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The energy bands for the 3d and 4s states of copper and the 2p states of aluminum are calculated by the
augmented-plane-wave method. The crystal charge density is calculated for copper and aluminum and is
used to find the scattering factors. For copper these factors are in better agreement with experiment than
are those determined from Hartree-Fock atomic calculations. This improvement is shown to be due to the
fact that the copper valence-electron charge density is more spread out in the solid than in the atom. The
calculated scattering factors are sensitive to the starting crystal potential because of the difficulty of handling
exchange in the solid. For aluminum, no improvement over Hartree-Fock scattering factors is realized by

performing an energy-band calculation.

I. INTRODUCTION

HE intensity of elastically scattered x rays is pro-

portional to the square of the “scattering factor,”

which is defined as the Fourier transform of the elec-
tronic charge density

F(K)= p(r)e® *dr.

cell

1)

Calculations of x-ray scattering factors in solids have
always been based on the assumption that the total
charge density can be approximated as a sum of atomic
charge distributions on each lattice site. The total
scattering factor F is then a sum of atomic scattering
factors f, multiplied by appropriate phase factors:

F%Zn fneix.rn, (2)

where K is a reciprocal lattice vector and r, the position
of the nth atom in the unit cell. This approximation was
sufficiently accurate to give good agreement with ex-
periment in most cases.

Recently, however, a good deal of evidence has ac-
cumulated to indicate that scattering factors calculated
in this approximation, using the most accurate Hartree-
Fock atomic scattering factors,! are significantly larger
than the experimental values in a number of cases,
particularly the transition metals.2~7 The approximation
of superposing atomic scattering factors, which is exact
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for nonoverlapping atomic charge densities, may be
quite inaccurate when the atomic charge densities
overlap and distort appreciably, as indeed they must in
a solid.

The most likely explanation for the discrepancies be-
tween theory and experiment in the cases where they
are found would seem to be that the outer electronic
charge distribution around an atomic site is somewhat
more spread out in the solid than in the free atom. The
results of Wood® and Stern® on the band structure of
iron indicate such an effect.

The purpose of the present work is to examine the
solid-state effects which seem to invalidate the simple
approximation for calculating scattering factors. In
order to take specific account of the nature of a solid, a
scattering factor calculation was performed using solid-
state wave functions obtained from an augmented-
plane-wave calculation of the energy bands.

II. THE APW METHOD

Wave functions are readily available within the
context of the augmented-plane-wave (APW) method,
making it especially appropriate for calculating scat-
tering factors. The method was originally proposed by
Slater!® and programmed for the IBM-704 computer by
Wood and others.

The basic idea behind the method is that the one-
electron wave function in a crystal resembles an atomic
function near the atomic sites, but resembles a plane
wave in the region far from any nucleus. Therefore, non-
overlapping spheres are chosen, centered on each nucleus
in the crystal. The wave function within each sphere is
expanded in a series of radial functions times spherical
harmonics of angle; in the region outside the spheres the
expansion is in terms of plane waves. The function is
required to be continuous across the surfaces of the
spheres. The potential used is spherically symmetric
within each sphere and equal to a constant in the region
outside the spheres.
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The hope in proceeding in this fashion is that since the
functions of the expansion are chosen so as to display as
closely as possible the actual physical behavior, the
convergence of the expansion will be fairly rapid. This is
important, since otherwise larger secular equations
must be solved, making the calculation rather im-
practical even on a very large computer.

The true wave function is expanded in a series of
these “augmented plane waves’:

. bl L . ]l(kz-Rn)
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inside the nth sphere in the unit cell; here R, is the
radius of the nth sphere, r, the position of the #th atom
in the unit cell. OQutside the spheres

ll/i:eiki-r.

These expressions are derived in Slater’s original paper™;
the functions ¥, are not orthogonal nor normalized.
They do satisfy Bloch’s theorem. The matrix elements
of the Hamiltonian with respect to these functions are
also derived by Slater:
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where @ is the volume of the unit cell, P, the l-order
Legendre polynomial, and #,;’ the first derivative of #,;
with respect to 7. Where the wave vector k is located at a
symmetry point in the Brillouin zone, group theory can
be used to reduce the size of the secular equation.

In order to calculate scattering factors, it is necessary
to find the charge density in the crystal. It is a simple
matter to calculate the spherically averaged charge
density for a crystal within the framework of the APW
method. After the eigenvalues have been obtained, the
eigenvectors for the problem can be determined by
diagonalizing the coefficient matrix. Thus, the wave
function is

\I,"_"Z ey,

where the coefficients a; are now known and the ¢; are
the APW basis functions. From the APW solutions, the
following expressions for the charge within the nth
sphere and the charge outside the spheres in the plane-
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wave region may be derived in a straightforward
manner!:
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where P,2=4rru,? and the functions #,; have been
determined by numerical integration of Schrodinger’s
equation for the APW energy eigenvalue. To normalize
the radial charge density to one in a unit cell, it is
necessary only to divide by the total charge, which is
just the sum of Qpw and all the Q,. Thus, the radial
charge density in a given sphere corresponding to a
given I value, and for the given irreducible representa-
tion at given k, is
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Also
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where

Rn
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These expressions involve various terms and summa-
tions which also occur in the expression for the APW
matrix elements. Hence the charge density is readily
calculated without extensive additional computation.

The above expressions give charge densities for a
given eigenstate. What is needed, however, is the total
charge density in the crystal, taking account of all
occupied eigenstates. This can be found by calculating
eigenvalues and charge densities on a regular mesh in
the Brillouin zone and then averaging over all points in
the zone which correspond to occupied eigenstates. For

1D. J. Howarth, Phys. Rev. 99, 469 (1955).
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a cubic crystal, the obvious choice is to calculate at
points on a regular cubic mesh.

The formula for the scattering factor takes a very
simple form in the case of a “muffin-tin” charge density,
where we have a spherically symmetric charge density
within each APW sphere and a constant density in the
region outside the spheres. The scattering factor is
defined by Eq. (1) as the Fourier transform of the
charge density. The “muffin-tin” charge density is the
sum of two charge densities with well-known Fourier
transforms, the first a constant throughout the unit cell,
the other radial in each APW sphere and zero outside
the spheres.

The Fourier transform of a constant is a delta
function; the transform of the radial densities is just a
sum of phase factors times integrals which are analogous
to atomic scattering factor integrals. Combining these
two results, we obtain this formula for the scattering
factors due to a “muffin-tin” charge density:

Qow

Rn
O / [w(lr—rm
pWw n 0
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Here V,y is the volume outside the APW spheres, P,
is the total radial charge density in the nth sphere. This
expression has been programmed for the IBM-7094
computer at the Massachusetts Institute of Technology
and uses the charge density results from previous
programs to calculate scattering factors.

III. RESULTS

Actual calculations were made on two substances,
copper and aluminum. The results of Batterman,
Chipman, and DeMarco? indicate a discrepancy be-
tween experiment and Hartree-Fock theory for copper,
iron, and aluminum ; Cooper’s results® indicate a similar
discrepancy for chromium. Copper, iron, and chromium
are similar metals, distinguished by the number of 3d
electrons they contain; aluminum is an element of much
lower atomic number. Therefore, it seems reasonable to
choose a metal from the 3d transition group for a
calculation, along with aluminum, which presents a
somewhat different problem from the others, as is
discussed later on.

Of the transition group elements, copper seems the
best choice for three reasons. First of all, its 3d'%s!
electronic configuration gives a spherically symmetric
charge density, so that the use of only the spherically
averaged charge density is more acceptable than for an
open-shell atom like iron, where the actual charge
density is not spherically symmetric.

Second, the band theory has had its most striking
success with copper. The band calculations of Segall'? by

12 B. Segall, Phys. Rev. 125, 109 (1962).
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the Green’s-function method, and of Burdick® by the
APW method, are in excellent agreement. Furthermore,
the theoretical bands agree very well with experiment,
particularly with regard to the prediction of the Fermi
surface.

Finally, one problem with band calculations is that
they are not usually carried to self-consistency, because
of the enormous computational effort required. Because
of the good agreement of the copper bands with experi-
ment, it can be hoped that the calculation is reasonably
self-consistent, even without carrying out several
iterations.

The copper bands were recalculated, using a different
potential from that of Segall and Burdick. Details of this
calculation are presented in Appendix I. The results are
almost identical with Burdick’s, but the eigenvalues are
much better converged, an important point when accu-
rate wave functions are needed. The charge density
corresponding to each eigenstate was calculated (calcu-
lations were made at the equivalent of 256 points on a
cubic mesh throughout the Brillouin zone), and the
total charge density calculated by averaging over the
occupied states. The scattering factors were calculated
or the first eleven Bragg reflections. The values thus
computed appear to be no better than the Hartree-Fock
values.

Table I compares the valence-electron scattering

TaBLE I. Scattering factors for copper 3¢ and 4s electrons.

Hartree-  p'8

Vector  HFS Fock band Chodorow Experiment
1 6.43 6.20 6.01 5.67 5.65:£0.10
200 5.68 5.43 5.34 4.97 4.474-0.34
220 3.70 3.44 3.49 3.06 3.05+0.30
311 2.79 2.54 2.63 2.22
222 2.56 2.31 240 2.01 2.12+0.10
400 1.81 1.60 1.71 1.38
331 1.42 1.23 1.34 1.07
420 1.31 1.13 1.24 0.99
422 0.95 0.79 0.90 0.71 0.35+0.38
511 0.74 0.61 0.70 0.56
333 0.74 0.61 0.70 0.56 0.46+0.10

factors obtained in various ways. The third column
contains the values computed from the analytic
Hartree-Fock atomic wave functions of Synek, the
fourth the band result using the Slater p'/? exchange po-
tential.’® The p'/* band scattering factors are slightly
lower than the Hartree-Fock for the (111) and (200)
reflections, but are generally about 0.1 electron higher
for the remaining reflections. The difference between the
two is small. The last column contains the experimental
values for those reflections measured, along with the
probable error limits. The numbers actually listed are
the experimental values less the Hartree-Fock core
scattering factors, since calculations were done only on

18 G. A. Burdick, Phys. Rev. 129, 138 (1963).
4 M. Synek, Phys. Rev. 131, 1572 (1963).
16 . C. Slater, Phys. Rev. 81, 385 (1951).
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3d and 4s bands. The core part can be eliminated, since
it should not be seriously affected by the presence of the
other atoms in the solid. It is assumed that the Hartree-
Fock value is the best for the core, since the core orbitals
should remain very much atom-like in the solid.

The experimental values are those of Batterman,
Chipman, and DeMarco? for the (200), (220), and (422)
reflections. The (111), (222), and (333) reflections were
measured more precisely by Jennings, Chipman, and
DeMarco.® It is quite evident that the p'* band scat-
tering factors are no better than the Hartree-Fock
atomic values—slightly better for the first two reflec-
tions, but slightly worse for the other four experi-
mentally measured reflections. This result is disap-
pointing and somewhat surprising, since it had been
thought that the discrepancy between theory and ex-
periment was due to solid-state effects. In an effort to
explain this result, some further computations were
done.

Because the potential for the copper crystal was
derived from a Hartree-Fock-Slater (HFS) atomic po-
tential, using Slater’s p/* exchange approximation,'® it
is interesting to compare the above results with scat-
tering factors obtained from such an afomic charge
density. The HFS values for core scattering factors are
slightly higher than the HF values, but not significantly
so.

The valence scattering factors are shown in the
second column of Table I. They are considerably larger
than the corresponding HF values, and the p!/® energy
band values would represent a considerable improve-
ment over these numbers.

This leads to an interesting conjecture about the
disappointing resultsfirst obtained. It is well known that
one major problem with energy-band calculations is the
proper treatment of exchange. The p'/® approximation is
really rather crude. However, both the HFS and the
band calculations make use of it. It can be hoped that to
some extent the errors involved in using the approxima-
tion are the same in both cases, so that a more realistic
estimate of the correction due to the solid-state effects
can be realized by comparing the band results with the
HFS atomic calculation. It can be seen in Table I that
if this difference were subtracted from the Hartree-Fock
values, the result would be in considerably better
agreement with experiment.

The preceding argument is an attempt to retain the
good exchange treatment of the Hartree-Fock method,
while still treating the Coulomb potential by the energy-
band approach. Although it explains away the dis-
appointing results, this argument may well be subject to
question. However, it does serve to point up the
problem of the proper treatment of exchange.

Further studies were made of various factors which
might affect the results, but none seemed to do so ap-
preciably. Relativistic effects, inaccuracy of the finite
(256 points) sum over the Brillouin zone, possible errors
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in the eigenvalues, and lack of self-consistency—all
these possibilities were examined and discarded as being
unable to account for the fact that the calculated
scattering factors are still much too large.

It seems necessary to fall back on the idea of diffi-
culties with the treatment of exchange. As previously
stated, the rather crude p'* exchange approximation is
used only because it is so difficult to consider exchange
in any exact manner. This would also restrict the
validity of any iterative scheme to achieve self-con-
sistency in which the p'/® approximation was used. It is
well known that this method overestimates the ex-
change, especially at small and large distances from the
nuclei.’® Since the effect of exchange is to cause the
wave function to contract, this will give scattering
factors which are too large. This could well be the source
of the difficulty. Some better way of handling exchange
in the solid is needed. Even if such a method is not
available, it would be desirable at least to show that it
is in fact the exchange problem which makes it im-
possible to obtain agreement with experiment.

There is a different method available for handling
exchange, at least for copper, in the form of the
Chodorow potential, first used by Chodorow! in calcu-
lating copper bands at several points of high symmetry
in the zone. This is in fact the potential used by
Burdick® in doing the copper bands; it was not used in
this calculation because a better method seemed to be
available for constructing a potential (see Appendix I).
It is a semiempirical potential which gives Hartree-Fock
3d wave functions when used in a simple Hartree atomic
calculation. As such it takes account of exchange in a
semiempirical way, since it is designed to give the right
atomic wave function. Practically all the contribution to
the valence scattering is due to 3d bands, so this is an
appropriate choice.

This potential was therefore used for a calculation of
the copper energy bands. The calculation is not identical
with Burdick’s, mainly because better convergence of
the eigenvalues was demanded, to within 0.0002 Ry.
The bands were calculated at only 32 points in the zone,
since tests on the p'/3 band calculation showed that the
difference in scattering factors is negligible if only 32
instead of 256 points in the zone are used. The eigen-
values are almost identical with Burdick’s, none differing
by as much as 0.01 Ry. Charge density and scattering
factors were calculated as before. The results in this
case are considerably better than the Hartree-Fock
atomic values and are in excellent agreement with
experiment.

The Chodorow-potential scattering factors are tabu-
lated in column five of Table I, where they may be
compared with those calculated by other methods. The
values are everywhere better than the atomic Hartree-

16 . R. Hartree, Phys. Rev. 109, 840 (1958).
17 M. I. Chodorow, Ph.D. thesis, Massachusetts Institute of
Technology, 1939 (unpublished).
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TasLE II. Scattering factors for aluminum.
Hartree-Fock Hartree-Fock
Vector Experiment core total
111 8.6340.14 8.87 8.97
200 8.25+0.14 8.54 8.51
220 7.09:£0.13 7.39 7.34
311 6.42£0.12 6.68 6.67
222 6.1940.13 6.47 6.47
400 5.4840.15 5.72 5.76
331 4.96+0.14 5.25 5.31
420 4.674+0.13 5.1 5.18
422 4.38£0.15 4.61 4.68
511 4.0040.16 428 4.35
333 4.00+0.16 428 4.35

Fock and the other energy band values. Of the six
experimental values, the Chodorow values lie within
experimental error of four and barely miss the other
two. For the higher order reflections the difference be-
tween Chodorow and Hartree-Fock values is small, as
would be expected since the factors for these reflections
are affected only by the charge density close to the
nuclei where the wave functions are very much atom-like.

The other substance for which calculations have been
made is aluminum. The problem in aluminum is a
special one as can be seen in Table II. Not only are the
Hartree-Fock scattering factors!® larger than the experi-
mental factors, but even the Hartree-Fock values for the
neon core alone are larger than the fofal experimental
scattering factor. No band calculation for the 3s and 3p
valence electrons alone could account for the sizable
discrepancy, since the valence electrons contribute
almost nothing (<0.1 electron) to the scattering fac-
tors. The only possibility seems to be a sizable redis-
tribution of the atomic core electrons on passing into the
solid. This is not likely, but perhaps more likely than in
elements of higher atomic number. Therefore, the core
bands might be calculated to find such a redistribution.

Therefore, the aluminum 2p bands were calculated,
the 2p atomic state being the highest in energy of the
core states. The bands are extremely narrow, since they
lie about 5 Ry below the Fermi energy. The charge
density and scattering factors were calculated, but there
was no appreciable difference between these values and
the atomic Hartree-Fock or HFS values, a result which
is not surprising, of course.

IV. DISCUSSION

From the results presented here, it is clear that it is
possible to get reasonable agreement with the experi-
mental scattering factors in copper by calculating them
on the basis of an energy-band calculation for the outer
electrons. There are several difficulties with this treat-
ment, however, and this discussion attempts to show
that the difficulties do not negate the value of the
results.

First of all, there is every reason for confidence in the

18 A, J. Freeman, Acta Cryst. 12, 261 (1959).
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experimental values of the scattering factors. The meas-
urements of Batterman, Chipman, and DeMarco,? per-
formed on powders, have been confirmed in a number of
ways. Jennings, Chipman, and DeMarco® measured the
scattering from single crystals of copper and confirmed
those results. Bensch, Witte, and Wolfel® confirm the
aluminum results, Komura ef al.* confirm the iron re-
sults, and Cooper® reports a similar disagreement with
Hartree-Fock values in the case of chromium. And
finally, there is the evidence of Chipman and Jennings,?
on rare gases, a case where free-atom results should be
valid. Their results agree with Hartree-Fock calcula-
tions ; moreover, the small-angle scattering factors ex-
trapolate at zero angle to the atomic number, as they
should. Thus there is good reason to believe that a real
disagreement exists, well outside the experimental un-
certainty, between the experimental x-ray scattering
factors in copper, iron, aluminum, and chromium, and
the best available atomic Hartree-Fock calculations of
these factors.

Secondly, there is good reason to trust the energy-
band eigenvalues, though there may be some question
with regard to the wave functions. Calculations of
Burdick®® on copper, Wood" on iron, and numerous
others, have demonstrated the validity of the APW
method. Slater has discussed the method in detail.® In
the present case, a standardized way of choosing the
crystal potential, based on the p'/? method for exchange,
reproduces Burdick’s copper energy bands very closely.
The use of the Chodorow potential, with more stringent
convergence requirements than Burdick demanded, also
reproduces his bands well. The copper and aluminum
eigenvalues have been computed as accurately as pos-
sible, with convergence requirements far more stringent
than usual, in order to minimize any errors in the wave
function due to lack of convergence. The eigenvalues are
therefore converged to within 0.0002 Ry.

The present results are somewhat unsatisfactory, even
though good agreement with experiment has been ob-
tained in the case of copper scattering, using the energy
bands calculated from the Chodorow potential. The
difficulty is the fact that the wave functions and hence
the scattering appear to be rather sensitive to the po-
tential used, even though the bands themselves are not.
For aluminum the discrepancy between theory and
experiment cannot be accounted for by band theory.

The copper results are summarized in Table I. It is
apparent that the band calculation using the Chodorow
potential leads to much better agreement with experi-
ment than the calculation using the p'/3-type potential.
This sensitivity of the wave function to the assumed
potential is rather discouraging at first sight. It is pre-
cisely the fact that the energy-band eigenvalues are not
very sensitive to the potential that makes a band calcu-

1 7. H. Wood, Phys. Rev. 126, 517 (1962).
2 J. C. Slater, M.I.T. Solid-State and Molecular Theory Group
Quarterly Progress Report No. 51, 1964, p. 14 (unpublished).
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lation a reliable and useful procedure. This sensitivity
of the wave function is, of course, an example of the
general feature of variational calculations that a first-
order error in the wave function gives rise to only a
second-order error in the energy so that good eigen-
values may be obtained with somewhat poorer wave
functions. It might be concluded that wave functions of
the required accuracy cannot be obtained reliably from
a band calculation, that the scattering factors are sub-
ject to an error larger than the discrepancy to be
explained, and that therefore the procedure is essentially
meaningless.

However, such a conclusion is rather too pessimistic.
While the sensitivity of the wave function to the po-
tential is somewhat dismaying, it does not negate the
result that agreement between energy-band scattering
factors and experiment can be found. The difficulty
with the band calculation appears to be the question of
choosing an exchange potential, as discussed previously.
Careful consideration of the results leads to the en-
couraging conclusion that either potential leads to good
agreement with experiment, if the exchange effect can
be cancelled out and the effect of going from atom to
solid isolated.

It has already been remarked that the band results
using the p'/ potential show little improvement over the
Hartree-Fock values. This point is further demon-
strated in Fig. 1, where the radial charge densities for
the valence electrons are compared. There is little
difference between the two except at large distances,
where the effect on the scattering factors is small. It is
the contention of this discussion that this is not the
comparison which should be made, that it is the least
meaningful when exchange effects are uncertain.

In an attempt to cancel out the exchange effects, the
p!/3-type band calculation should be compared, not with
Hartree-Fock results, but with an atomic calculation
also based on the p'® exchange approximation. The
errors in using this approximation should be similar in
both cases, making it likely that any differences will be
due to the changed environment of the solid over the

0 vs 1o 15 2.0 R r
fa.u)

I16. 1. Copper radial charge density (3¢ and 4s) (a.u.=atomic
units). “Dotted curve is Hartree-Fock, solid curve p*/ band.”
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F16. 2. Copper 3d and 4s radial charge density (o' comparison).
“Dotted curve is HFS atomic, solid curve is p'/3 band.”

atom, which is of course the effect of interest. It is clear
from Table I that the difference is sizable, and in the
correct direction, though because of the exchange
problem the actual values of the calculated scattering
factors are still too high. In Fig. 2 it is shown that the
charge density in the solid is more spread out than in
the atom.

The comparison of the band scattering factors using
the Chodorow potential with the Hartree-Fock atomic
results is again appropriate. The Chodorow potential
reproduces Hartree-Fock 3d wave functions, so it is a
sort of Hartree-Fock potential. The comparison shown
in Table I is again favorable, the absolute values also
being good. Reference to Fig. 3 shows the considerably
more spread-out charge density in the solid again in this
case. Clearly then the difference in scattering factors is
due to the spreading out of the charge upon entering the
solid, with more charge concentrated at large distances
from the nuclei where it makes a considerably smaller
contribution to the scattering.

This spreading out of the charge density is the ex-
pected result. The overlap of atomic potentials on
neighboring lattice sites will certainly tend to lower the
potential in the region near the sphere radius. This
lowered potential will cause more charge to be found in
this region, thus giving rise to a more spread-out charge
density. Indeed, previous results of Wood?® and Stern®
point to just such a spreading of the wave function for
solid iron.

In line with this argument, it is not surprising that it
is the transition (and noble) metals which reveal a
disagreement with the Hartree-Fock values, nor is it
surprising that the attempt to explain the similar
problem in aluminum fails completely : The real problem
with aluminum is that one would not expect a dis-
crepancy at all. The charge density of the outer valence
electrons, such as the copper 4s or the aluminum 3s and
3p, is concentrated at large distances from the nuclei. It
will be considerably modified in the solid, but at the
distances in question its effect on the scattering factor is
quite small, and the effect of the change is negligible.
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F16. 3. Copper 3d and 4s radial charge density. Dotted curve
is Hartree-Fock, solid curve is band (Chodorow potential).

On the other hand, core electrons, like the aluminum
2p, lie several rydbergs below the Fermi energy, and
tend to be concentrated rather close to the nuclei. Thus,
they see mainly the atomic potential, their wave func-
tions not being appreciable in the outer region where the
potential is modified in the solid. As a consequence their
charge density and their contribution to the scattering
are little changed on entering the solid.

The situation required for an appreciable difference in
the scattering factors between free atom and solid is
that of an orbital which extends out far enough from the
nucleus to encounter the modified potential in the solid,
but which has sufficient concentration near the nucleus
so that it will affect the scattering factor. A d orbital fits
this description very well, while other types do not. A
d orbital is appreciable close to the nucleus, but tails off
slowly and extends out some distance. Thus, the circum-
stances necessary to produce a discrepancy between free
atom and solid scattering factors occur only in the
transition series.

Thus the present results on copper are quite reason-
able. The d electrons are expected to spread out in the
solid, and the APW energy-band calculation, in taking
account of the differences in the solid, naturally gives
much better agreement with experiment than any
atomic calculation. The aluminum 2p charge density
does not spread out; this, too, is the reasonable result
for core electrons, and the explanation of the aluminum
scattering must lie elsewhere.

The necessity of postulating some as yet unknown
mechanism to account for the aluminum discrepancy of
course weakens the conclusions of this paper. Any
mechanism operative in aluminum might very well also
affect the copper results, thereby worsening the ap-
parent agreement obtained in this paper. The spreading
out of the 3d-electron charge density still seems to be a
real effect, but the good agreement with experiment
thereby obtained needs to be accepted with caution.
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APPENDIX I: COPPER ENERGY BANDS

Energy-band calculations on copper have been done
previously by Burdick,® using the APW method, and
Segall,®* using the Green’s-function method. Their re-
sults agree both with each other and with experiment.
However, Burdick’s eigenvalues are converged only to
within about 0.003 Ry; it seemed best to have better
convergence than that, in order to have an accurate
wave function. Then, too, there is a more standardized
method of choosing the potential®® than Burdick used.

Copper is face-centered cubic with a lattice constant
of 3.6147 A or 6.83087 a.u.2! The primitive unit cell
contains only one atom. The APW spheres are chosen to
be touching with radius 2.4151 a.u. An atomic potential
was calculated by the Hartree-Fock-Slater method,
which uses the Slater p'/? exchange approximation, by
means of a computer program due to Herman and
Skillman.?

The crystal potential is derived by superposing con-
tributions from adjacent sites, using the Léwdin alpha-
expansion technique® to express the spherically aver-
aged contribution of the charge density on neighboring
atoms to the charge density on the atom in question.
Exchange was accounted for using the p'/® approxima-
tion. For copper the first six sets of nearest-neighbor
atoms were taken into account. The average potential
outside the spheres was calculated by solving the Ewald
problem for the constant charge density between
spheres, using the results of Slater and DeCicco.?* This
result was corrected for exchange, again using the p'/?
approximation. A computer program due to DeCicco
was used. The discontinuity in the potential at the
sphere radius is 0.0897 Ry. This potential is quite
different from Burdick’s.

Energy eigenvalues for the 3d and 4s bands of copper

21 G. Frohnmeyer and R. Glocker, Acta Cryst. 6, 19 (1953).

2 F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall Publishing Company, Englewood Cliffs, New
Jersey, 1963).

8 P. 0. Léwdin, Advan. Phys. 5, 95 (1956).

#J. C. Slater and P. D. DeCicco, M.I.T. Solid-State and
Molecular Theory Group Quarterly Progress Report No. 50, 1963,
p- 46 (unpublished).



750 FRANK J.

08

06

(=]

. 1 1 1 L
a X H w Q L A r z K

F16. 4. Energy bands in copper.

were calculated at 20 symmetry points; a graph of the
bands is shown in Fig. 4. The bands are practically
identical with those of Burdick, differing at most by
0.02 Ry. The relative positions of the various points are
quite similar; there seems to be little effect except that
the new bands are slightly narrower. Agreement with
Segall’s bands is also very good, supporting Segall’s
contention'? that the band structure is not as sensitive
to the potential as was at one time believed.

The question of convergence is twofold. There is the
problem of including enough basis functions (“aug-
mented plane waves”) in the expansion of the wave
function. And there is the additional problem that the
expressions for the APW wave functions and matrix
elements involve a summation over all values of angular
momentum, /=0 to l=o. So there is the second
problem of when to terminate this sum. Tests at I'and 2
points indicated that inclusion of all basis functions
whose plane wave portions have |k|2<54 (correspond-
ing to about 60 functions), and inclusion of all terms in
the I summation up to /=8, gave eigenvalues converged
within 0.0002 Ry. The Fermi energy was determined to
be around 0.55 Ry on the APW scale, and all states of
lower energy are occupied.

For the occupied eigenstates, the spherically averaged
charge densities associated with each ! value and with
the plane waves were computed by the methods
described. The total crystal charge density was calcu-
lated as a weighted average of the individual eigenstate
charge densities.

APPENDIX II: THE CHODOROW POTENTIAL

The potential used in the second calculation of the
copper energy bands was derived by Chodorow,'” and
was used previously by him and by Burdick!® and
Segall? in the calculation of copper energy bands. This
is a semiempirical potential derived for the purpose of
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accounting for exchange in a simple way. It is defined as
that potential which when used in a single Hartree
equation gives the Hartree-Fock 3d wave functions;
that is, it gives the right result including exchange
correlation without the need of actually constructing an
appropriate antisymmetric wave function. The potential
is not a true one-electron potential but only a semi-
empirical one adjusted to make the answer turn out
correctly. It will not give very accurate 4s eigenvalues,
but these contribute very little to the copper scattering
so this is unimportant.

Chodorow used the Hartree-Fock 3d wave functions
and eigenvalue for the free Cu*ion as given by Hartree?
to calculate the potential which reproduces the 3d wave
function, using the formula

V()=VY/N+E.

To this potential he added a contribution due to the
4s function in order to obtain a potential appropriate for
neutral copper. The 4s function he used was that
calculated by Krutter? in his early energy-band
calculation.

This potential, which is essentially an atomic po-
tential, is used in the present band calculation as the
potential within each APW sphere. The value of this
potential at the sphere radius is used as the constant
potential between spheres.

APPENDIX III: ALUMINUM ENERGY BANDS

Aluminum is face-centered cubic with lattice constant
4.0318 A or 7.6191 a.u.?” The primitive unit cell con-
tains one atom. The APW spheres are chosen to be
touching, with radius 2.69375 a.u. The potential is
chosen in the same way as that of copper, by super-
position of Hartree-Fock-Slater atomic charge densities
on each lattice site, the summation being taken to
include the first six sets of nearest neighbors. The
average potential outside the spheres was calculated by
solving the Ewald problem.* The discontinuity in the
potential at the sphere radius is 0.0941 Ry.

Energy eigenvalues for the aluminum 2p band were
calculated at 20 symmetry points. The band is ex-
tremely narrow, over-all width only 0.001 Ry. Eigen-
values are converged to within 0.0001 Ry, using basis
functions with plane-wave parts having |k|2<40 and
terms in the / summation up to /=8. The 2p band lies
well below the Fermi energy, so all states are occupied.

The spherically averaged charge densities associated
with each ! value and with the plane waves were
computed as for copper. The total crystal charge
density was taken as the weighted average of the indi-
vidual eigenstate charge densities.

25 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 157,
490 (1936).

26 H. Krutter, Phys. Rev. 48, 665 (1935).
(1297513). F. Figgins, G. O. Jones, and D. P. Riley, Phil. Mag. 1, 747



