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Upon averaging the integrand in the second of the modes to the asymptotic intensity can be written
integrals in (A4) over the interval q~'I. (x&q~'L+2vr,
we have
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Making use of (A5) and an identical expression The evaluation of these integrals together with the
obtained with the antisymmetric vibrations we find results of the first paragraph establishes the equality
that the contribution from the mixed and combination between the asymptotic value of I2(S) and. I2'(S).
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Low-temperature absolute ultrasonic attenuations have been observed in silver and copper which are
higher than free-electron predictions by a factor of 1.8. Since the real Fermi surfaces of the noble metals
are now well enough known to be taken into account, we have formulated expressions for the viscosity tensor
of a nonisotropic Bloch electron gas and, in a relaxation-time approximation, deduced detailed formulas for
the case of the metals Ag, Au, and Cu, which conform to cubic symmetry. The nondynamical deviations
from spherical symmetry do not account for the high observed attenuations, but they do create a marked
anisotropy in the viscosity tensor. The electron deformation potential probably contributes significantly.

I. INTRODUCTION
' ~REE—ELECTRON theory of ultrasonic attenuation

in metals does not square quantitatively with the
experimental data for the noble metals. For polycrys-
talline silver and longitudinal waves of frequency 40
kc/sec, Lax' has found that the observational value of
the ratio of attenuation coefficient to electric conduc-
tivity (n/0) exceeds the free-electron value by a factor
of 1.8. Recently, Kolouch and McCarthy' have noted
a similar factor in the case of single-crystal copper for
sound of frequency 40 Mc/sec, propagated in the
L111] direction. On the other hand, earlier measure-
ments by BommeP and also by Gibbon' of 15 Mc/sec
shear waves along a cubic axis in copper, seemingly do
agree with the free-electron value.

The initial free-electron discussion of acoustic attenu-
ation was given by Pippard on the assumption of a
constant relaxation time. Steinberg' and later Bhatia

' E. Lax, Technical Report No. XVII, 1959 (unpublished).
2 R. J. Kolouch and K. A. McCarthy, Phys. Rev. 139, A700

(1965).
g W. P. Mason, Physical Acolstics and the Properties of Solids

(D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1958),
p. 322.

4 A. B. Pippard, Phil. Mag. 41, 1104 (1955).' M. S. Steinberg, Phys. Rev. 109, 1486 (1958).

and Moore, examining the collision integral in detail,
concluded that where an effective relaxation time for
viscosity can be defined, it will be smaller than the
corresponding parameter for electrical conductivity, and
that proportionality between n and r will not obtain-
a contradiction to observation.

The disparity has been imputed to possible deviations
of the real Fermi surface from the free-electron sphere.
If the concept of the Fermi surface is considered to
embrace the dynamical behavior thereon, then such
properties as the effective electron mass and the de-
formation potential are included, and the preceding
supposition may well be correct.

Since the departures of the Fermi surfaces of the
noble metals from the free-electron spheres are now

quite accurately known, we have thought it worth
while to formulate expressions for the viscosity tensor
of a nonisotropic Bloch electron gas, and to deduce in
detail formulas for the case of the noble metals, Ag, Au,
and Cu, which conform to cubic symmetry. We do this
in the approximation of the Boltzmann transport
equation with relaxation time essentially constant, but
with provision for a limited anisotropy. We can take

' A. B. Bhatia and R. A. Moore, Phys. Rev. 121, 1075 (1961).
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With the introduction of the material derivative, D/Dt
B/—Bt+u V,II. VISCOSITY TENSOR

into account adequately the actual shape of the Fermi Ke turn to the Boltzmann transport equation to
surface and place limits on the influence of the anisot- obtain fo&:
ropy in ~. However, there is not yet available informa-
tion on the deformation potential, which apparently is
important. En the absence of such dynamical info&na-
tion the present computational scheme might be
directed with more reward (but more labor) toward To first order,
metals whose Fermi surfaces deviate considerably from f"'= »—fi-'
spherical symmetry.

&Ve calculate the kinetic stress tensor of the electron
gas since the viscosity tensor is the coefficient in the
term linear in the rate of strain. Let u be the local
acoustic crystal velocity in the laboratory reference
frame; V=v —u, the electron relative velocity or ve-
locity in a local coordinate system moving with the
lattice; n =no+n', the electron-particle density; f(k, r, t)
is the nonequilibrium electron-distribution function.
For acoustic wavelengths long compared with the elec-
tron mean free path, the electrons relax toward a local
Fermi distribution. 4' The acoustic perturbation being
small, we write

f=fi-'+f"'
The stress tensor is the momentum Aux

1 1
mV Vfi.ood'k+ — mV Vf"'d'k

7r3 4vr3

The relevant equilibrium-distribution function is

fi-'= L-p(e i.)/~&+-15-', (2)

n=D/Dr+ V v+. k B/Bk

The inhomogeneity of the lattice deformation con-
tributes an eQective force on an electron in addition to
the electric field generated by the acoustic wave:

Ak= —eK—2:v5. (10)

We apply X) as given in (9) to fi,,o in (2), taking note
of the (r, t) dependence implied in expressions (3)
and (4) for e and f, and obtain

%e have been able to replace the electron velocity in
the laboratory frame v by V wherever the former
appears and stay within first-order approximation. Em-
ploying the Quid dynamic equations,

Bfioof"'= r — V—(eE—vf') —mV V vu
Be'

Du 1 Ds
+(2—Xp):vu —mV —— . (l.1)

Dt X Dt

where the energy e and Fermi energy f are local, ' and
each includes a component linear in the strain'9 5(r, t): Dn/Dt=nV u (12)

e = e'(k —mu/k)+ X(k):5
=e'(k) —v mu+2:fI,

Du 1 1
(3) = vp+(n;. „n)-eE= vp- —-

Dt p p

where e'(k) is the energy function in the unperturbed
lattice, and we have used the relation B /Bke=kv.

+2nd-order terms, (13)

where p is the crystal density, and

D0/Dt= v u
t =f0(n)+Z, :a=f0(n,)—n'/Xyz, :a;

(14)
X(k) is the deformation-potential tensor, and K=
—(Bt'/Bno) ', the density of states; (irrotational waves), we reach

f&'&i=r(Bf...'/Be' )(V [vf (m/p)vp+eE5-
x=(1/4n') ~Be'/Bk~ 'ds=(1/4n'5) v 'ds, (5) +L- vv ( /~))+(~ ~ )5.v„) (13)

2p= (1/4n'AX) X(k)it
—'dS.

The integrals are over the Fermi surface, the usual
first-order approximation Bf"/Be'= 5(—e' P) having—
been employed.

7 T. Holstein, Phys. Rev. 113, 479 (1959).
A. I. Akhiezer, M. I. Kaganov, and G. Ia. I,iubarskii, Zh.

Eksperim. i Teor. Fiz. 32, 837 (1957) LEnglish transl. : Soviet
Phys. —JI'TP 5, 685 (1957)g.' H. Stoltz, Phys. Status Solidi 3, 1153 (1963).

%ehave neglected variation with temperature, which has
been shown to be negligible in acoustic perturbation. ' "

Only the second square bracket produces a non-
vanishing integral for the stress tensor P. Substituting
(15) in the second term of (1), setting

d'k=dSde~Be/Bk( '=dS deV—
and again invoking Bf~,,o/Be'—=5(e' t'"), we o—btain

"M. S. Steinberg, Phys. Rev. 111,425 (1958)."I.. H. Hall, Phys. Rev. 136, A1136 (1964).
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for the viscosity tensor

Tm' TmSO
VVVVv- dS— VVV-ldSI

k =a

—Xp)V 'd5 . (16a)
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TAPIR I. Fermi-surface parameters. All surface dimensions are stated in momentum units of
10 9 g cm sec . Symbols refer to labeling in Fig. 2.

Ag
Au
CU

1.27
1.27
1.44

0.14
0.14
0.15

1
1
1.33

0.39
0.29
045

0.12
0.123
0.177

0.173
0,226
0.271

0.096
0.146
0.170

0.41
0.38
0.44

0.28
0.28
0.35

0.21
0.20
0,22

0.125
0.103
0.135

PPP 2 fg2$ 2 $2/ 2

& =&I+ +
2~t 2~t 2~l

(22)

in a coordinate system with the z axis along the [111j
direction and the origin at I., the point of intersection
with the Brillouin face. mt is the transverse effective
mass and m~ is the longitudinal effective mass. eL, is the
electron energy at L We utilize (22) to provide both
the Fermi surface and, through its gradient, the electron
velocity on the Fermi surface. Equation (22) refers to
a stationary, unstressed .crystal. For an. unstressed
crystal in small motion, we expect the replacement
e'(k) —+ a'(k —nzu/k), whose gradient would yield the
relative velocity V. However, we require the Fermi
velocity to only zeroth order since the viscosity inte-
grals are multiphed by the first-order factor V'u. We
may therefore use (22) directly and regard its gradient
as the ielative velocity V.

Figure 2 is a sketch of the neck region. Table I con-
tains parameter values required for the integrations.
Neck data and inferences therefrom are most accurate
at the top of the neck, where it intersects the zone face.
While the hyperboloid determined by (22) does not
join the belly smoothly as we rightly expect it to do,
such a discontinuity is of little consequence in the
integration. However, the computed ratio of the neck
velocity to the belly velocity at the conjunction is high,
approximately 1.6 for Ag and Au (only 1.1 for Cu).
We have therefore made alternative computations-
one tolerating the mismatch, a second with a conciliating
expedient: Noting that the Fermi velocity on the neck
increases with proximity to the belly, we accept the
increase provided by (22) until it reaches the belly
value; thereafter we hold the magnitude constant and
retain only the directional variation. The lower section
of the neck so defined will be labeled the "collar" for
reference. The Fermi surface for purpose of integration
assumes the anatomy: sphere, caps, necks, and collars.
Providing the neck with a collar diminishes the vis-
cosities on the order of 10%.

Effective relaxation times for neck and belly diGer. '~'8

For low-temperature impurity scattering v „;&7 q;,
whereas for phonon scattering 7-„„&7.~„. In the case of
copper, Deaton and Gavenda" estimate from their

'7 J. M. Ziman, Phys. Rev. 121, 1320 (1961}.
"V. Heine, Phil. Mag. 12, 53 (1965}.
'9 B.C. Deaton and J.D. Gavenda, Phys. Rev. 129, 1990 I'1963}.

with the axis in a [111J direction. Joseph and Thoreson"
find their data for the necks fitted within a few percent
by an eRective-mass approximation for e'(k),

magneto-acoustic data that relaxation on the neck is
several times slower than on the belly. We have made
explol atoly conlplltatlorls llslllg sllccesslvely Tn/ra
=1, 2, ~~. The variations so produced are also of the
order of &10jo.

+48 U12U32U 'dS, (24)

Tm2 1—8 U1'U 'dS+4 U14U 'dS
4&3( 3g

(25)

0.= — U'dS.
4X3fS 3

DiRerentiating e(k) in (22), we have for the velocity
components

U1=kkr/mg, Un=kk1/m1, U3= —kka/m1. (26)

Over a cap, spherical coordinates are employed; over
neck and collar, cyhndrical coordinates. The integra-
tions are elementary but laborious; the results appear
in the Appendix.

Application to silver, with the contributions of the
various regions separately displayed, is given below.

V. COMPUTATION OF INTEGRALS

Integration over the sphere excepted, the various
integrals (17)—(21), formulated in terms of crystal-
lographic axes, are most readily evaluated by a trans-
formation to a coordinate system with s axis along the
[111]direction. For the most symmetrical orientation,
the direction cosines of such neck axes relative to the
crystallographic ones are

n1 (V3——+3)/6, n2 (V3 ———3)/6, na ———243/6;
p, = (v3 —3)/6, p, = (K3+ 3)/6, p, = —2v3/6;

y1 ——y2 ——y1 ——2%3/6.

If we denote the velocity components along the new
axes by U1, U1, U3, we have, for example (to clarify
the notation),

1 1 Ulnl+U2pl+ U371 ~ (23)

Upon transformation and exploitation of rotational
symmetry the integrals become

vm2 1
F11'= —16 U1'U—'dS+4 U34U-'dS

4~35 36
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TAM.E II. Viscosity terms and electrical conductivity. The TABLE III. Polycrystalline materials. Viscosity coeKcierits, i.e.,
tabulated numerical values are in fact the following ratios: ratios q/0 (m/e)'e0' and associated ultrasonic attenuations.
e X4w'A/re'I4o'vo, p»'/e(v4/e)'vo', v»'/o(ol/e)'vp', and v~/e (m/e)'vp'.

gloag

Ag
Au
Cu
Free"

electron
gas

1.31
1.32
1.01.

1.33

0.63
0.67
0.44

0.60

0.17
0.17
0.13

0.20

0.31
0.32
0.25

Ag
Au
Cu
Free-

electron
gas

0,19
0.20
0.14

~0
~0
r 0

0.26
0.27
0.19

0.95
1.0
0.7

Numbers in the square brackets refer in order to sphere,
caps, coHars, and necks.

», = (.~ /4~ a)u:vp [0.800-0.»3
+0.107+0.033j, (27)

2)12'= (22242/42rph)kppvpp[0. 267—0.085

+0.030+0.008], (28)
X= (1/4~2&)u," [4.000—0.852

+0.541+0.613), (29)

o = (re2/42rph)Ieppvp[1. 333 0 284— .
+0.179+0.086j, (30)

2)1=o (224/e2)hkpvp[0312j. (31)

ko and ~o are the free-electron Fermi radius and Fermi
velocity. %e have replaced Uo by the zero-order Fermi
velocity eo.

VI. VISCOUS ATTENUATION

Comparison of theory with experiment occurs throu. gh
examination of the ratio of attenuation coeScient to
electrical conductivity n/o in the two cases. Since the
viscous dissipation is proportional to the viscosity, we
compute the ratio 2)/o. We shall isolate the distinctive
numerical factor as indicated for silver:

F11'/o(222/e)2vp' ——[0.63j, (32).-'/. ( /)""=[0.17j, (33)

2t 1/o (222/e)'vp' ——[0.31j. (34)

The ratios for the three metals, and for the free-electron
model as well, are presented in Table II.

The viscous amplitude attenuation coeKcient for
longitudinal plane waves is

42= (pe /2p~)2)long q

where gi,„g is the effective longitudinal viscosity in the
direction of propagation. Similarly, for shear plane
waves,

~= (~'/2~o)n. h-. , (36)

where q,h„,=—q, is the effective shear viscosity for the
direction of propagation,

A. Polycrystalline Materials

Under acoustic irradiation, polycrystalline materials
of sufficiently small grain size behave isotropically; for

such media
e-.—(n.+pe.),

where q, is the average coefFicient of shear viscosity and

q, is that of volume viscosity. Averages have been com-
puted in elasticity theory for the corresponding elastic
moduli. There, various assumptions have been em-

ployed; e.g. , uniform local strain (Voigt), uniform local
stress (Reuss)."Mason" has given a simple deduction
which leads- to the Voigt results. Voigt averages have
been shown to provide an upper limit and Reuss, a
lower. For cubic structures, however, the two averages
coincide for the bulk or volume modulus. For the shear
viscous coeKcient we shaH choose the Voigt averaging.
It gives a value approximately equal to the free-
electron one, a plausible result. The Reuss averaging
gives, on the contrary, the rather implausible value of
only 0.6 times the free-electron one. Further, the con-
dition of local uniform rate of strain, the analog of the
elastic condition of uniform local strain, appears proper.

The average shear viscosity is then

'go= 2 ('gll 2)12+3'944) ~

The average volume viscosity is

2b 2 (2}11+22112)

(38)

(39)

Table III contains the average viscosities for the three
metals along with the associated ultrasonic attenuations.

glove 2 (2)11+22)12+42}44)y (4o)

'gaheer 2 ('Oil 'gl2+'944) ~

For propagation in the [100]direction,

and
(42)

'/shear $44 ~ (43)
"H. B. Huntington, in Sold State I'hysics, edited by F. Seitz

and D. Turnbull (Academic Press Inc. , New Vork, 1958), Vol. 7,
pp. 213, 317, 318.

"W. P. Mason, I'iesoelectric Crystuts meed Their A pprica~orI, to
UA'rasorIics (D. Van Nostrand Company, Inc., Princeton, New
Jersey, 1950), pp. 41.4-416.

B. Single Crystals

For plane waves propagating in the [111jdirection,
the relevant viscosity coeKcients are, for longitudinal
waves, "
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[111]direction

/long ~/~ free

0.24 0.9
0.24 0.9
0.16 0.6

Ag
Au
Cu
Free-

electron 0.267
gas

L100] direction

'along /free /shear ~/~free

0.32 1.2 0.17 0.85
0.35 1.3 0.17 0.85
0.19 0.7 0.13 0.65

0267 1 0.20 1

The values of the above viscosities and associated
attenuations appear in Table IV.

VII. CONCLUSIONS

Geometrically, the Fermi surface necks do not ac-
count for the high ultrasonic attenuations observed in
the noble metals, both because of their small size and
the variation of their influence with crystalline direction.

However, through the mediation of the necks, the

TABLE IV. Single crystals. Viscosity coefficients $q/a (m/e)'fop j
and associated ultrasonic attenuations.

crystalline anisotropy is reflected distinctly in the vis-

cosity tensor. Such marked anisotropy has indeed been
observed in tin crystals. "

The acoustic frequencies employed by Kolouch and
McCarthy for copper lie above the viscous regime
(acoustic wavelength) electron mean free path); never-
theless, their data by free-electron theory point to the
same excess attenuation factor for low as for high fre-
quencies. An earlier found agreement between the
Bommel and Gibbon copper measurements and free-
electron values was deceptive: It was based on the use
of the free-electron mass. When the now known large
belly effective mass of copper is employed, computed
attenuation values are decidedly lowered and agreement
lost.

If our framework is valid, the deformation potential
0 must contribute importantly to electron viscosity.
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APPENDIK

The transport integrals indicated in (20), (24), and (25) evaluated over the various regions are as follows (sub-
script b denotes belly value):

Neck

mr' k ' n ' 1 mr '" 2/mb)'I' 4
t&b'&b' — — —— A —— 8 —C (A1)

where, upon setting

r m' k q'urn 1 m, p'I 2 pm, ~b12

kb'nb' —
I I

— ——
I

g+—
I

—
I

jp
4+& kbi &rb 90 mri 455m, i

(A2)

where

K,= L(k,'/k„') —1]'r', A =3K,b+10K,'+15K„B=K,b, C=K,'(3k,2/k„'+ 2) .

r„e (k„ /n 2(m~'1'" 2 m~)'I'~=-" kb'ebl
—" I—

4+k Ek, E., 9&m,i 9 m, i

D=K, I (kP/k~')+2]'" E=K '

(A3)

(A4)

Collar

r m' irk„~' mr~'I'-4 1 4
kb'&b'I —

-I 1+—
I

-&+-G+-&
4n'k i kbi m(1 9 9 3

r m' (k„1' f m~ 1'12 2 1
kb2eb'I —

I I
1+—

I
-F+-G

4lr'k Ek i E mi 9 9
(A6)

"W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28, 930 (1956).
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where first defining

E = (k '/k '—1)'" Q= (1+m//mg) ' A =(k '/k '—Q)"' A =(k '/k ' —Q)"'
we have

3 m P ]. Q' ]. Q'
1+—— E,A,—

4 m, 2 (Q—1)A,' 2 (Q
—1)A.'

(3Q+1) A,+E. '

E,A,+ — ln
2 A.+E'.

m 2 E,' A E, k
G=2 1+— — + 2 —+3Q—5

m& (Q—1)A, (Q—1)A, 2(Q —1) k„

E.'

A,+E,A,E. (k
+3Q—5 +l(Q—1)ln, (~&)

2(Q—1) kk„A,+E,
A,+E.

T,e' k„' m)
+=——kb 'vb — 1 — J

mg

where
m, ) ' A,E, A,E, A, +E, -

J= 1 — ——
2 1 ln

m~) 2 2 A +E,
1 fk. ' t' m(

K= kpPvp 'i —
i
1+— L

4+h &k, E m,

where
A,E, A.E. A.+E,

+-'(1—Q) ln—
2 2 A,+E,

m, m ' 1 Q 1 Q
H= 2 —— — A,E,—— — A,E, -', 3 —1 ln

mg m) 2 A, ' 2 A,' A.+E.

Cap

g~~' ——(rqm'/47r'h)kq'vp'((1/90)L18 sin'8 cos8 —48 cos8+16 cos'8+36 —4 cos'8j},

rj,p' (rpmP/4vP——h)kpPvpP((1/90)L —3 sin48 cos8—12 cos8+4 cos'8+12 —4 cosP8]}
&

o = (rye /47r h)kp vp(p (1—cos8) },
X= (1/4m. h)kp vp '(2(1—cos8)}.

Sphere

q„'= ( bm'/4 'h)kpPvp'{-;},

q &
p' = (rpm'/4rr'h) k ppv p'{4/15 },
o = (rpe'/4''h)kpPvp{ 4p}, -
X= (1/4v-'h)kpPvp

—'(4}.
For the free-electron model, we also have

q, = (rm'/47r'h) k p'v p'(4/9}

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

For the noble metals we can take Np= (1/3prP)kpP. The final formulas are obtained by appropriate summing.


