
which are the eigenvalues of the operators I'&'), I.',
5„. . Further the natural geminals, which are anti-
symmetric by de6nition, were seen in the functions
analyzed here to have a general functional form that
for the more important terms, those with eigenvalues
which are relatively large, is not too sensitive to the
degree of goodness of the wave function O'. For the
Weiss functions the natural orbital representation of the
natural geminals was seen to have the same general
structure as for the functions over an orthogonal basis,
as shown in Eqs. (45) and (46).

In discussing the natural geminal expansion we have
left unanswered the question concerning the antisym-
metric properties of the truncated expansion. This
question is important however as the economy of form
pointed out earlier for the Keiss function indicates. In
all cases where E= 2p the sign of the natural expansion
coeKcients are uniquely determined by the original

wave function sin. ce as shown the transformations. di-
agonahztng I'(1, ,P 1' P') and I"(P+1 . E.
(p+1)' X') can be chosen to have the same phase.

The eigenvalue degeneracy problem was shown to be
explainable simply in terms of the two-electron spin
functions. The dependence of the degeneracy pattern
on functional form of 0"was explained in the same terms.

Thc results of our work have elucidated thc stiucturc
of the 2-matrix in great detail. It is hoped that the result
will bring the eventual solution of the E-representa-
bility of the 2-matrix a step closer. In the meantime
we hope to find through further research that the
natural geminals and the natural geminal expansion
will give insight into the two-electron interactions
within physical systems and provide a useful way of
capitalizing on the chemist's concept of the two-electron
chemical bond in describing molecular structure and
chemical reactivity.
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Variational Lower Bounds on Electron Hydrogen g-Wave
Phase Shifts*f

L ARoNsoN, YUKAP HAHN, $ PAUL M. HENRY, CHEMIA J. KLEINMAN, ) ANn LARRY SPRUCH

I"hysics DepartmerIt, ¹mFork VeiversiIy, 8'ashilgton Splurge, Rem Fork, New Fork
(Received 15 July 1966)

The variational-bound (or minimum-principle) formulation for single-channel scattering was applied to the
calculation of rigorous lower bounds on the s-wave phase shifts for the scattering of electrons by hydrogen
atoms (e H) for energies below the excitation threshold. This method was previously applied to positron-
hydrogen (f,+H) elastic scattering. Because of the exchange effect in the e H case, a projection operator is
employed which projects out of the wave function those states in which either or both of the electrons are in
the ground state. The method requires the exact solution of the static equation, and of the corresponding
static Green's function G~, which is expressed in terms of the solution of an integral equation. Trial functions
are chosen which are spatially symmetrized (or antisymmetrized) and correspond to states of the hydrogen
atom of given angular momentum quantum number l; the associated radial functions contain nonlinear
variational parameters. The e H calculations are found to give much more accurate results for a given
number of parameters than the e+H calculations.

1. INTRODUCTION

A NUMBER of methods have been developed re-
cently for the study of the scattering of one com-

pound system by another. ' These approaches are
practical for relatively simple systems. From a strictly

*The work reported on in this article was sponsored by the
U. S. Oflice of Naval Research, the Advanced Research Projects
Agency under Contract Nonr-285(49), NRO12-109, and NASA
under Contract No. NSG 699.

t Submitted by Paul M. Henry in partial fulnlment of the re-
quirements for the degree of Doctor of Philosophy at New York
University.

g Present address: The University of Connecticut, Storrs,
Connecticut.

)Present address: Long Island University, Brooklyn, New
York.' (a} See, for example, P. G. Burke and K. Smith, Rev. Mod. ,
Phys. 34, 458 (1962); (b) also N. F. Mott and H. S. W. Massey,
The Theory ofAtomic Collisiols (Clarendon Press, Oxford, England,
1965), 3rd ed. , for a review of recent developments.

logical standpoint, the most satisfying approach, per-
haps, is the variational-bound (VB) formulation. ' 4

(In earlier papers, it was called a minimum-principle
formulation. ) The VB formulation is the analog in the
continuum energy region of the Rayleigh-Ritz principle
and its extensions, which provide variational bounds on
the discrete energy eigenvalues and a procedure for
systematically improving these variational bounds. The
VB method provides bounds on the parameters which
characterize the scattering process.

As appealing as the VB method may be in principle,

2L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959);
L. Rosenberg, L. Spruch, and T. F. O' Malley, ~bid. 118, 184
(i960).' Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 130, 38$
(1963).

4 Y. Hahn, T. F. O' Malley, and L, Spruch, Phys. Rev. 134,
3911 (1964l.
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the question remains of the domain of its practical
appllcablllty. No dlTlculties Rrlsc Rt zero 1QcldcQt

kinetic energy, ~ but at nonzcro incident kinetic energies~
the VB approach requires the numerical evaluation of
the Green's function G~ associated with thc static
approximation equation and the subsequent (numerical)
cvRluRtloQ of vRrlous lntcglR18 lnvolvlng G . The case
with which these cvRluatloQS CRQ bc performed is R

Ineasure of the utility of the VB approach.
The VB formulation has previously been used at

noHzcro incldcnt kinetic cnex'glcs foI' only oQc problcID,
thc low-encl'gy (clRstlc) scattering of posltl'Oils by
hydrogen atoms (e+H) where it yielded rigorous varia-
tional lower bounds on the phase shifts for I.=o' and
for I.=1 Rnd 2.6 A comparison with reliRMC results was
possible OQly foI' the I=0 Rnd I=1 cRscs ~ thc
rigorous variational lower bounds werc there found to
bc reasonably accurate.

Vfc here apply thc VB method to the much morc in-

teresting but also more dificult problem of elastic
electron —atomic-hydrogen (a H) scattering. At low

energies, where the distortion of the hydrogen atom is
great enough to 1DvRlldRtc thc BOID approximation,
otlMx' techniques~ have bccn used fol CRlculRtlng thc
cross sections. These techniques make usc of various
approximations, the validities of which are dBBcult to
establish. It is nevertheless reasonably certain that the
I.=0 singlet, and triplet phase shifts that have been ob-
tained' are quite accurate. Our purpose then, clearly,
is Qot to obtain more accurate results but to test the
efljcacy of the VB approach for this morc dHBcult

problem. Since one can make the definitive statement
about a VB result that it represents a (variational)
bound, the kind of statement that cannot be made for

any other method, it seems fair to say that the VB
approach is superior to any other approach that re-

quires conlpRXRblc cGor t.
Sugar and Blankcnbecler' have recently given a

variational bound which appears to be different from
thc original version bUt which in fact is formally

identical. I Thc still IQorc 1cccnt forxQUlation of Roscn-
bcrgl~ ls Qot quite formally equivalent to thc ollglDRl

vcI'sion.

In this section wc formulate R DMthod foI' obtaining
variational lower bounds on the phase shifts for an

arbitrary total orbital angular momentum I, for

I ~. HehII sIId L. Spruch, Phys. Rev. 140, AN (1965).
6 C. I, K.]ejnrnan, Y. Hahn, and L. Spruch, Phys. Rev. IN,

A413 (1965).
I C. SchIrsrts, Phys. Rev. 124, 1468 (1961); 126, 1015 (1962),

and other references to be (bscussed later.
I R. L. AIIllstcsd (private cGIIIIIIUIIIcstloII} slid 3111LABl. Phys.

Soc. Io, 736 (j,965).' R. Sugar and R. Blankenbecler, Phys. Rev. D6, 3472 (1964).
co y. Hahn and L. Spruch, Phys. Rev. (to be puMished). A

mathematical identity shows the equivalence of the tv o formula-

tions for a given tflal functIon.
» I„Rosenberg, Phys. Rev. I38, BI343 (I965).

(elastic) &-H scattcl'jllg at energies below the cxcltR-
tloD thI'cshold I0.2 cV. We Qcglcct the spin-orbit lntcl'-
Rction and take the Hamiltonian H to be

B=—(A'/2III)(lv'Is+%'ss) —a'(1/rl+i/rs —1/rls), (2.1)
where x'y RQd I'2 RI'c thc coordlQRtcs of thc lncldcDt
electron and the bound electron relative to the proton,
wlMch wc consldcl" Axed, Rnd t'jg designates thc lntcx'-
electronic separation. Since the total spin angular mo-
mentum 8 is conserved, the triplet case 5= j. and the
singlet case 5=0 can be treated separately. We can
deal with wave functions Va(rl, rs) which do not depend
upon the spin coordinates, but which have the property
that

ir a(rl, rs) = c@a(rs,rI), (2 2)

where c=+f for the singlet case and c=—1 for the
triplet case. We expand Va(rl, rs) as

+a(rl, rs) =P ~z~a+z~a(rz, rs), (~ 3)

where 3f denotes the total orbital angular momentum
proiectlon. Slllcc a jrls docs llot llllx stRtcs wlllch differ
in I. or 3f, the Schrodinger equation can be written as

(H—E)%z, zza(rl, rs) =0. (2.4)

The total energy E is given by

8=Ere+a'= —13.6 CV+A'k'/2m,

where Ego RQd Z rcpx'cscQt thc ground-sta'Lc cDclgy of
thc hydl ogcD atom RDd thc cQcI'gy of thc 1QcldeQt
electron, respectively. Since only the elastic channel is
open, Rnd 81Qcc the SCRttcI'lng ls lndepcndcDt of 3f, thc
scattering for 6xcd L and 5, for all 3f, is characterized
by a single parameter, the phase shift q~s. %e will often
omit one or all of the subscripts I., M, and S.The phase
shift g, modulo m, is determined by the asymptotic form
of the regular solution of (2.4), given by

+(rl, rs) ~ (&+c&II)&(rI)'JJzoz~(QII)

sin(krs —sIs +I))x —
, (2.5)

2I"rs sin(I) —9)
OF f2~00

~

whexe the exchange operator 512 interchanges the co-
ordlDRtcs 1'1 Rnd f2. The coordinates 1's arc glvcn by

II=rI, Hg) IIIj=rg, QI~ i= 1 or 2 I (2.6)

where the angles refer to some arbitxary space-6xed
axis. R(r) dlffcl. s from tlM norxIlallzcd gl'ollIld state
wave function mrs(r) of the hydrogen atom only by a
normalization constant. %C have

&()=(4 )"V-()=2"- & -p(-.j..), (2.~)

whcI'c 80 18 thc Bohx' radius. Thc vcctox' sphcx'leal
11RI'Illolllc 'gzsz, ls defined by

JJzIIII (Qls) —Q CIIII(L)M q 5$IIIgs)

X&I, ,(QI)TI,„,(Qs), (2.8)



P=Pi+Pi PIP2— (2 9)

where the CI,I2(L,M; 2III,m2) are the Clebsch-Gordan
coeS.cients. lj and t2 are the orbital angular momenta of
the two electrons, and m~ and m2 are the orbital angular
momenta projections. The normalization constant 8
is arbitrary.

The VB formulation requires the introduction of two
projection, operators, P and Q, such that QHQ has no
continuous spectrum below the energy E. The projec-
tion operators required" are

The j~ and el. are spherical Besscl and spherical
Neumann functions, respectively, and q~ is the static-
approximation phase shi. .t. Substituting (2.16a) into
(2.15) and operating on the resulting equation with Pi,
oiic obtRllls tile lntcgro-differential cqliatloll fol I (r2))

D(r2)N~(r2)+0 «IW(ri, r2)N"(ri) =0, (2.1'I)

i12 —d' 1.(1-+1)
D(r) =— + +V00(r) —k' (2.18)

25$ dt'

(2.10) and

where Pi projects onto the ground state of the hydrogen W(ri, r2) =—rIR(rI)r2E(r2)
atom in the space of the 6rst electron, such that, for
any function F(ri,r2),

r&~-
X —(F.—2Fro)40+, (2 19)

21.+1r) +I

PIF(ri, r2)=pr0(rI) dri'fr0(rl')F(ri'. r2), (2.11)
where 8~0 is the Kronecker delta symbol. The static
potential (k2/2212) V00 is defined by

and I'2 is the corresponding operator in the space of the
second. electron. It is convenient to include in the
operator I'; the angular coordinates of both electrons.
It is easily shown that for functions of the form

2m
V00(&2)

h2
&I'«Id0»

I ~(rI) y«~(0») I

F(ri, r2) = f(rl, r2) 'JJI, I,I,(&i2),

Eq. (2.11) can be written as

(2.12)
~2 ~12-

PIF(ri, r2) =R(rI) 'tli, 01,(QI2) rl"drI'dQI2'R(rI')

X QLOL (fl12 )F(rl )&2)flI2 ) y (2 13)

where Qg2' denotes eg', q y', tI2', p2'.
The VB inequality with the subtraction terms deleted

is given by'

(k@2/22II)r cot(g —0)—cot(g~—8)$(2(PeI' PHQe, )
+(Q@I,QLR—EjQ+,). (2.14)

BC=QPH+ HPG~PH jQ— (2.21)

whcI'c G is thc static GI'ccn s function defined by

G~=Pj P(F H)P] IP, —-(2.22)

and r~ and r~ are the smaller and larger, respectively,
of ri and r2. The static equation (2.17) can be solved
numerically on a computer and g" can thus be deter-
mined. The modi6cd Hamiltonian X is dc6ncd by

Q~l, (rl, r2) is the trial function, which vanishes faster
than 1/&.2/2 Rs &.~ 00 P@I' Is thc regular solution of Rnd the boundary conditions determined by the
the static or no-polarization equation asymptotic form of I'4 and I'%'~ in the equation

P(H —E)P% P=O,

which has the form

(2.15) P% =P@~+G~PHQ% .

The Green's function G~ has the form"

(2.23)

P@~(ri,r2) = (1+0SI2)E(rl) 'g1, 0I,(Q»)
XII (r2)/(2 ~2r2), (2.16a)

where I (r2) is regular at the origin, and, as r2-+oo,
has the asymptotic form

I"(r2) -+ —kr2L(sing )Nl, (kr2) —(cosy )ji,(kr2) j/
sin(q" —8) . (2.16b)

"Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 128, 932
(Ipt 2).

G (ri,r2; ri', r2') =p. 2X2'(1+0S»)X-,'(1+0S»')
X~( )~-.(~-)~(.)g...«„)

Xg(0; r2,r2')/(r2r2'), (2.24)

where in the sum 0 assumes the values +], snd —1,
and where SI2' interchanges r, ' and I,'. Here g(0,.r2,r2')

"I.Aronson, Y. Hahn, P. M. Henry, C. J. Kleinman, and L.
Spruch (to be published) contains a complete discussion of the
formal speci6cation of G~ and of the procedures that enable one to
numerically determine G~.
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is the solution of the equation

g(0' r2 r2 ) =go(r2 r2 )+0 dl go(r2 l) d$ W(l $)g(0 $ f2 )

140&—1«l go(ro, l)lR(l)r2'E(r2'), (2.25)

For any fixed I., the index i varies from zero up to some
arbitrary value which depends on y, in the last form,
we let the index q stand for both y and i. The c's are
linear variational parameters while the b's and the
d's are nonlinear variational parameters. The function
m must satisfy the conditions

where
2m

go(r2rr2 )= {ureg (r&)uirreg (r))
h'k

—[cot(gD —8)7u„gn(r&)u„gn(r)) }. (2.26)

and
w(l, t; x) -+ x'+' x —+ 0

X'12W(lrl; X) —& 0, X —&oo .
We choose for m the form

w(l, t; x) =x'+'e ' 8(1+—t) 'xe 801.

(2.31a)

(2.31b)

(2.32)
Here N„~ and I;„«are the regular and irregular
solutions of the equation

D(r2)un(r2) =0,

with the asymptotic forms, as r2~~, given by

(2.27)

u,.g (r2) ~ —kr2[22L(kr2) —cot(g )jL(kr2)] sing

u;„,g (r2) ~ —kr2[jL(kr2)
—cot(gn)nL(kr2)$ sing . (2.28)

The phase shift gn is defined by (2.27) and (2.28).
We write the trial function Q%'r(rl, r2) in terms of the

set of coordinates rj., r2, 0~2 rather than the set of co-
ordinates involving r~, r2, r~2, and three Eulerian angles.
The advantages and disadvantages of using the former
set have been discussed in Refs 5. and 6. We expand the
trial function for the two electrons in terms of one-
particle functions each of which corresponds to an elec-
tron in a definite orbital angular momentum state I.
This differs from the close-coupling approach, where
the trial function is expanded in states of both de6nite
orbital angular momentum l and principal quantum
number n of the target. The advantage of our expansion
is that we thereby include the effect of many eigenstates
of the target with different values of e, including con-
tinuum eigenstates. We note that for L&0 and for
l»0 more than one value of t2 is allowed by the usual
vector addition rule

The distinction between l= 0 and l/0 is a consequence
of the fact that for 1&0 the orthogonality to pro is
automatically accomplished by the presence of the
'JJL1,1,, while for l=0 one must choose the radial func-
tion to be orthogonal to ti ro.

We introduce the quantities

N, = (2mao/A—2) (P%'~,PHQ@«) (2.33)

kao[cot(g —8)—cot(g~ —8)g(g„
where Ag is defined as

60—=2 Q coN0+Q coKoo co,

(2.35)

(2.36)

or, more compactly,

a0=2CrN+CrKC, (2.37)

where C and N are vectors and K is a symmetric matrix
whose dimension is equal to the number of terms in-
cluded in Q+,.

For a given choice of the nonlinear parameters, C is
determined by minimizing the right-hand side of (2.37).
We obtain

and
K„=(2moo/&') (Q+„Q[3'.—EjQ@,), (2.34)

where q' represents p' and i'. Equation (2.14) can then
be written as

IL—llI (l2(L+ll,
subject to the parity conservation rule

(2.29a)
so that

C= —K—'N,

~o= —N'K 'N= N'C.

(2.38)

(2.39)

(—1)lr+lr L= 1

We impose the restriction that

l2& lg,

(2.29b)

(2.29c)

&C w(12,d„;; r2/80) JJLlrlr(012)/(rlr2oo )
—=P c,Qe„. (2.30)

to avoid duplication of terms in the trial function, and
designate a pair of values of l~ and l2 by y. We take a
trial function of the form

Q%(rl, r2 1112) (1+05'12) Q ep w(ll, byi r1./'llo)

kao tan(g —gl') )—6,
where 6 represents Ao for 8=212r+gp.

(2.40)

3. RESULTS AND DISCUSSION

In order to check the computer program, we erst
obtained a bound on the I.=O phase shift for the case
when the target is allowed to be virtually excited to

Note that hg is independent of the normalization of the
trial function Q%'r, which enters quadratically in the
numerator and in the denominator in (2.39). If we
choose 8=—212r+ g~, the inequality given by (2.35) reduces
to the simple form
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TAsxx I.The L=0 phase shifts in radians in various approxima-
tions. The 1s or static phase shifts were obtained by iterative
techniques. CCA, VB, Mod VB, Var, Pol Orb, and Non Ad are
abbreviations for the close-coupling approximation, variational-
bound, modified variational-bound, variational, polarized-orbital,
and nonadiabatic methods, respectively. A number in parentheses
gives the uncertainty in the last digit.

States Method
Singlet

hap=0. 4 hap=0. 6
Triplet

kap =0.4

1s+2P

All s

All (s+p)

Final

VB
CCA
VB
Vard
VB
Var
VB
Mod VBe
Var
Pol Orb'
Non Ad

1.2395.
1.239b
1.2993
1.2993
1.2695
1.2696
1.4029
1.4001
1.4135
1.409
1.4146(6)
1.469
1.45(6)g

0.8691.

0.9100
0.9107
1.0278
1.0275
1.0374
1.034
1.041(1)

2.2573'
2.257b

2.2578
2.2579
2.2922
2.2923
2.2938
2.2936
2.2938(4)
2.320
2.2936"

a Obtained in the present calculation.
b See Ref. 1(a), p. 472.
o See Ref. 14.
d See Ref. 7.
e See Ref. 15.
& See Ref. 16.
& See Ref. 17.
h See Ref. 18.

the 2p state only, which corresponds to the close-
coupling approximation (CCA). The VB result must be
less than or equal to the CCA result. The VB calcula-
tion can easily be performed by taking only states with
l1——1 and setting b1;——0.5 and using several values for
di; in the trial function (2.30). The result for the 1s+2p
singlet phase shift for kao ——0.4 is given in Table I, and
agrees with the result obtained by Fraser and Mc-
Eachran, "who performed a CCA calculation.

In Table I we compare the results obtained for the
singlet and triplet phase shifts using the VB method
with those obtained using other techniques. 7 "—'
(Modifications of the VB approach which avoid the
necessity of evaluating G~ have been introduced,
particularly by Gailitis. " The advantages and dis-
advantages of the use of G~ are discussed in Ref. 13.)
The most accurate values of the phase shifts are con-
sidered to be those obtained by Schwartz, ' who used a
modified Kohn variational scheme. The results given
by Schwartz include all s alone, all (s+p), and the
final phase shifts, and in all of these cases our results
are somewhat lower than, but quite close to his results.
The fact that our values are below those of Schwartz

'4 R. P. McEachran and P. A. Fraser (private communication).
"M. Gailitis, in Fourth International Conference on the I'hysics

of Flectronic and Atom& Collisions, Quebec, ZP65 (Science Book-
crafters, Inc., Hastings-on-Hudson, New York, 1965), p. 10.

"A. Temkin and I. C. Lamkin, Phys. Rev. 121, 'N8 (1961).
'7 A. Temkin, Phys. Rev. 126, 130 (1962). (In the work by

Temkin and his colleagues, the wave function is assumed to con-
tain a restricted set of values of the angular momentum l, and the
subsequent problem is solved exactly by numerical means. )

'8 A. Temkin and E. Sullivan, Phys. Rev. 129, 1250 (1963)."M. Gailitis, Zh. Eksperim. i Teor. Fiz. 47, 160 (1964) LEnglish
transl. :Soviet Phys. —JETP 20, 107 (1965)j.

is not a shortcoming inherent in the VB method but
rather the result of our choice of the trial function.
Schwartz includes the r12 coordinate, which accounts
more directly for the effect of the correlation of posi-
tion of the two electrons. We were interested in the
VB formulation for arbitrary L, and it is much simpler
to do this with our choice of coordinates.

We have found no anomalies or infinities occurring in
tang, contrary to the usual variational principles,
where, as one increases the number of terms in the
trial function, the "stationary" value of the phase
shift does not converge smoothly, and may on occasion
turn out to be grossly inaccurate. However, by proper
interpretation of the calculation, the correct results
can be extracted. '0 With the VB method the continuous
spectrum below E has been eliminated, so that the
phase shift converges monotonically to the true value.
Thus the form of the trial function as well as the choice
of the variational parameters which appear in it may
be chosen according to a well-dined procedure.

The VB results are considerably better for e H
scattering than for e+H scattering. As is apparent from
(2.40), a VB calculation gives a bound on 6, and the
bound on g, which is what we are really interested in,
is obtained by solving (2.40) for t). The accuracy with
which 6 is obtained is not necessarily reflected in the
accuracy with which p is obtained. The fractional error
in p is related to the fractional error in 6 by

bred 86(ri—q ~

rk E

From this equation it is clear that the most favorable
situation is when g—g~ is small with respect to q, in
which case the fractional error in q is much smaller
than the fractional error in A. This condition holds
for e H scattering, where the static phase shift is
positive and accounts for about 90% of the final value
of the phase shift, unlike the e+H case, where the static
phase shift is negative and the true phase shift is posi-
tive. Furthermore, whereas in the e+H case the con-
vergence in l& is very slow, since one has to account for
the formation of virtual positronium and this is very
hard to accomplish with the form of the trial function
that was used, in the e H case the convergence in /1 is
rather fast. This explains why the CCA, while relatively
ine6ective in the e+H case, is quite effective in the e H
case. The contribution to g from the state l1=1, as seen
from Table II, is by far the most important one, as
expected, since the induced dipole potential which
varies as 1/r4 is the leading term in the effective long-
range interaction.

In summary, the VB method gives results which are
in good agreement with results obtained by other
methods, with the advantage of giving rigorous lower
bounds. It should be noted that recent methods have
been developed for calculating upper bounds on the

"C.Schwartz, Ann. Phys. (N. Y.) 16, 36 {1961).
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TABLE II. The L=O phase shifts in radians for kap ——0.4 ob-
tained with the variational-bound formulation. The estimate
8(VB) neglects the Green's function term T. he &l(VB) are the
rigorous lower bounds on the true phase shifts obtained by
restricting the virtually excited hydrogenic states to specific
values of the orbital angular momentum l. The quantity n is the
number of linear parameters used.

The angular integrals occurring in (A2) through (A6)
involve fz and gi, defined by

fl.=f 2(11 1&2 &11 &l2 & L) (t(Ll&12(f)12)&Pi gLl&'l2'((112)) & (A9)

and

States

1s+2p
All s
All p
All d
All f
All g
All (s+p)
All (s+p+d)
All (s+p+d+ f)
All (s+p+d+ f+g)

SingIet
g™(VB) g (VB)

8 1.2993
13 1.2677 1.2695
15 1.3910 1.3795
13 1.2619 1.2615
10 1.2455 1.2455
7 1.2417 1.2417

28 1.4120 1.4029
41 1.4210 1.4112
51 1.4229 1.4129
58 1.4235 1.4135

Triplet
g q(VB) g (VB)

5 2.25784 2.25784
16 2.29195 2.29203

7 2.25970 2.25970
5 2.25767 2.25767
5 2.25738 2.25738

21 2.29214 2.29222
28 2.29348 2.29356
31 2.29365 2.29373
38 2.29368 2.29376

gl& gi(ll&l2&ll &l2 & L)
( gL l &12(f)12)&Pi JLl&& 12& (~21)) ~ (A10)

Since
'JJL1,12(()21)= (—1)"+"- 'tlL12l&((l») & (A11)

the relationship

gi(11 l2&li'&l2'& L) = (—1)'"+'" 'f1(11&lp,l2', li'& L) (A12)

follows. We also have the relationship

gi=(2)+1) 'hi, (A13)

phase shifts, ' ""thus bounding the phase shifts from
both sides, but these have not yet been applied.
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APPENDIX A: DETAILS OF THE CALCULATION

1. Form of the Matrix Elements

Since

where the fz and hz are tabulated by Percival and
Seaton" for all transitions for which ii&2 and li'&2.
States with /1) 2 were also included in our trial func-
tion Q%, ; the fi, were evaluated by using the expression

fi(l„le,l„lg L) =(—1)'+'—L

X L(21 +1)(2l2+1)(2l,+1)(2lg+ 1))'ls

lb lg X l, lb I,

A tabulation of these symbols is given by Roten-
berg ef al."The f's are real and satisfy the relations

PHQ =P(e'/r12) Q, fo(11,12,11',12; L) = bi, l;bl, i;, (A15a)

Eq. (2.33) can be written as fi(lr&12&l, '&l2'; L)= fi(lr'&l2'&lt&l2, L), (A15b)

f (l 1l 10&2L&;&L) =0, if ltN) . (A15c)
E2

= (2map/it') (Pk, [ep/r»)Q%r«), (A2) and

and E«, defined by (2.34) can be written as

where

We introduce the operator J which interchanges li
&pp =&.co+I:b.. p+&. 2,2. (A3) and l2, and b, and d„so that for an arbitrary function

F(li, l2, b„d,),
E, ,„.= (2map/is2)(Q+&e&$ (A2/2m)(—V12+V22) JF(11,12; b„dp)=F(ls, li,'d„b,), (A16)

and we let x,=r,/ap Using Eq.s. (2.15), (2.30), (A7),
E2, op (2mao/is') (Q+«——,[e'/r12)Q+&, ), (A5) (A8), and (A15), lt'/, can be written as

and

E:,, oo.= (2maol&')(Q+«, ((~'/r») G

X(e'/r»))Q+«). (A6)

The 1/rls term is expanded in terms of Legendre
polynomials as

ltrp= (2/ap)'l'(1+eJ) fl, (li&l2&O, L; L)

X «22r&(l2 dp x2)se (r2) «lrl~(rl)sl 2r&(11 bo x1) ~

(A17)

Using (2.30), (A7), (A8), and (A15), and introducing

where

1/r»= Q $1P1(rt rs), (A7) les d' l;(l,+1) e'
A.=— i=1 or 2, (A18)

2m d$2, X2, Sg

1/r l&+1 (AS)
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K.,„,=32 dxdx'n„(x)n, (x')g(o; x,x'),
0

where

10 '. A further check used was to calculate d, from (2.36) integrals must be evaluated numerically. We have
and compare this result to the value for 6 obtained
from (2.39). The inequality (2.35) holds for any e no N„=442 dx N~(x)n„(x),
matter how inaccurate the inversion may be, and 0

therefore we have a rigorous result independent of the
inversion error. In practice we required that the two
values of 6 obtained from (2.35) and (2.39) agree to
five signiicant figures.

APPENDIX 3: MATRIX ELEMENTS FOR L=o

We present here expressions for the vector elements
N„and the matrix elements K„,(=K,,„,+Ko,„o
+K, „,) defined by (2.33) and (2.34), respectively,
where we replaced q by p and q' by q. The matrix ele-
ments are given for l=0 and /=1 where l=y=l~ ——l2

for I.= 0. In the following we set 2m/k'=1, and we use
the notation

Z(m, n,b; x)= dx'(x(/x&) "(x'"/x))

exp�(

bx')—,

which can be evaluated explicitly. ~ We may write

(1+oJ)Myq Kz, yq+Ko, yq p

n„(x)= (1+oJ)(—1)'(2l+1) ' 're(l, d x)
X t Z(l, l+2,An, x)—a+(1,2,2; x) boig.

Z is dined by

B~o=be+ho Dn. =dn+d» and the M's are given here in terms of the quantity I,
where

A„=1+b~, T~=1+d~,
I(m, n, b,p,d) = dx Z(m, n, b; x)x"e '*.

N~ and K, ,~„defined by (A21), are given in terms of
integrals involving N~(x) and g(o; x,x') deined by
(2.16b) and (2.25), respectively. Since tt~(x) and

g(o; x,x') can only be obtained numerically, these

This integral can also be evaluated explicitly. ' The
values of p and q in the matrix elements correspond to
the 6rst and second pairs of subscripts on the M's,
respectively.

ItI;o; o=g(ByoD~o) o[b~bo+d„do B~o D~o —(ko —1)j a—~aoD—~o o(d—~do Dyo ko) —t~toByo o(bubo Byo—ko)—
oa~aot~t, (1—+k )+4LI(0,2,B„„2,D„o)— aI( 02, Ao, 2,D~,)—a,I(0,2,A~, 2,D~,) tg(0, 2,B~„—2,To)

t,I(0,2,B„„2—,T~)+a~a,I(0,2,2,2,D~,)+a„t,I(0,2,A~, 2,T„)+a~t~I(0, 2,A o,2, To)+t~t,I(0,2,B~„2,2)

+a,tg(0, 2,A „,2,To)+a, toI(0, 2,A „,2, T~) a„a,t,I(0,2,2,2—,T„) aot„toI(0,2,2,2—,A „)
a~a, tg(0, 2,2,—2,To) a~t~t, I(0,2,2,2—,A,)+a~a, t„t,I(0,2,2,2,2)j,

M reo 4X3 ~~oLI(1 3 B,o 3 D,o) aoI(1 3 A~3 D,o) t I(1o3 Byo 3 T~)+aotoI(1 3 A~ 3 T~)$

M~'&p& =2(4l) '(BnoDno) 'Ebnbo+dndo 2 (Bno+ Dno) (k' 1)j+EI(0~4~Bno~4iDno)+ (2/5)I(2 4~Bno~4~Dno) j


