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least 3 bands. For frequencies co and. 2' not very near
the absorption edges for the interband transitions, the
residual parts may always be neglected. However, for
frequencies near the absorption edges it is better, at this
stage, to determine the residual parts experimentally by
comparing the experimental values with the phe-
nomenological expressions obtained for the rejected
intensities in Sec. V. Since there is no bilinear surface
current for the incident light wave polarized perpen-
dicular to the plane of incidence (&=90'), the experi-
mental value for n may be obtained directly by doing
experiments with &f&=90'. One could then find P by

measuring the intensity and polarization of the second-
harmonic rejected wave for @=0'.
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The quantum-mechanical lattice theory in thermal-accommodation-coeKcient theory is approached from
the same point of view as the lattice theory of neutron scattering and Mossbauer effects. Treating the
surface atoms from a displacement-field-theoretic point of view, rather than from the customary single-
particle point of view, is more consistent with other solid-state theories. Virtual-phonon processes occurring
in the field formulation give rise to a nontrivial modification in existing single-phonon accommodation-
coefBcient theories. This modification takes the form of a pseudo —Debye-Wailer factor. When the existing
theoretical accommodation coeKcients are modified by the pseudo —Debye-Wailer factor, it is found that the
resulting accommodation coef5cient, obtained herein, displays trends similar to experimental data for helium
accommodation on tungsten.

I. INTRODUCTION

EVERAL quantum-mechanical theories for de-
scribing the energy-transfer process in a collision

of an inert-gas atom with a solid surface have been
presented. ' ' In most of these treatments, explicit re-
sults are obtained for a collision process in which a
single phonon is created or destroyed in the solid. The
obJective in these theories is an expression for the ther-
mal accommodation coefficient (denoted here as AC).
The philosophy of the accommodation coeKcient has
been discussed in quantum-mechanical papers' ' and
in the series of papers by Goodman. '

The author has been impressed by the possible formal
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similarity in mathematical structure between single-
phonon AC theory and the lattice-dynamic aspects of
neutron-scattering theory' and Mossbauer effect theory. '
In these three cases an external probe, the inert-gas
atom, the neutron, or the recoiling nucleus, interacts
with the phonon field of the lattice, usually through
assumed single-phonon transitions. Calculations are
usually done through time-dependent perturbation
theory or Born approximations. The relevant quan-
tities calculated, AC s, transition probabilities, or cross
sections, are expressed in terms of the square of a
matrix element of a lattice displacement held operator
taken between initial and final states of the lattice
differing by some stated number of phonons multiplied
by a matrix element describing the change of state of
the external probe. From the point of view of the lattice,
the neutron and Mossbauer theories are identical. In
both cases, lattice effects are represented principally
through a Debye-Wailer factor. It seems reasonable to

7L. S. Kothari and K. S. Singwi, Solid State Phys. 8, 109
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believe that if the inert-gas scattering problem is formu-
lated along the same lines as the other theories, some
factor playing a role similar to the Debye-Wailer factor
should appear. Furthermore, approaching the problem
from a boson-field point of view is a sufficiently general
method, so that, in principle, a simple theory can be
readily extended to include complicated real and virtual
multiphonon processes.

We shall show that presently existing quantum-
mechanical AC theory can be adapted to the point of
view presented herein.

II. THEORY

The energy accommodation coefficient for an incident
Aux of molecules upon a surface is given by
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61 62

workers' ' have done very detailed calculations in
evaluating Eqs. (1)—(3), which will be used henceforth.

In the present work it is assumed that the displace-
ment field of surface atoms can be given by the same
expression as that used for the bulk of the solid. The
work of Wallis and others' "suggests that the displace-
ment of surface atoms as compared with bulk atoms is
not drastically different. Thus it will be assumed that
the results of normal-mode analysis of the lattice can
be used to describe surface events.

If one does the usual normal-mode analysis of the
harmonic lattice, as, for example, in Pines, " and then
second quantizes the normal modes, one obtains a
Boson field in which the number of phonons in a given
mode is an eigenvalue of the lattice Ilarniltonian oper-
ating upon a basis vector in the occupation-number
representation. The lattice Hamiltonian is given as

+LAT —Z hjeq, j (jJq,j jJq,j+2) ~

in which ~2 is the incident energy Aux in the molecular
beam, e& is the energy Aux of the outgoing beam if
thermal equilibrium between the beam and the surface
were attained, and ~ is the true energy Aux of the
outgoing beam.

The expressions for the energy-transfer process in the
paper of Allen and Feuer' serve as a suitable starting
point for the present theory. They state previous results
for which the AC for an inert-gas atom upon a harmonic
oscillator of frequency v and in an eigenstate m is given

by an expression of the form

where the sum is over possible final states, y(q) con-
tains constants, density of states, and statistical factors,
and 8„, is the matrix element for the process

The sum is over all normal modes q and polarizations j.
The operators a, ,,t and a, ,; are phonon creation and
annihilation operators satisfying the usual Boson com-
mutation relations. The number operator E,,, is de-
fined through the following eigenvalue equation:

where e, ,; is the number of phonons of frequency q and
polarization j present in the arbitrary eigenstate Is).
If the lattice is in thermal equilibrium, the number of
phonons in the qth mode is given by

jj,,
j=[e""qjjj'T 15 '—

Typical matrix elements of the a operators in the
occupation number representation are

d'rd'I y*(r)g„*(u)LV(r—u) —V(r)]

X0-(u)4'(r) (2)

In Eq. (2), P;(u) is an assumed harmonic-oscillator
wave function representing the surface atom, g'(r) and

P(r) are eigenfunctions of the external atom before and
after collision, and the interaction term is the difference
between the true interaction and the interaction when
the surface atom is at its equilibrium point. If one
wishes to consider the interaction of the inert gas with
the normal modes of the lattice, as is the experimentally
meaningful situation, Eq. (1) must be integrated over
all normal-mode frequencies with a suitable distribution
function inserted. That is,

In the normal-mode analysis it is shown that the
coordinates of a lattice atom become operators, defined
at each point of the lattice,

uj ——Q (j'jjj2ME(oq, j)'"(eq,jaq, ,e'q "'

+e jg jte jq R() —
(6)

In this Fourier expansion, e is the polarization vector,
M the mass of the lattice atom, E the number of atoms
in the crystal, and E~ the distance of the tth atom from
an arbitrary origin. In the present paper, scattering
from the atom at the origin with E~=0 will be
considered.

e= n(p) j(p)dv.

This is the expression that ultimately can be compared
with experimental data. Allen and Feuer' and earlier

' R. F. Wallis and D. C. Gazis, Phys. Rev. 128, 106 (1962}.' B. C. Clark, R. Herman, and R. F. Wallis, Phys. Rev. 139,
A860 (1965}."J.M. Vail, Bull. Am. Phys. Soc. 10, 1112 (1965}."D.Pines, Ii/ementary Recitations in Solids {W.A. Benjamin,
Inc. , New York, 1964},Chap. 2.
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The interaction between the incident atom and the
surface atom is a function of their relative separation.
The unspecified, arbitrary interaction is expanded and
only linear terms retained. Thus

V.(r—u) —V, (r) —ui VV, (r). (7)

Looking at the matrix elements of Eq. (5) and the form
of the second quantized displacement field Eq. (6), it is
seen that the interaction of Eq. (7) couples orthogonal
states differing by one phonon only. These matrix
elements would take the form

m=(ea1I —u&Iii) af(r)

with f(r) = (1/I aI)VV, (r). Since the lattice states are
orthogonal, 0= (n& 1

I
1

I m)f(r); consequently,

nest=(n+1I1 —ui aIri)f(r).

The scaling parameter a is such that u~ a(&i. Conse-
quently,

1—ui a 1—ui a+(-', )(ui a)'+ =e-"i'

and thus

m = (ri+ 1
I
e ' "'

I
ri) (1/ I

a
I )v V, (r) .

Comparing this with the original expression for 5K
allows Eq. (7) to take the useful form

V, (r—u) —V.(r)=e-'" (1/I a I )v V.(r). (g)

This result is independent of the form of the inter-
action. Treating interactions in a similar manner has
been done previously by I ipkin" in order that the dis-
placement field operator might appear in an exponential
function.

The interaction has been brought to the form of
Eq. (8) so that a, result previously derived by Glauber"
can be used in the present context. His result states
that if there exists an operator of the form e~, where U
is a sum of creation and annihilation operators for all
normal modes of the field, then when the field is in
thermal equilibrium at a temperature T, that operator
deriving from e~ which induces n quantum transitions
is given by

(e&)r&~i = (I/~/g l)eil~&&'&r (9)

In the present case U= —a u. (U')r is the expectation
value of the square of the operator with respect to the
thermally excited state. The factor that resembles but
is not a Debye-Wailer factor takes into consideration
the higher order terms in the Taylor series expansion of
the interaction which give rise to n phonon transitions.
For example, if n=1, the cubic term included in the
expansion of Eq. (7) would give rise to single-phonon
transitions in the qth mode from operators of the form
c,.a, a, t in which a phonon is virtually emitted in the
q'th mode before the phonon in the qth mode is emitted.
These virtual processes which result in the emission or

"H. I. Lipkin, Ann. Phys. (N. Y.) 9, 332 (1960)."R.J. Glauber, Phys. Rev. 84, 395 (1951);98, 1962 (1955).

absorption of one real phonon are satisfactorily taken
into consideration by using Glauber's result.

We are now in a position to carry on with the theory
of the collision process. If the intera, ction of Eq. (8) is
used with Eq. (9), the new ma, trix element describing
a collision in which a single phonon is created is given by

8'„~ i= ~ (eIuIri 1—)e&&~'» d'ry*(r)

is readily obtained by using Eqs. (5) and (6). This
result is exactly equivalent to the harmonic-oscillator
results which would be obtained if Eq. (2) were evalu-
a,ted. Consequently, 8„, ~ of Eq. (10) is expressed in
terms of Eq. (2) as

r —g&/2((a u) &Z'P

which, when combined with Eqs. (1) and (3), allows a,

new AC to be defined in terms of previous derived ones.
The new result is simply

~ —~& (a.u»& z~Qp~

where o,p is the AC obtained from the original matrix
element B„,„as in Allen and Feuer's work. The only
problem is to evaluate the mean-square exponent. This
is standard fare, " so only a rudimentary sketch is
given here. We write

1
((a u)')r= P (a e„)(a e, , ) 2'Ã cv 'f'co

Q il

~( I(.+.')(.+ ")I )

which with the aid of Eqs. (5) reduces to

2
((a u)')r ——p(a e„)'I ——

I

—(ii, +-',). (12)
(2M%i co,

Assuming longitudinal mode transfer only, a nondis-
persive medium with &o= cq, using Eq. (4) and straight-
forward techniques, gives

Aa' 3 ko
((a u)2), = ~ coth Cko cos20 sin8do

3f 4o)D' p KT

ItG 1 1 "~ h(a
&e coth Id~ . (13)

2m Acoa A@2 o XTi

XV V.(r)P'(r), (10)

which resembles the original matrix element Eq. (2). If
the energy transfer is only to longitudinal modes of the
lattice, a result which is required through conservation
of 0 vector, and if it is realized that a=

I
a

I z„ then the
result

a ( @ 1/2

~ (riIuIe —1)=I
«2iV1Vie
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FIG. 1.Pseudo —Debye-Wailer correction factor for existing single-
quantum accommodation coefFicient theories.

In Eq. (13) the substitution E/L'=~n'/67r'c' has been
made. This result closely resembles the structural form
of the exponential lattice factor appearing in neutron
and Mossbauer theory. The result becomes more trans-
parent if we work with Eq. (12), however. It may
readily be shown that Eq. (12) when done as an
integral becomes

ku 1 (T Di xdg
((a «)')r= -+I — (14)

iVkOD 4 (OD 0 e*—1

in which x= Ace/kT. Equation (14) may be evaluated

by performing a numerical integration. The exact ex-

pressions for the mean-square displacement given by
Eq. (13) or (14) can be used in Eq. (11) to give the
improved accommodation coefficient.

III. RESULTS AND DISCUSSION

The results of Eq. (14) are used to obtain numerical

results for a typical system of experimental interest,
helium on tungsten. In general, the interaction poten-
tial used in theories in which o.o is derived is either taken
to be a Morse potential or exponential repulsive poten-
tial. The value of the parameter a in Eq. (8) is closely
related to the range parameter in the Morse potential.
Since the repulsive portion of the Morse potential
varies as e ' '", we take aq& g& 2uq in Eq. (8) and thus
in subsequent equations. For the He-W system, a~

=13 A ' is acceptable' For O~n we take 300'K.
Consequently,

((a «)') =0.5[-,'+1(T/e )&,

in which I(T/Oz&) is the integral of Eq. (14) which is
evaluated numerically. The dimensionless quantity n„/no
=e ('")'~ is drawn as a function of temperature in

Fig. 1 with parametric values of a. It is seen that an

extremely nontrivial correction results when the pseudo-
Debye-Wailer factor is included as it must be. It is not
likely quantitative significance can be given to the
present result for temperatures much above the Debye
temperature for at these temperatures the validity of
the single-phon on approximation and normal-mode

analysis becomes dubious.

The present result can be compared with previous
quantum-mechanical AC's, and the unpublished experi-
mental data from Thomas's group which appeared in
Goodman's work. "In Gilbey's paper' are drawn graphs
of Devonshire's AC as a function of temperature. These
curves are drawn to approach the hard-sphere asymp-
totes n=m/M T.hree curves are drawn for various well

depths in the Morse potential. In particular, we are
interested in the curve for D=0.10 kcal/mole, where D
is the Morse potential well depth. In reality, D 0.10
kcal/mole for He-W. Although the Gilbey-Devonshire
(GD) result is obtained for a hypothetical system in
which the gas-atom —to—surface-atom mass ratio is
4/100, this fact principally affects the absolute magni-
tude of the asymptotic AC, and not the shape of the
curve. Since the absolute values of the GD expressions
are somewhat arbitrary, we adjust the scale on the
Gilbey graph so that at T=300'K, the value of o.„
= e &'"~' no agrees with the experimental data of
Thomas and co-workers. Using the Gilbey D=0.10
k.cal/mole curve for values of no as a function of tem-
perature, we have drawn curves of 0,0, n„, and n,„pt, in
Fig. 2 for He-W with a=2ai.

It is clear from Fig. 2 that the modified AC of Eq.
(11) does not indicate trends that contradict existing
experimental data. Since the values of eo have been
obtained only in an approximate manner, too much
quantitative significance should not be attached to the
values of o,„, however, the approximations used to
obtain eo have affected the position of the asymptotic
Qo and not the shape of the no curve in the temperature
range under 300'K.

A very important correction to the single-phonon
AC has been provided in the new AC. As can be seen
in Fig. 2, the original AC rises rapidly from a low value
at low temperature and approaches the so-called hard-
sphere asymptote from above as the temperature is
increased. This is in disagreement with experiment for
the case of light gases such as helium or neon. By
correctly including the exponential Debye-Wailer —type
factor, the theoretical AC takes on the correct tem-
perature dependence and approaches the high-tempera-
ture limit from the same direction as the experimental
data. We should also remark that the constant AC
hard-sphere asymptote has yet to be observed experi-
mentally. Instead, a monotonically increasing AC with
temperature is observed in accord with the present
theoretical predictions.

In summary, it has been shown that existing single-
phonon accommodation coefficient theories can easily
be modified so that they are consistent both with ex-
perimental data and similar theories of other lattice
perturbations, neutrons and recoiling Mossbauer nuclei.
No attempt is made to justify the quantum-mechanical

'~ F. O. Goodman and H. Y. VVachman, MIT Fluid Dynamics
Research Laboratory Report No. 66-1, 1966 (unpublished); also
U. S. Air Force OfIice of Scientific Research Report No. AFOSR
66-0295 (unpublished).
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theories, but if the quantum-mechanical theories are in
essence correct, they must be modi6ed as has been done
herein. Most likely, it is more beneficial to approach
the lattice from a field-theoretic point of view than from
a particle point of view.

At this point we might also inquire into the real
meaning and region of validity of the present model.
In the original quantum-mechanical theories, the es-
sence of the calculation is to obtain a matrix element
of a temperature-independent operator given by Eq.
(7) between temperature-dependent states. Thus 91lp
= (1z](T)

~
8

~
so(T)). The temperature-independent op-

erator of Eq. (7) gives rise to real single-phonon
processes only. The temperature dependences for this
sort of process are contained in the state vectors only.

If, on the other hand, we retain the higher order terms,
which induce virtual as well as real processes, a new
temperature dependence comes into existence. For ex-

ample, the previously mentioned operator a~a, ta, .t
=a,t (1+X~ )=a,t (1+(e, (T))), by virtue of the usual
Boson commutators and Eq. (4). Thus the true single-
phonon operator is seen to have a temperature depend-
ence also. Consequently, the corrected single-phonon ma-
trix elements are written as OR„= (er(T)

~
8(T)

~
eo(T)).

The pseudo —Debye-Wailer factor is the manifestation
of this new temperature dependence. It must be re-
membered that the precise functional form of the new
temperature correction, the exponential, is accurate
only as long as the linearization and approximation
scheme leading to Eq. (8) is valid. At temperatures
above the Debye temperature, these approximations
may not provide the most accurate description. That is,
the lattice operator will, of course, remain temperature-
dependent but most likely will have a functional form
different from that of an exponential.

The corrections to the original no are much more
substantial than would be suspected. We imagine that
if the existing quantum-mechanical theories are ex-
tended to the case in which impurities are on the
surface in a manner similar to that of Allen and Feuer, "
then the pseudo —Debye-Wailer corrections could be
suitably adapted. It seems that in the case of a light
impurity, such as hydrogen or even oxygen, the cor-
rection would be quite signi6. cant. If the results of Eq.

"R.T. Allen and P. Feuer, J. Chem. Phys. 43, 4500 (1965).
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FIG. 2. Curves of accommodation coefBcients as a function of
temperature for He-W. The points denoted by x are experi-
mentally measured values. The curve labeled ao is from the paper
of Gilbey. The solid curve is the theoretical curve obtained in the
present work.

(14) could be directly transposed to the case of an
impurity mode, then because the impurity mass is such
a small fraction of the substrate atom mass, the ex-
pectation value of Eq. (14) would be greater than it is
for the pure surface. Of course, the Debye temperature
would have to be changed to the effective temperature
of the localized mode. In any event, the exponential
correction factor would be likely to play an even more
significant role in the light, -impurity collision process.

A 6nal word of caution: It has been shown that.
reasonable quantitative agreement between quantum-
mechanical AC's and experimental data can be ob-
tained. It must be realized, however, that basically the
existing quantum-mechanical theories are low-tempera-
ture theories and thus should not be extended to
temperatures much in excess of the Debye temperature
of the lattice. Furthermore, the correction factor derived
here is most valid in the low-temperature regime, as it
may produce unphysical divergences when overex-
tended. A rigorous cutoff procedure could be built into
the theory, but this would have inQuence only in the
temperature region in which the existing quantum-
mechanical theories are invalid.
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