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Anharmoniuty in Noble Metals: Some Thermal Properties*
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The room-temperature Gruneisen parameters of copper, silver, and gold have been calculated within the
quasiharmonic approximation, using the anisotropic-continuum model and values of the third-order elastic
constants recently determined. The agreement between the calculated and the experimental values is good
for copper and silver, but only fair (12/o) for gold. Expressions for the temperature dependences of the three
second-order elastic constants have been derived using the continuum model. These depend upon the
second-, third-, and fourth-order elastic constants. The fourth-order elastic constants of copper, silver, and
gold have been computed using these expressions, and it was found that they are positive in sign and of the
order of 10I4 dyn jcm in magnitude. Only the closed-shell repulsive interaction between nearest-neighbor ions
was taken into account in computing the fourth-order constants. Previous work has indicated that this might
be a good approximation for noble metals. The two parameters in the Born-Mayer potential expressing
the repulsive interaction were evaluated, and reasonable values were obtained for copper and silver. Anoma-
lous results for gold indicate that contributions to the higher order elastic constants from other than ion-core
repulsion cannot be ignored in that metal.

I. INTRODUCTION

~

~

~ ~

OME of the thermal properties of crystals are
directly rdated to the anharmonic nature of the

lattice vibrations. One measure of this anharmonicity
is the asymmetry of the lattice potential energy with

respect to particle separation. This asymmetry is con-
nected to the higher order elastic constants, namely, the
coeScients of the higher order terms in the expansion
of the lattice energy in terms of the elastic strain. The
third-order elastic constants of the noble metals copper,
silver, and gold have recently been determined. ' (This
reference will hereinafter be referred to as I.) It is

interesting to calculate some of the thermal properties
related. to anharmonicity using these values of the
third-order elastic constants. 'The results of such
calculations might also be used to evaluate the relative
importance of the various contributions to the lattice
energy.

The first such thermal property we discuss is the
volume thermal expansion P. To calculate P we utilize

the quasiharmonic approximation. This means that all

thermodynamic and elastic properties of a crystal are
assumed to be determined by the harmonic-lattice

frequency distribution and its dependence on volume

or, more generally, on strain. This dependence is usually

specified by defining the scalar-mode Gruneisen

parameters

where p is the volume of the material and v; is the fre-

quency of the ith normal mode. In the quasiharmonic
approximation v; depends only on the state of deforma-

tion and is not an explicit function of temperature. 2

Under this assumption, the thermodynamic Gruneisen

*This work was supported in part by the U. S. Atomic Energy
Commission under Contract AT(11-1)-1198, Report No. C00-
1198-356.

t Present address: Tokyo Institute of Technology, Ohokayama,
Meguro-ku, Tokyo, Japan.' Vosio Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

' G. Leihfried and W. Ludwig, Soiid State Phys. 12, 275 (196tl.
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parameter y can be defined as a weighted mean of the
individual mode parameters, namely,

where C; is the specific heat of the ith normal mode.
y is then directly related to the thermal expansion as

where V is the molar volume, KT is the isothermal com-
pressibility, and Cy the specihc heat at constant volume, '
We see that the calculation of the thermal expansion
basically reduces to the calculation of the various y; and
their weighted. mean y. To perform these calculations
we have utilized the anisotropic continuum model. In
this case, the y; can be calculated if we know the
third-order elastic constants.

Sheard4 evaluated y in the high- and low-temperature
limits from the pressure derivatives of the elastic con-
stants. Collins' also used pressure derivatives to
calculate the temperature variation of y for several
materials. Their method and results appear to be
reasonable. They both used the continuum approxi-
mation and took account of finite elasticity theory.
Zimane and Foreman~ proposed another method to
calculate the Gruneisen parameter using perturbation
theory. Their method is also based on the continuum
model, but we consider it to be incomplete because they
neglected finite strain considerations which are essential
in the continuum treatment. Recently, Bruggers derived
a new expression for the generalized mode parameters
y, & based upon the general strain dependence of the
normal-mode frequencies. He also used the anisotropic

' J. C. Slater, Introdlction to Chemical Physics (McGraw-Hill
Book Company, Inc. , New Vork, 1939), p. 215.

4 F. %'. Sheard, Phil. Mag. 3, 1381 (1958).' J. G. Collins, Phil. Mag. 8, 323 (1963).
e J. M. Zirnan, Eteetrotts and Pttoeoas (The Ciarendon Press,

Oxford, England, 1960), p. 152.
7 A. J. E. Foreman, Proc. Phys. Soc. (I ondon) 79, 1124 (1962).' K. Brugger, Phys. Rev. 137, A1826 (1965).
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continuum model, and his treatment takes rigorous
account of 6nite elasticity theory. The formulation
requires knowledge of the complete set of third-order
elastic constants, for example, six for cubic crystals.

In the present paper, the thermodynamic Griineisen
parameters of copper, silver, and gold were computed
using Brugger's formulation for the mode parameters
and values of the third-order elastic constants reported
in I. It is to be emphasized that the thermal expansion
of a cubic crystal is dependent only on the hydrostatic
pressure derivatives of the three second-order elastic
constants. We have used the Brugger formulation
because it is expressed explicitly in terms of the third-
order elastic constants. This calculation will, however,
only depend upon three linear combinations of the six
independent constants for a cubic crystal.

A second thermal property directly related to crystal
anharmonicity is the temperature dependences of the
elastic constants. Calculation of these quantities should

provide a check on the complete set of third-order
constants. Expressions for the temperature dependences
of the second-order and third-order elastic constants
have been derived using the anisotropic continuum
approximation. The temperature dependences of the
second-order elastic constants are dependent upon the
second-, third-, and fourth-order elastic constants of
the crystal. Direct calculation of these temperature
dependences could not be carried out as there exist no
data on the fourth-order constants of any material at
the present time. Instead, the fourth-order constants of
the noble metals were calculated using experimentally
determined values of the temperature dependences of
the second-order constants. In order to carry out this
calculation, the assumption that only the dosed. -shell

repulsive interaction between nearest-neighbor ions
contributes to the fourth-order elastic constants was

adopted. This interaction energy was then expressed by
a two-parameter Born-Mayer —type potential, and the
two parameters were evaluated using the experimental
values of the third-order constants and the calculated
values of the fourth-order constants. The internal
consistency of these calculations and the magnitude of
the Born-Mayer parameters so determined provide a
check of the assumptions and procedures which we

adopted.

the third-order elastic constants. The isothermal
generalized-mode Gruneisen parameter is de6ned by

~&i
7.0,P

~g~p r- ~=o

where g p is a component of the Lagrangian strain
tensor. This parameter is not intrinsically quasi-
harmonic as an explicit temperature dependence is
allowed. Adopting the anisotropic continuum approxi-
mation and appropriate boundary conditions, Eq. (4)
can be written as

where po is the density of the undeformed material, t/t/',

is the wave velocity referred to the unstrained dimen-
sion of the crystal, and w;= (poW,2)„o.By solving the
wave equation of small-amplitude waves in a homo-
geneously deformed medium, Thurston and Brugger'
derived. the expression

where N and U are the propagation and polarization
vectors of the ith normal mode, C8 is a second-order
adiabatic elastic constant, and I, is the thermodynamic
tension [4„=po(BU/Brj )s=po(4lF/Bq )r, where U
and F are the internal and free energies per unit mass
of the materialj. The bar over a symbol indicates that
the quantity is to be evaluated in the homogeneously
deformed state. By differentiating Eq. (6) with respect
to q p and evaluating at g=0, one obtains an expression
for the generalized mode Gruneisen parameter:

y,~~= —(1/2w;)[2w~v Up

+ (Cusmm +Ca6mune Uuvw@m+n]1 (~)
with

m;=C „„„8XX U U', . (g)

Summation over repeated indices is always implied.
Consecutive superscripts such as ST indicate the nature
of the successive derivatives employed to obtain the
elastic constant, adiabatic (5) or isothermal (T). For
cubic crystals, it can be shown that

II. GRUNEISEN PARAMETERS

We 6rst summarize Brugger's method of obtaining
the generalized mode Gruneisen parameters in terms of and the explicit expanded form is expressed as

Vi (1/6w)(2w+C11 +2C12 + (C111+2C112)(+1 Ul ++2 U2 +Jl 3 v'3 )
+ (C144+2C166)[(X2U3++3U2) +P 3U1++1U3) + (il 1U2+E2U1) j

+2 (C123+2C112) (A D 3vovo++3E1vov1++1+2V1V2) )
with

w=C11s(E12U12+E22U22+$32U32)+C44s[(E2U3+%3U2)2+(E3U1+E1U3) +(E21U2+flT2U1)2)

+2C12 (X2X3U2U3+X3X1vov1+$1%2U1U2) . (10)
9 R. N. Thurston and K. Brugger, Phys. Rcv. 133,Ai604 {3.964).
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The components of N and U refer to the appropriate
vectors for the ith normal mode and the elastic con-
stants are expressed in the contracted notation. All

third-order constants are of the type ST.
Mode Griineisen parameters of copper, silver, and

gold have been calculated as follows. There exist one
longitudinal-like and two transverse-like elastic waves
for a given direction N. The polarization vectors U and,
hence, the effective elastic constants m of these waves
can be conveniently determined by the method of
Quimby and Sutton" by solving the elastic wave secular
equation. Then p, T can be calculated for any mode
using Eq. (10) and values of the second- and third-order
elastic constants.

Expressions for the high-temperature and low-

temperature limits of the thermodynamic Griineisen
parameter can be obtained from Eq. (2). At high tem-
peratures, C,=k (the Boltzmann constant) for each of
the 3S modes, and

3N

v"= Z v,'.
3E '=&

At low temperatures, by assuming the continuum
model, it can be shown4 that

3N ~.T
7i=Z

3N

(12)

TABLE I. Elastic constants of copper, silver, and gold
(in the contracted notation and 10"dyn/cm2). '

Cu Au

C11

C12

C44

C111

C112

C123

C144

C166

C456

1.661
1.199
0.756

—12.71
—8.14
—0.50
—0.03
—7.80
—0.95

1,222
0.907
0.454

—8.43
—5.29
+1.89
+0.56
—6.37
+0.83

1.929
1.638
0.415

—17.29
—9.22
—2.33
—0.13
—6.48
—0.12

a Yosio Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

' S. L. Quimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953).

where S; is the wave velocity of the ith mode. The
Gruneisen parameter at intermediate temperatures is
usually calculated by taking account of the variation
of C; with temperature and the assumed frequency
distribution.

The y~ for copper, silver, and gold have been com-

puted from Eqs. (10) and (11) using the room-

temperature values of the elastic constants as reported
in I. These are summarized in Table I. In computing
these quantities it is sufFicient to consider propagation
directions in a (100)—(110)—(111) triangle on the Debye

TABLE II. Calculated and experimental room-temperature
values of the thermodynamic Gruneisen parameter.

y calc

y expt'

Cu

2.07
2.0

Ag

2.55
2.4

Au

2.65
3.0

' J. G. Collins, Phys. Mag. 8, 323 (1963).

"M. Blackman, Encyclopedia of Physics (Springer-Verlag,
Berlin, 1955), Vol. 7, Chap. 1, p. 325."W. C. Overton, Jr., and J. Gaffney, Phys. Rev. 98, 969 (1955)."J.R. Neighbours and G. A. Alers, Phys. Rev. 111,707 (1958)."P. B. Ghate, Phys. Rev. 139, A1666 (1965).

sphere because of the high symmetry apparent in
Eq. (10). A grid over this triangle dividing it into 177
nearly equal areas and having evaluation points at the
centers of these areas was constructed. This means
that 25 488 modes were considered for each material.
All computer calculations were done on the University
of Hlinois zxLIAG jr. Results for y~ for copper, silver,
and gold are presented in Table II together with values
determined by experiment. ' The agreement between
the calculated and experimental values is excellent for
copper (3.5%), good for silver (6.3%), but only fair for
gold (11.7%).

These discrepancies may originate in the failure of
either the quasiharmonic or anisotropic continuum
approximations. One example of the over-all success of
a harmonic model using the continuum approximation
is the Debye theory of specific heat. Some failure of this
theory can, however, be seen in the temperature varia-
tion of the Debye characteristic temperature O'. This
variation can be satisfactorily explained by adopting a
discrete lattice model. "The present discrepancy might
also possibly be diminished by using a discrete model.
Also, the Debye 0 at moderately high temperature
determined from speci6c-heat data and that calculated
from elastic data differ. The percent differences are
5.1, 3.6, and 10.8% for copper, silver, and gold, respec-
tively. " This may suggest that the continuum or
harmonic approximations are not as good in gold as in
copper and silver, in agreement with our results.

We also intended to compute the low-temperature
limits yl„as the continuum model should be a good
approximation at low temperatures. However, it was
found that values of the Griineisen parameter calculated
by the present method are sensitive to the variation
of the third-order constants. For example, yz(C..
C,,""' " '~10% for all C,,")=2.20~0.60 for gold.
The second-order elastic constants at zero temperature
are available. ' "Unfortunately, there is no data or even
discussion on the temperature variation of the third-
order constants of metals. It is possible, though, that
the C,,& vary by the indicated amount between room
temperature and O'K. In the case of alkali-halide
crystals, Ghate" calculated the temperature change of
the third-order constants using the Born model of ionic



3X
kpoT—

BT s~ Bg~g

crystals. His results show, for example, that C111 and Differentiating Eq. (16) with respect to temperature
Cloo cha~ge by —10.8 and —18.4%, respectively, at constant strain, we have
between 300 and O'K for NaCl. It appears that it may
not be meaningful to compute the low-temperature 8C o~o o& By;~P)

Gruneisen parameters when we have no knowledge of aT „'=1 ag, oir
= —kpo g

the temperature dependence of the third-order elastic
constants. If such knowledge were available, it might
tell us something about the temperature dependences
of the mode Griineisen parameters and, hence, the
validity of the quasiharmonic approximation.

3X Pg Ps
F=Fo+kTQ ln 2sinh

i=1 2kT

III. TEMPERATURE VAMATION OF THE which is related solely to the deviation from the linear
ELASTIC CONSTANTS dependence of the elastic constants on temperature,

was neglected in this expression. This approximation is
The Helmholtz free energy of a crystal Per unit mass supported for Cu, Ag, and Au by the experimentally

can be written as observed linear behavior at high temperature. ""
Further differentiation of Kq. (14) will give, similarly,
in the high-temperature limit

where Eo is the free energy at T=O'K in the absence of
lattice vibrations. v; is the frequency of the ith normal
mode and is considered to be a function of the (finite)
strain q and the temperature T.Hence, in the following,
a quasiharmonic treatment according to which the
frequencies would not be explicitly temperature-
dependent is not implied. LA detailed discussion of this
approach will be given by one of the present authors
(AVG) 1I1 R scpRlatc papel". j By dlffcrcnt1atlng F twice
with respect to strain at constant temperature and
using the definition y,"~=—(1/p~)(Bp;/Bat s)r we
obtain

It is also easily shown that BC p~P/BT=O and
BC P~ap rr/BT=O at T=O'K.

The quantity 8y, ~~/BIl~o can be calculated, as follows:
Multiplying Eq. (6) on both sides by U„and differenti-
ating with respect to g p, we obtain

t9

(poli", )r = —2~a "(~)
~'gal

&'F ) ( &'Fo

Eaa ,aa, ,l, (aa..,aa, ,)
PP 3N IE pg

g p,oy, joy,o' csch'
4kT' '=i 2kT

A» 8y t' kv;
+-Q p; y, ~y, &'— coth . (14)

2kT

where po is the density of the undeformed medium and
the elastic constant is expressed in the tensor notation,
Using this dehnition and expanding the hyperbolic
functions in terms of Ap;/2kT, we obtain the relation
for the high-temperature limit:

oÃ (By;~~al
C p~o (rj,T) Cp7o = pokT P ~

—
~

. —(16)
'=1 &ag„i,

"K. Brugger, Phys. Rev. 133, A1611 (1964}.

Isothermal elastic constants of any order are dehned as'5

C,aol . po(8 F/Itrl;, B——qol )r a

+2'„„C p „„„BrUU„$NW„. (19)

If Eq. (19) were evaluated at II=0, we would obtain
Eq. (7). We continue to differentiate Kq. (19) with
respect to q~q. Evaluating the result at q=O gives, after
simple but lengthy calculations,

»"/d~»= 2&"v'"—(1/2~')

XP& p, o „rr+4C p „,srU„Uo

+C p, o „.sr' U„U.]N„N„. (20)

The fact that Eq. (20) is an g=0 expression means
that the temperature derivatives of Eq. (17) are taken
to be those of the zero strain constants. It should be
noted that Eq. (20) contains elastic constants of second,
third, and fourth order. By further diGerentiation we
could obtain an expression for 8'y, ~/BIt~oBg„contain-
ing elastic constants up to the fifth order. Substitution
of Eq. (20) into Eq. (17) gives an expression for
calculating the temperature derivatives of the iso-
thermal second-order elastic constants. The explicit
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expanded forms for cubic crystals are given as

3N 1
'PO 2 2~.11~.11 C111TTN12+C112TT(N22+N82)

BT 2'N

+4C111 N1U1+4C112 N1U1(N2U2+N3U3)+'4C166 [N1U1(N2U2+N3U3)+(N2+N3)U1]

+C1111N1 Ul+2C1112NlU1(N2U2+N3U3)+C1122(N2 U2+N3 UB)+2C1123N2N3U2U3

t'BC32T» 1—
'POX 274 P4 C112 (Nl+N2)+C128 NB+4C112 N2U2(N1U1+N2U2)

BT 8 4=1 2Wi.

+4C123 N2N3U2UB+4C144 NBU2(N2U3+N3UB)+4C166 N1U2(N1U2+N2U1)

+C1112(N1 Ul+N2 U2)+ 2C11 22N1 NBU1 UB+ Cll 23[NB U3+2NBUB(N1U1+~ 2U2)]

+C1255[(N2UB+NBUB)'+ (NlUB+NBU1)2]+C1266(NlUB+NBUl)', (22)

(QC44 BN ]. —

= —&Pop 2y y 8——C144 'Nl'+C166 T(N +NB')
& gT

+4C144 N3N1UBU1+4C166 [(N2+N3) UB+2N2NBU2UB]+4C456 (N1UB+NBU1)N1UB

+C1144N1 Ul+C1155(N2 U2+NB UB)+2C1255(N1N2U1U2+N1N3UIU3)+2C1266N2N3UBU3

+C4444(N2UB+NBU2) +C4455[(N1UB+NBU1) +(N1U2+N2U1) ] y (23)

where the elastic constants are written in the contracted notation and all fourth-order constants are of the type
STT. The generalized mode Gruneisen parameters can be calculated for cubic crystals from Eq. (7).The expanded
forms are

74 (~/2~){C11 Nl+C12 (N2+N3)+2"Ul+C111N1 Ul+C144(N2U3+N3U2)
+C112[N2 U2+NB UB+2N1U1(N2U2+N3U3)]

+2CBBBNBNBUBUB+C166[(N1UB+NBUB)2+(N1UB+NBU1)']}, (24)

fP — (l/") {C44 N2NB+~U2UB+C144N1U1(N2UB+NBUB)

+C166[(NB'+NB') UBUB+NBNB(UB'+ UB')]+C456[NBNBU12+NBBUBUB+NlUl(N2UB+NBU2)]}, (2')

where all third-order constants are of the type ST. The
other elements of the generalized Gruneisen-parameter
tensor follow directly by cyclic permutation of the
indices.

IV. FOURTH-ORDER ELASTIC CONSTANTS

The temperature coefficients of the second-order
isothermal elastic constants can be calculated using the
formulation of the preceding section when all second-,
third-, and fourth-order elastic constants are known.
There are, however, no data available for the fourth-
order constants at the present time. Hence, it is interest-
ing to invert the procedure and calculate the fourth-
order constants using experimental values of the
temperature coefficients.

There are 11 fourth-order elastic constants for cubic
crystals. ""Ten of these (all except C1456) appear in
the three independent expressions for the temperature
derivatives of the second-order constants, BC11T/BT,
BC12T/BT, and BC44T/BT However, in .the case of noble
metals, simple, approximate relations between the
fourth-order constants have been proposed in I:

C1111 2~1112 2C1122 2C1155 2C1266 2~4444
(26)

C1123 C1144 t 1255 C1456 ~4455

These relations were obtained by the argument that
the contribution from the closed-shell repulsive inter-
action between nearest-neighbor ions becomes pre-

"T.S. G. Krishnamurty, Acta. Cryst. 16, 839 (1963).' P. B. Ghate, J. Appl. Phys. 35, 337 (1964).
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TAer.E III. Experimental data used in the calculation of fourth-
order elastic constants (room-temperature values).

p, (g /cm')

~ (10-/ C).
(Bc» /BT)„(10' dyn/cm' 'C)
(BCI2 /BT)„
(Bc44 /BT)

80~ (10 2 dyn/cm )
(& /~P) &

'
(BCI /8P) ~
(8c ~/aP)

Cu

8.96
4.98

—5.04
—3.03
—2.75

1.313
5.91
5.03
2.63

Ag

10.49
5.67

—4.33
—2.91
—1.85

0.970
5.12
3.6l
3.04

Au

19.32
4.26

—5.53
—4.52
—1.25

1.676
5,72
4.96
1.52

a International Critical Tables (McGraw-Hill Book Publishing Company,
Inc. , New York, 1926), Vol, I, p. 103.

b W. C. Overton, Jr. , and J. Gaffney, Phys. Rev, 98, 969 (1955); J, R.
Neighbours and G. A. Alers, ibid. 111, 707 (1958).

e Yosio Hiki and A. V. Granato, Phys, Rev. 144, 411 (1966).

dominant for determining the higher order elastic
constants of materials which have markedly overlapped
closed shells. Inserting the relations into our expressions
for c)C~P/BT, we can calculate Ciiii, which is the sole
independent fourth-order constant in the present
approximation. If our assumptions are justified, the
three independent temperature coefFicients should yield
the same value for C1111.

Computation of C1111 was carried out for copper,
silver, and gold on ILLIAc II. The lattice sums were
approximated by using a 367-point grid over an octant
of the Debye sphere. The symmetry apparent in
Eqs. (21)—(25) with respect to inversion in the i100)
and {110}coordinate planes indicate that consideration
of one octant is sufficient. Room-temperature values of
the second- and third-order elastic constants were used
(Table I), and the differences between C,,psr, the
measured third-order constant, and C;;1,~~, which have
been shown to be small, "were neglected.

It is to be emphasized that only three temperature
derivatives of the 81 second-order elastic constant
tensor components will give independent, meaningful
results. Temperature derivatives of equivalent elastic
constants, such as cICipr/c)T and c)Cipr/c)T, will be
given by equivalent expressions in terms of higher-order
constants. Expressions derived for the temperature
derivatives of elastic constants which are identically
zero, such as BCi4r/BT, appea, r superficially to give
useful information. However, when the lattice sums
are handled properly, we see that these expressions are
identically zero for any set of elastic constants for a
cubic crystal.

In tabulating the temperature derivatives of the
elastic constants for computation of C1111, we notice
that the quantities calculated in the preceding section
are derivatives at constant volume (BC/c)T) „whereas
the usual experimental values are those at constant
pressure (BC/BT)„. These two quantities are related
thermodynamically:

TAa1,K IV. Calculated values of C»» (in 10"dyn/cm').

Computed
from

ac).P'/a T
BcIP/aT
ac4P/aT

Mean

97.3
132.8
73.0

101

Ag

83.7
73.4
81.8
80

Au

108.5
120.2
80.6

103

V. THE INTERATOMIC POTENTIAL

According to the method of Wigner and Seitz," the
energy of a crystal can be expressed as the sum of the
ground-state energy of the electrons, the Fermi energy,
the electron-electron repulsive energy corrected for
exchange and correlation, and the nonelectrostatic
energy between ions. The nonelectrostatic interaction
between the ion cores in noble metals is usually de-
scribed by a Born-Mayer energy per ion pair of the
form

w(r)=A exp[ —8(r/rp —1)j, (28)

where r is the separation between ions, and ro is the
equilibrium separation between nearest neighbors. A
and 8 are material parameters.

It was shown in I that for noble metals the contribu-
tion from the repulsive interaction between ion cores
becomes more and more predominant in the higher-
order elastic constants. If it is assumed that the higher-
order elastic constants are determined solely by a
repulsive Born-Mayer potential, it has been shown
(again in I) that

Ciii ———AB (8'+38+3)/2pp,
Ciiii=AB(8 +68 +158+15)/4pp,

(29)

where e() is the volume per atom in the crystal. In ob-

where Bp is the zero-pressure bulk modulus and P is the
volume thermal expansion. These quantities are
tabulated in Table III. (c)Cr/BP)r should be used in
Eq. (27), but the differences between (c)Cs/c)P)r and
(c)Cr/c)p)r are estimated to be small.

The values of C1111 for copper, silver, and gold corn-

puted from the three independent second-order elastic
constant temperature coefFicients are tabulated in
Table IV. The consistency between the three values
for each material is considered to be suf6cient. We
believe that the mean values included in Table IV
represent reliable estimates of the fourth-order elastic
constants C1111 of noble metals. This implies that the
approximations adopted in this section involving the
fourth-order constants should be reasonable. Further
considerations involving the lattice energy are discussed
in the next section.

(aC/aT), = (BC/BT)„+Bpy(aC//ap)r, (27)
» E. signer and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509

(1934);F. Seitz, ibid. 47, 400 (1935).
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TABLE V. Born-Mayer parameters calculated from third-
and fourth-order elastic constants.

A (eV)

Cu
Ag

0.0728
0.0374

12.67
15.81

"E. Mann and A. Seeger, J. Phys. Chem. Solids 12, 314 (1960).
20 H. B.Huntington, Phys. Rev. 91, 1092 (1953).
"H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).
'2 T. Toya, Inelastic ScatterAzg of Neutronsin Solids and Liquids

(j:nternational Atomic Energy Agency, Vienna, 1965), Vol. 1,
p. 25.

"H. C. White, Phys. Rev. 112, 1092 (1958).
'4 S. K. Sinha, Phys. Rev. 143, 422 (1966)."J.B.Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard,

Phys. Rev. 120, 1229 (1960).

taining Eq. (29) only nearest-neighbor interactions
were taken into account.

The parameters 2 and 8 have been calculated from
Eq. (29) using the experimental values of C»~ (Table I)
and the values of C~~~~ determined in the preceding
section. The results for copper and silver are presented
in Table V. For gold we obtain 8=8.6 and 3 =0.41 eV.
This relatively small value of 8 for gold appears to
contradict the assumption that the repulsive interaction
between ion cores is quickly varying. This contradiction
will be discussed further below.

Mann and Seeger" determined the two Born-Mayer
parameters semiempirically for copper, silver, and gold.
They adopted four different methods: (a) from the
experimental values of the shear moduli and a theo-
retical expression for the electrostatic shear energy;
(b) from the experimental pressure dependences of the
shear moduli and a theoretical expression for the
electrostatic shear energy; (c) from the experimental
values of the bulk modulus and a theoretical expression
for the electronic ground-state energy; (d) from the
experimental volume-pressure relation and theoretical
expressions for several contributions to the crystal
energy. Their calculated values of A and 8 cover a wide
range, even within a given method due to undetermined
empirical parameters. Method (a) gives the largest
range, and includes the highest values of 8 and lowest
values of A. Method (b) covers the smallest range, and
includes the lowest values of 8 and highest values of A.
Intermediate results are obtained from methods (c)
and (d). Results of methods (a) and (b) are summarized
in Table VI.

Numerous other calculations of A and 8 for copper
based on theoretical crystal-energy expressions and
input data such as measured elastic constants or phonon
dispersion curves have been reported. "" The com-
puted parameters range approximately over the spec-
trum of values given by Mann and Seeger. Gibson et a1.25

calculated defect cascade properties for an irradiated
model copper lattice using three sets of Born-Mayer
parameters similar to those employed by Huntington. "

They found that calculated threshold energies to
produce a permanently displaced atom were very
different for the different parameters. The values
A =0.0510 eV, 8=13.00 gave their best values for these
energies. The Born-Mayer parameters they used are
presented in Table VI.

Thompson' studied the scattering of gold ions during
channeling experiments. He obtained the values
3=0.11 eV, 8=14.4 for this material. This should be
a quite basic experiment in the determination of ion-ion
interaction parameters. Thompson's results are also
included in Table VI.

Our values of the Born-Mayer parameters for copper
and silver compare nicely with the values in Table VI.
In particular, the agreement with Gibson et al. for
copper is encouraging. Also, both copper and silver
agree well with the "low-8" values of method (a) of
Mann and Seeger. The fact that we obtain reasonable
Born-Mayer parameters for copper and silver strongly
supports the assumptions involved in the calculations
of the fourth-order constants of these metals. Specific-
ally, it indicates that contributions to the third-order
constants from other than the closed-shell repulsive
interaction should be small. As discussed in I, such
contributions to the fourth-order constants should be
even less. It appears that we have obtained reliable
estimates of the fourth-order elastic constants and the
Born-Mayer parameters of copper and silver.

The assumptions involved in the calculation of the
fourth-order constants require further consideration
for gold. Our value of 8=8.6 for this metal appears low
in comparison with even the smallest value reported in
Table VI. As mentioned above, a low value of 8
contradicts the assumption that the repulsive-core
interaction varies rapidly enough that it is the only
energy term which need be considered. It appears that
crystal energies other than the closed-shell repulsive
energy contribute significantly to the third-order elastic
constants of gold.

This discussion can be made somewhat quantitative.
The values of C»& measured experimentally (C»&)~«,
are the sum of the closed shell contribution (C~~r), and
the contribution from all other origins (C~»),. We have
used (C»~)~„, in Eq. (29) to calculate 8; we should
have used (C»q), . Equation (29) can be modified to
estimate (C»~), and, hence, the error in our calculation
of 8.

The values of Cr»r calculated in Sec. IV (Crr»)«~, can
be separated into (C»~~). and P k,,~~(C,,~~)„where
k,,~t((i. The latter can be neglected with respect to
(C»»). if (C»&), is small (though not necessarily
negligible) compared with (C»r), . This is based on the
argument in I that the repulsive core energy should
become more predominant as one proceeds to higher-

2'M. W. Thompson, Atomic Energy Research Establishment,
Harwell, England, Report No. AERE-R-4694, 1964 (unpublished).
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TABLE VI. Summary of Born-Mayer parameters obtained by various methods.

a (ev)
Cu Ag

a (eV) B
Au

a (ev) B

Mann and Seeger (a)
(b)

Gibson et al.

Thompson

0.077-0.011
0.108—0.075
0.0392
0.0510
0.1004

13.6-26.9
11.8—12.6
16.97
13.00s
10.34

0.056-0.008 15.0-32.0
0.088-0.060 12.8-13.8

0.040-0.008
0.150-0.128

0.11

16.3—30.5
11.6-12.0

14.4

' Gave best values for threshold-energy calculations.

(C»1)e/(C»1)mess 1 (C»»)csl/&(Cl»)mgss y

order elastic constants. If this is the case, the following order. This contribution may be far less than 30% for
relation holds: the fourth-order constant of gold, and our calculated

value of C»» for that material may be reasonable.

with

r= —(8'+68'+158+15)/2(8'+38+3) . (30)
VI. CONCLUSIONS

Now if we have an estimate of 8 from some external
source, Eq. (30) can be used to calculate the contribu-
tions from other than the closed-shell repulsive inter-
action to the third-order elastic constants. For copper
and silver, we believe that other estimates of 8 are
consistent with our own. Hence, such contributions
should amount to only a few percent for these metals.
For gold, Thompson's value of 8= 14.4 should be quite
reliable. Substituting this into Eq. (30) gives
(C&»)./(C»&) „.=0.32. It appears that approximately
30% of the third-order elastic constants of gold originate
from other than the closed-shell repulsive interaction.

This fact should not be surprising because we already
know that the second-order elastic constants of gold
behave difterently than those of copper and silver. For
example, the Cauchy relation c» ——c44, which is based
on the assumption of central forces, is much further
from being satisfied in gold than in copper and silver
(see Table I). The ratios c~2/c44 in copper, silver, and
gold are, respectively, 1.59, 2.00, and 3.95, which shows
that the contribution of noncentral forces to the elastic
properties is more important in gold than in copper and
silver. However, we reiterate that the non-closed-shell
contribution should become less important as one
proceeds to consideration of elastic constants of higher

The thermodynamic Gruneisen parameters of copper,
silver, and gold have been computed. In general, the
agreement with experiment is good. Slight discrepancies
which do exist could be related either to the anisotropic
continuum and quasiharmonic approximations adopted
in the calculation or to errors in the experimental data.

Expressions for the temperature dependences of the
second-order isothermal elastic constants have been
derived using the anisotropic continuum model. These
expressions have been used to calculate the fourth-order
elastic constant C~»~ of copper, silver, and gold. It was
assumed that the fourth-order constants of these metals
are related solely to the ion-ion repulsive-core inter-
action. Despite this simplifying assumption, the results
appear surprisingly good for all three metals. Reason-
able values of calculated Born-Mayer parameters lend
support to this claim for copper and silver. Further
work continues to estimate the contribution of the
conduction electrons to the higher-order elastic con-
stants. This should improve the results, especially in
the case of gold.
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