1175 (1960).' B.I. Halperin, Phys. Rev. 138, A104 (1965).' M. Lax, Rev. Mod. Phys. 38, 541 (1966), Sec. 4,

The approximation pl differs from the exact asymptotic
form by a factor 1/+5.

Equation (2.18), defining the modified Green's func-
tion G, can be solved analytically for the present model.
The solution is

G(x,x') = (x '/2) sechxx sech''
X[xx' xx '—e'"* —'-e '"*—']-for x'&x2 2 71 — P (4 28)= (x '/2) sechxx sechxx'

X[xx—xx' —ise'"*'——,'e '"'], for x&x'.

The conditional correlation function w(x, x') has the
form

w(x, x') = (1/2)8(x —x') —(3/8)x sech'xx sech'xx'
—(15/8)x sech'xx tanhxx sech'xx' tanhxx'.

(4.29)

The integrals involved in (4.16) are evaluated in the
Appendix to this paper and lead to the result:
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where Co is a large constant whose value depends on the
cuto6 in W, and where

~ fc(E)
~

is independent of the
cutoff and may be assumed small compared to 8—E
in the region of interest. In this case, one cannot use
(3.6) to define pp but must go back to (3.5). The most
convenient form for the result is

p, (E—tCo) =p, (E) exp[pc(E)]. (4.33)

The function p& and the quantity p are convergent in
the white-Gaussian-noise limit and are therefore inde-
pendent of the cuto6.

The term )Cp in (4.32) has the effect of displacing
the bottom of the band as a whole. An energy E' will
be in the low-energy tail, and the approximation p(E')
=pp(E') will only be valid only if E' is less than
Eo—(Co

The Gaussian-white-noise limit, in three dimensions,
will be discussed in further detail in a future paper
(III) in this series.

S. COMPLETE SECOND-ORDER ENERGY COR-
RECTION IN GAUSSIAN STATISTICS

According to the arguments of Sec. 48, all terms
higher than e2, in the perturbation expansion for E;—Ey(x;), may be neglected, for the low-energy tail of
the density of states in a Gaussian random potential.
Consequently, if we could properly include the energy
correction ~2 in the density of states, including the
statistical fluctuations of e2 about its expected value,
we would expect to reproduce the exact asymptotic
form for the density of states.

Zittartz and Langer, in the reference mentioned
above, ' show how the density of states, including the
complete second-order energy correction, can, in fact,
be evaluated. Although ZL are concerned with the
Gaussian-whit;e-noise limit in one, two, or thre|; dimgn-

E. Divergent Second-Order Corrections

Although it is true that the energy shift S(E) ap-
proaches zero, as $ —&0, there are some models for
which the assumption ~5(E) ~&&8—E does not become
valid until & becomes much smaller than the value
necessary for the validity of various other parts of our
theory. For example, the two- and three-dimensional
equivalents of the Gaussian-white-noise model lead to
a divergent second-order energy shift due to short-
wavelength potential fluctuations, unless the Quctua-
tions are cut oG below a certain wavelength. A short-
wavelength cutoff is always present if the potential
correlation function W(x—x') is not truly a 8 function,
but it is clear that for any given $, if the range of
W(x —x') is sufliciently small, the second-order correc-
tion will be very large. The divergent part of the energy
shift will be independent of the energy E, however, and
we can therefore write

(4.32)

W(x—x') = u(x —z)u(x' —z)dz. (5.2)

One such function N(x) may be found by taking the
inverse Fourier transform of the square root of the
Fourier transform of W. If V(x) is the sum of impurity
potentials of a single fixed shape, then we may choose
oi(x) to be proportional to the potential of an isolated
impurity.

Let us define a Gaussian random function $(x) such
that

V(x) = N(x —x')1V(x')dx'. (5.3)

Equation (4.1) implies that E(x) has the form of white
Gaussian noise, with

(X(x)$(x'))= &5(x—x') . (5 4)

Let {oo„(x)},ii=0, 1, 2, , be any complete, ortho-
normal set of real functions. If $(x) is expanded as

E(x)=Q g„p„(x),
n=o

(5.5)

then the random variables q„are independent Gaussian
variables with mean zero and variance $. It is convenient
to choose yp(x) to be equal to op 't'u(x' —x)f(x')'dx',
and to choose ooi(x), yo(x), and go(x) proportional to
the three components of Vpp(x). If the coordinate axes
have been chosen so as to diagonalize the tensor K of
(4.4), then the functions pop, ooi, go, and yp will in fact
be orthogonal to each other. The value of the smoothed
potential at y=0 may be written as

V, (0) =o.o yo(x)S(x)dx=ooqo. (5.6)

sions, their formulas can be readily extended to any
potential correlation function W'(x —x'), as we shall
show below. Hy a series of clever maniuplations, ZL
have succeeded in evaluating their formulas analytically
for the one-dimensional white-noise model. They indeed
obtain the correct asymptotic form (4.27) for p(E),
including the exact over-all constant.

Although the general analysis of the low-energy tail
in ZL is different than that in I and the present paper,
their formulas can also be derived from the present
point of view. We shall start with formula (2.12) for
the exact density of states in the low-energy tail. We
must first evaluate the conditional probability distribu-
tion p(E'~E). According to the arguments of Sec. 48,
it is correct in the limit $ —& 0 to set

(5.1)

It will be convenient to assume that the local minimum
in the function E~(y) occurs at y=0.

Let N(x) be any real function such that
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The value of go is therefore fixed, if we require that
V, (0)=E 0.—Similarly we find that the condition
VV, (0) =0 requires that gi, g2, and g3 equal 0. On the
other hand, because all the remaining functions q „will
be orthogonal to the first four, the remaining variables
p„will be statistically independent of the values of
V, (0) and VV, (0).

Inserting (5.5) into (5.3) and (5.3) into (2.17), we
can write the second-order energy (2.17) as

~~= 2 Vr-n. V-(y)I(y, y')v-(y')dy'dy, (57)
m, v=4

where

I(y, y') = f(x)N(x —y) G(x,x')

Xu(x' —y') f(x')dxdx'. (5.8)

P(x,x') =5(x—x') —P q „(x)p„(x') . (5.10)
n=o

Because of the projection operator P, the states &0, p&,

&p&, p3 are trivially eigenfunctions of (5.9) with n„=0.
The set (q „) including the first four states is therefore
a complete orthogonal set" as required. Furthermore,
the second-order energy now reduces to the diagonal
form:

n=4
(5 11)

Using the fact that the g„are independent Gaussian

"The transformation from a set of correlated random variables
to a set of uncorrelated variables (i.e., in the Gaussian case,
independent variables) by introducing eigenfunctions of the auto-
correlation function seems to have been introduced erst by K.
Karhunen )Ann. Acad. Sci. Fennicae Ser. AI 34, (1946); 37
(1947)j.This procedure has been exploited in the theory of non-
linear random processes by M. Kac and A. J. F. Siegert. See, for
example, their early paper )Ann. Math. Statist. 18, 438 (1947)j.
In the present context, this method was used by Zittartz and
Langer, Ref. 2. A summary of the method, including certain
nonuniqueness features, is presented in Sec. 13 of M. Lax, Rev.
Mod. Phys. 32, 25 (1.960).

'~ It is not actually necessary to use P to project out the func-
tions yl, y&, and y3, as they turn out to be eigenfunctions of I in
any case. Explicit orthogonalization to the state p0 is necessary,
however, because q0 is not an eigenfuIIction of I. Equation (5.10)
of ZL is actually incorrect, because it does not contain this
explicit orthogonalization. ZL dc not use their Eq. (5.10) directly,
however, but find the eigenfunctions from their Eq. (5.16). By
setting the right-hand side of this latter equation equal to zero,
they are, in effect, orthogonalizing to q0.

The expression (5.7) can be reduced to a diagonal quad-
ratic form by choosing the p„(y) to be eigenfunctions
of I(y, y'), in the subspace orthogonal to po, p» &2, and
p3, More precisely, we must choose p to be eigen-
functions of the operator PIP,

PIP p„(x)= —n.p„(x), (5.9)

where P is the projection operator that projects out the
states po, y~, y2, p3. The operator P is an integral opera-
tor with the kernel

. (E)=. (E)n
n=4

(2~&) '12dii exp

——g„'(1—2pn„)-

=pi(E)II (1—2pn. ) '".
n=4

(5.16)

Note that the correction factor in (5.16) is independent
of P.

The complete second-order-energy correction is de-
termined by the set of eigenvalues of the operator PIP,
and by the degeneracy of each eigenvalue. "The a~erage
second-order energy correction is also determined by
the n„. Evaluation of (4.16) for C(E) is equivalent to
taking the trace of PIP, and the approximate density
of states p& may be written as

p2(E) pl(E) exp[~ 2 n.j
n=4

(5.17)

Comparing (5.16) and (5.17), we find that

-exp (—2n.p)- '~'

u-(E) =u~(E) II
~=4 1—2a„p

(5.18)

"In the product (5.16) and in subsequent equations, degenerate
eigenvalues are included as many times as they appear in the
operator PlP. Our notation differs in this respect fro~ tgat of ZL,

variables of variance $ [see (5.4), (5.5)j, we can re-
write (5.1) as

p(E'IE) =((&[E'—E—~ (~)3)), (5»)
where the average of any function f(g) of the g„ is
defined by

(V(n)))
d'g 4 00

f(g) exp —Q —. (5.13)
(2 5)'" (2 t)'" 42=)

From (5.11) and (5.12), we see that [as alleged in Sec.
3Bj p(E'lE) is a strong function of E' E, and—for
fixed E'—E, depends only weakly on E, since the only
dependence on E is then the relatively small variation
of the parameters n„.

We shall first consider the usual case where e2 is
small. It is then correct to use for the n the values
appropriate to energy E', rather than the values at E.
If we now substitute (5.12) into (2.12), we can perform
the integration over E, and we obtain

(E')=(( LE' — ( )3)) (514)

Dropping the prime on E, and using Eq. (4.17), we

may put (5.14) in the form

(E)=p (E)(( p[p (~)/6)) (5 15)

All the approximations we have made in deriving (5.15)
lead to errors which are negligible in the limit $~ 0.
Thus, evaluating (5.15), we obtain the correct asymp-
totic form
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Equation (5.18) is more convenient for computation
than (5.16), as the product in (5.18) converges more
rapidly than that in (5.16).

In general, evaluating the trace of an integral operator
is much simpler than finding the eigenvalues. The
a~erage higher-order correction is thus easier to find
than the exact asymptotic form. As we found in the
example of one-dimensional white noise, the function
p2 contains the most important corrections to pi(E).
For many purposes pz(E) will be satisfactory, and it
will not be worth the additional effort necessary to
evaluate p„.

The results of ZI., and the results we have just
derived, were based on the assumption that e2 is small.
As discussed in Sec. 4E, the second-order energy e2 will

be divergent in the Gaussian-white-noise limit in two
and three dimensions. In the white-noise limit, the
value of e2 will exhibit relatively small deviations from
a value —)co, where Co is a large constant whose value
depends on the cutoff in the short-wavelength potential
Ructuations. The correct asymptotic formula for the
density of states, when le&+)col is small while )CD
is not, is

exp( —2n„p) '"
p.,(E—~c,) =»(E—~c,) II (5.19)

n=4 1 2enP

The p and n„which appear in (5.19) are calculated
the same way as before from Eqs. (4.7) and (5.9). The
function f which occurs implicitly in these equations is
the function which maximizes p~(E). The product in
(5.19) is convergent in the white-noise limit. The values
of p and O.„are insensitive to the cutoff in W and may
be evaluated under the assumption W(x —x') = 5 (x—x').

The $ dependence of the density of states in the low-

energy tail, in the three-dimensional white-noise limit,
can be written

dependent spectral density A(k, E), as well as the den-

sity of states p(E). The spectral density is defined by

where

1
A (k,E)—=-(P I+*(k) l'~(E—E')),

0

'11,(k) = e '~ *$,('x)dx.

(6.1)

(6.2)

Thus A (k,E) equals p(E) multiplied by the expectation
value of the square of the Fourier transform of the
wavefunctions at energy E. The spectral density is
normalized so that

A (k,E)d k =p (E) .
(2s)'

(6 3)

In the first approximation, the form of the wave
functions iP„at energy E is given by the function f
which maximizes p~(E). We are therefore led to ap-
proximation (2.17) of I,

A (k,E)=
l
f(k)l'p(E). (6.4)

Needless to say, one will obtain a better approximation
to the spectral density if one employs in (6.4) the true
asymptotic form for the density of states, or the ap-
prosimation p2(E), than if one employs the simple ap-
proximation pi(E). One may also ask, however, what
corrections can one find to the momentum dependence of
(6.4) by taking into account the difference between
V(x) and Vo(x —y), in the spirit of the present paper.
We shall discuss here only the case of a Gaussian
random potential.

In order to obtain an improved wave function, we

may expand P, in powers of the perturbation [V(x)—Vo(x—x„)].We write

p„(E)= P'A (E+)co) exp[ —8(E+)Co)/2(j, (5.20)
where

ip, (x) = f(x—x,)+fi(x)+f2(x)+ & (6.5)

where the constant Co and the functions A and 8 are
independent of $, and only Co is sensitive to the short-
wavelength cutoff in W. The function 8 is the same as
in Eq. (4.8) for pi(E), but the function A is changed. "

6. MOMENTUM-DEPENDENT SPECTRAL
DENSITY

The theory of the low-energy tail developed in I and
the present paper can be used to discuss the momentum-

'4 )Note added in proof. In Eq. (5.16) and subsequent equations,
we have assumed that 2'„(1,for all n& 4. It can be shown, as a
consequence of the fact that the function f has been chosen to
minimize F(I';,f), that 2po.„&1for all n&4. We have not been
able to disprove the possibility that 2@ex =1, however. If the
equality should hold, or almost hold, for some n&4, then we must
be more careful in deriving the integrand on the right-hand side
of (5.16), and must keep terms through g„4 in the exponent. The
simple result for the correction factor, II„4"(1—2'„) '~',
appearing in Eqs. (5.16), (5.18), and (5.19), would then be re-
placed by a somewhat more complicated expression, and would
no longer be independent of )j.

fi(x)= G(x, x')f(x')[V(x') —Vo(x' —x,)jdx', (6.6)

and similar expressions may be given for f2, etc. It is
clear that in the limit f —& 0, the perturbation terms
will become relatively unimportant, and thus we must
have

A (k,E)
lim =

l f(k) l'.
' ' u(E)

(6.7)

As mentioned in Sec. 4 of I, relation (6.7) can be
directly confirmed, for the one-dimensional Gaussian
white-noise case by comparison with the exact theory
of Ref. 9.

The first correction terms to (6.7) will be of order $,
and can be calculated by a method similar to that em-

ployed for the complete higher-order energy correction
to &he density of stages of Sec. 5. The calculations arq



rather complicated, however, and we shall not give de-
tails here. In most cases the corrections will be small
and not very interesting. There are two situations, how-
ever, in which the corrections may be important.

The erst case occurs when the second-order energy
shift ~2 is large, as for the white-noise limit in two or
three dimensions. In that case, to find the spectral
density at energy E, one must use in (6.4) not the
function f which maximizes pq(E), but the function f
which maximizes py(E+$CO). This correction is con-
sistent with the point of view that the principal effect
of the large second-order energy shift is to displace the
band as a whole. In other words, the shape f, which we
assigned to wave functions at energy E, in the theory
of approximation py, really is appropriate for wave
functions with the displaced energy E )CO. —

The second situation where (6.4) may be inadequate
occurs when one is interested in large values of the
wave vector k. It can be shown that the function f(x)
is an analytic function of I, and the Fourier transform
f(k) must fall off faster than any power of 0, as k —+ ~.
On the other hand, if the impurity potentials are non-
analytic at the impurity sites, the expectation value of
the absolute square of the Fourier transform of V(x)
will fall off as some power of 1/k. It is clear that the
short-wavelength fluctuations in V(x) must produce
short-wavelength Auctuations in the wave function by
6rst-order perturbation theory, and the admixture of
short-wavelength components will also fall o6 as some
power of 1/k. In fact, one can show that in the limit
k-+ ~, for 6xed E and $, the spectral density has the
form

~(k,E)-p(E) tW(k)/LE(k) —Eo7 (6 8)

In (6.8), E(k) is the energy of the state of wave vector
k in the absence of the random potential V(x), and
W(k) is the Fourier transform of W(x—x') and is pro-
portional to the absolute square of the Fourier transform
of the impurity potentia]s. For the one-dimensional
white-Gaussian-noise model, (6.8) becomes

A (k,E) 2g 'p(E), - (6.9)

in agreement with the results of Ref. 9 for the form of
the spectral density in the limit of large k.

'7. SUMMARY

In I, a variational approximation Eq(x,) to the energy
eigenvalues E; was obtained under the approximation
that all the eigenstates at a given energy have the same
shape, or equivalently, that all the corresponding po-
tential wells have the same shape. Using this variational
estimate of the energies, we were led to the approximate
density of states pi. In the present paper, we have
studied the difference between the exact and. variational
energies by treating the differences between the actual
well shapes and the "typical well shape" as small
perturbations. %e have proposed an approximg, te den-

sity of states p2(E) in which all the energies Eq(x,) are
displaced by the average of the diQerence between E;
and Eq(x2). Although calculation of p2 is dificult in
general, it is feasible in the limit of a Gaussian random
poteiltlal (1116ilite density of weak lmpurltles). The
Gaussian case is relatively simple because in this case,
only the second-order perturbation correction is im-

portant, and because the necessary calculations of
conditional correlation functions of the random poten-
tial are easy to perform.

It is in fact possible to calculate the asymptotic form
of the exact density of states, for the Gaussian case, by
a slight generalization of the work of Zittartz and
Langer, although such a calculation is more dificult
than the calculation of p2. %hen the energy corrections
are small, the density of states in a three-dimensional
Gaussian potential has the form

p(E) = V'~(E) -pL-B(E)/2G, (7 1)

where f is a parameter proportional to the concentration
of impurities and to the square of the strengths of the
individual impurities, and where A and 8 are functions
of the energy E and, implicitly, of the shapes of the
impurity potentials. The parameter $ is proportional to
the variance of the potential fluctuations, and in the
low-energy tail it is small relative to the value of B(E).

The function 0 in (7.1) is the same for the true
asymptotic form of p as for the approximations p2(E)
and pi(E); the function A is different in each case. In
the white-noise limit in two or three dimensions, a large
second-order energy correction is found, and (7.1) must
be modified.

The spectral density A(k, E) has a momentum de-

pendence which is approximately given by

~(k,E)= I f(k) I'p(E), (7.2)

where f(k) is the Fourier transform of the shape of the
"typical wave function" at energy E, found in I. In the
low-energy tail, for a Gaussian potential, corrections to
(7.2) are small except in the case of large wave vector
h, or in the case of a large second-order energy
correction.

C(E)= c/~, (A2)

where c is a constant independent of ~. In view of (4.20)

APPENDIX: EVALUATION OF SECOND-ORDER
ENERGY-SHIFT INTEGRAL IN THE

ONE-IHMENSIONAL CASE

Before evaluating the necessary integral (4.16), we
note that for the one-dimensional white-Gaussian-noise
model, f(x) scales as (K)'i', i.e.,

f(x) = 012g(~x),

where g is a function independent of the energy. In the
same sense, G~ ~ ', w(x, x') ~ a, and dx= ~ '&(ax) so
that using (4.16)



and p=«Lsee 1 F . (810)],

(A3)(g) epc/ spi (jv) =e p1(+) &

4.16) atbc evaluated usingwhere the parameter c can be
g= ' = 'E= —-') =C(x=1) or

—e= f(x)G(x,x')f(x')w(x', x)dxdx',

2c ]sll t the even part o +u

2$-', L(1+e '2 )+ (1+e9:r})irj—2 cosh x
&„th, t;n view of (A5)

(15)X2

(16)'
(A16)

h
'

tegrand of (A4)where all functions in t e in
evaluated with a=1. Using 4.
we have

f(x)= (1/2)'I' sechx,

G(x x') =f(x)f(x')H(x, x'),

(A5)

(A6)

15 " N2de

4 0 (1+u)
(A1/)

(A16) can be evaluated yd b changingThe integral in
—2x:variables to I=exp—

2 v~ ~to 2$H(x,x') =x' x ',—e" —,-e-—
2x' &g—2a=X X g8

x'&x,
x'&x,

= ex (—2x), u'= exp( —2x'), f'(x) = 2uUsing I=exp-
(1+u)2, we can rewrite Im in

{A9)

00

Ii Cx f'(x)H——(—x,x),
2 QQ

(A10)

C*' f'( )f'(*')H(*,*') (A11

' = l&( —'}—(3/2}f'( }f'( ',
—(15/2) f(x)Ldf(x}/dxjf{x')Ldf(x' dx' .

si x') =H(x', x), we can split (A4) intoUsing (AS) andH x,x' = x,
thrcc terms:

uudu f li " 2udu
i

lnu ——
i(1+u)' 4 uj 0 (1+u')

~" 2 (u'+lnu')

0 (1+u')'

2 1udu
i

lnu ——
0 (1+u)4 5 u 3 u

2 2 2 1~el

3 1 u (1+u)' 3 (1+u)'

QO 00

I,= —— df'(x) H(x, x')d f'(x'),
16

{A12)

'
n of Is leads to many terms. gms. Integra-A direct evaluation o

t n x' however, simp i estlon by pRI'ts oD x»

15
I3 —— df'(x) f——'(x) cosh2x

16

'(*')(1+e-"')C*' . (A14)

the Grstdx is an odd function of x, so thBut f'(x)df(x)/dx is an o u
'

th

gra w, d d pp111g tile vallls11111g

lclds a vRnls lng co
gI'Rtlng by pRI'ts Iloww on s» Rn I'opp
boundRly term»

on H(x,x') stands for the 6rst formwhelc, from now oD» 5 s

= x (—2x}, we evaluate Ii.Introducing I=exp —x, w

" u'
dx = —— du= —-', . (A13)

(e'+e-')' 2 0 {1+u)'

+2t Fs(u) —F4(u)j —2L s(F 0)—F (0)j, (A19)

lnv
d$F„(u)= e

dv1 Inu 1

1 " ' u —1 e(1+1)" 'I—1 1 u" u e

(A20)

e-1

1(1+1)"-' e =1 (1+1)"

we obtain

1 1+ulnu"'"'=.—)(+-).— .— "
~

(A22)
=1 s (1+u)'

a er b parts. Introducing the part&alafter an integration y par
fraction Cxpanslon

Ig '(x}(1+e '*)——dx—.
16

(A15) F„(0)=— 1+2+3+ ' ' '+
s—1

(A23)
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Inserting these results into (A19), we find that all
terms proportional to lnl fortuitously cancel. After a
rearrangement, we get

1 1 1 5 1
I2= —6 dl ——

0 3 (1+u)' (1+u)' 3 (1+u)'
5 1 2 1 1 In(1+u)

+
3 (1+u)' 3 (1+u)' 6 (1+u)'

1 ln(1+u)-
(A24)

6 (1+u)'

1 1 5 1 1 1 1
I2= —6 + + + =—, (A25)

6 3 12 3 9 24 54 36

In view of (A2), we thus obtain the result (4.30) for

C(E) and the correction factor

expLuC (E)]= exp (13/18), (A27)

of (4.31), to the density of states.
The average-second-order energy correction can also

be evaluated directly from Eq. (5.17), if one uses the
results of Zittartz and Langer for the eigenvalues n„.
From Eq. (6.13) of ZL we find

pn„= 2j[n, (m+3)]. (A28)

In the one-dimensional case, the sum in (5.17) must
run from n= 2 to ~. Hence we find

00 00

uC(E)=g pn„=3 P
+=2 m=8 u g,+3

tt' 1 1 1) 13
c= —(I i+I&+I3)=

I + +
3 36 8j 72

(A26)
2 1 1

3 2 3

1- 13

4 18
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Infrared Studies of Defect Production in n-Type Si:
Irradiation- Temperature Dependence*

R. E. WHAN AND F. L. VOOK
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(Received 29 June 1966; revised manuscript received 6 September 1966)

Infrared absorption measurements of electron-irradiated oxygen-doped n-type silicon are presented. The
silicon samples were electron irradiated at carefully controlled irradiation temperatures between 75'K and
room temperature. Since the free Si vacancy, and presumably also the free Si interstitial, are mobile at these
temperatures, intensity measurements of the vacancy-oxygen center, as well as of newly observed infrare
absorption bands, provide a monitor of the intrinsic defect production. For irradiation temperatures bel w
100'K, semilog plots of the intensities of the absorption bands for identical samples versus the reciprocals
of their irradiation temperatures yield straight lines having the form o.= const e ~~~I' . Qn the basis of the
slopes and intensities of these lines, the absorption bands can be divided into two groups. The more intense
group, which includes the 836-cm ' (A-center) band and bands at 922, 932, and 865 cm ', has a common
energy DE=0.05~0.005 eV. Less intense bands at 936, 945, and 956 cm ' are found to have a common
energy hE'=0. 10~0.02 eV. These results are interpreted on the basis of a metastable interstitial-vacancy
pair model in which the irradiation-temperature dependence of the formation of the defect-impurity com-
plexes results from the temperature dependence of the production of intrinsic defects. Qn the basis of this
mo del the difference in the barriers to liberation and recombination of the metastable pair is 0.05 eV for
n-type Si. The more intense infrared bands are concluded to be associated with complexes composed o a
single vacancy or a single interstitial trapped at an oxygen impurity atom or group of atoms. Since the
energies 4E' of the weaker infrared absorption bands are approximately twice those for the strong infrared
bands, it is suggested that the weaker bands are associated with complexes composed of two intrinsic defects
trapped at an oxygen impurity center.

I. INTRODUCTION

LECTRON-paramagnetic-resonance (EPR) meas-
~ urements by Watkins et al.' on the production of

the vacancy-oxygen (A) center in u-type Si have shown
that electron irradiations at 20'K or at 77'K with

*This work was supported by the U. S. Atomic Energy
Commission.

' G. D. Watkins, J. W. Corbett, and R. M. Walker, $. Appl.
Phys. 30, 1198 (1959).

subsequent warming to room temperature produce only
a few percent of the defects formed by an equivalent
room-temperature irradiation. The same e6ect was ob-
served by Wertheim' for electrical measurements of
electron-irradiated n-type Si. Wertheim' proposed a
metastable pair model to explain the irradiation-temper-
ature dependence of the introduction rate, but a detailed

'G. K. Wertheim, Phys. Rev. 115, 568 (1959); 110, 1272
(1958).


