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which are the eigenvalues of the operators I'®, L2
Sz, - - -. Further the natural geminals, which are anti-
symmetric by definition, were seen in the functions
analyzed here to have a general functional form that
for the more important terms, those with eigenvalues
which are relatively large, is not too sensitive to the
degree of goodness of the wave function ¥. For the
Weiss functions the natural orbital representation of the
natural geminals was seen to have the same general
structure as for the functions over an orthogonal basis,
as shown in Egs. (45) and (46).

In discussing the natural geminal expansion we have
left unanswered the question concerning the antisym-
metric properties of the truncated expansion. This
question is important however as the economy of form
pointed out earlier for the Weiss function indicates. In
all cases where V= 2p the sign of the natural expansion
coefficients are uniquely determined by the original
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wave function since as shown the transformations. di-
agonalizing I'(1,---,p;1',---,p) and T(p+1,---,N;
(p+1)’,--+,N’) can be chosen to have the same phase.

The eigenvalue degeneracy problem was shown to be
explainable simply in terms of the two-electron spin
functions. The dependence of the degeneracy pattern
on functional form of ¥ was explained in the same terms.

The results of our work have elucidated the structure
of the 2-matrix in great detail. It is hoped that the result
will bring the eventual solution of the N-representa-
bility of the 2-matrix a step closer. In the meantime
we hope to find through further research that the
natural geminals and the natural geminal expansion
will give insight into the two-electron interactions
within physical systems and provide a useful way of
capitalizing on the chemist’s concept of the two-electron
chemical bond in describing molecular structure and
chemical reactivity.
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The variational-bound (or minimum-principle) formulation for single-channelscattering was applied to the
calculation of rigorous lower bounds on the s-wave phase shifts for the scattering of electrons by hydrogen
atoms (¢"H) for energies below the excitation threshold. This method was previously applied to positron-
hydrogen (¢tH) elastic scattering. Because of the exchange effect in the ¢”H case, a projection operator is
employed which projects out of the wave function those states in which either or both of the electrons are in
the ground state. The method requires the exact solution of the static equation, and of the corresponding
static Green’s function G?, which is expressed in terms of the solution of an integral equation. Trial functions
are chosen which are spatially symmetrized (or antisymmetrized) and correspond to states of the hydrogen
atom of given angular momentum quantum number /; the associated radial functions contain nonlinear
variational parameters. The ¢~H calculations are found to give much more accurate results for a given

number of parameters than the e*H calculations.

1. INTRODUCTION

NUMBER of methods have been developed re-
cently for the study of the scattering of one com-
pound system by another.! These approaches are
practical for relatively simple systems. From a strictly
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U. S. Office of Naval Research, the Advanced Research Projects
Agency under Contract Nonr-285(49), NRO12-109, and NASA
under Contract No. NSG 699.
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quirements for the degree of Doctor of Philosophy at New York
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I Present address: The University of Connecticut, Storrs,
Connecticut.
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! (a) See, for example, P. G. Burke and K. Smith, Rev. Mod.,
Phys. 34, 458 (1962); (b) also N. F. Mott and H. S. W. Massey,
The Theory of Atomic Collisions (Clarendon Press, Oxford, England,
1965), 3rd ed., for a review of recent developments.

logical standpoint, the most satisfying approach, per-
haps, is the variational-bound (VB) formulation.2—4
(In earlier papers, it was called a minimum-principle
formulation.) The VB formulation is the analog in the
continuum energy region of the Rayleigh-Ritz principle
and its extensions, which provide variational bounds on
the discrete energy eigenvalues and a procedure for
systematically improving these variational bounds. The
VB method provides bounds on the parameters which
characterize the scattering process.

As appealing as the VB method may be in principle,

2L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959);
%l.m%gsenberg, L. Spruch, and T. F. O’Malley, bid. 118, 184

a ;6%) Hahn, T. F. O’Malley, and L. Spruch, Phys. Rev. 130, 381

¢Y. Hahn, T. F. O’Malley, and L. Spruch, Phys. Rev. 134,
B911 (1964).
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the question remains of the domain of its practical
applicability. No difficulties arise at zero incident
kinetic energy,? but at nonzero incident kinetic energies?
the VB approach requires the numerical evaluation of
the Green’s function GP associated with the static
approximation equation and the subsequent (numerical)
evaluation of various integrals involving GP. The ease
with which these evaluations can be performed is a
measure of the utility of the VB approach.

The VB formulation has previously been used at
nonzero incident kinetic energies for only one problem,
the low-energy (elastic) scattering of positrons by
hydrogen atoms (¢tH) where it yielded rigorous varia-
tional lower bounds on the phase shifts for L=0° and
for L=1 and 2.6 A comparison with reliable results was
possible only for the L=07 and L=1% cases; the
rigorous variational lower bounds were there found to
be reasonably accurate.

We here apply the VB method to the much more in-
teresting but also more difficult problem of elastic
electron—atomic-hydrogen (¢"H) scattering. At low
energies, where the distortion of the hydrogen atom is
great enough to invalidate the Born approximation,
other techniques! have been used for calculating the
cross sections. These techniques make use of various
approximations, the validities of which are difficult to
establish. It is nevertheless reasonably certain that the
L=0singlet and triplet phase shifts that have been ob-
tained” are quite accurate. Our purpose then, clearly,
is not to obtain more accurate results but to test the
efficacy of the VB approach for this more difficult
problem. Since one can make the definitive statement
about a VB result that it represents a (variational)
bound, the kind of statement that cannot be made for
any other method, it seems fair to say that the VB
approach is superior to any other approach that re-
quires comparable effort.

Sugar and Blankenbecler’ have recently given a
variational bound which appears to be different from
the original version but which in fact is formally
identical.!® The still more recent formulation of Rosen-
berg!! is not quite formally equivalent!® to the original
version.

2. THE VARIATIONAL-BOUND FORMULATION

In this section we formulate a method for obtaining
variational lower bounds on the phase shifts for an
arbitrary total orbital angular momentum L for

5V, Hahn and L. Spruch, Phys. Rev. 140, A18 (1965).

6C. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. 140,
A413 (1965).

7C. Schwartz, Phys. Rev. 124, 1468 (1961); 126, 1015 (1962),
and other references to be discussed later.

8 R. L. Armstead (private communication), and Bull. Am. Phys.
Soc. 10, 736 (1965).

9 R. Sugar (a.nd R. Blankenbecler, Phys. Rev. 136, B472 (1964).

10y, Hahn and L. Spruch, Phys. Rev. (to be published). A
mathematical identity shows the equivalence of the two formula-
tions for a given trial function.

11 T,, Rosenberg, Phys. Rev. 138, B1343 (1965).
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(falastic) ¢ H scattering at energies below the excita-
tion threshold 10.2 eV. We neglect the spin-orbit inter-
action and take the Hamiltonian H to be

H=—#%/2m)(Vi*+V2)—e*(1/ri+1/ra—1/r13), (2.1)

where r; and r, are the coordinates of the incident
electron and the bound electron relative to the proton,
which we consider fixed, and 71, designates the inter-
electronic separation. Since the total spin angular mo-
mentum S is conserved, the triplet case S=1 and the
singlet case S=0 can be treated separately. We can
deal with wave functions ¥ g(r,r;) which do not depend
}cllll)on the spin coordinates, but which have the property
at

‘I’s(rl,l‘z) = G\I/,g(rg,l‘l) N (2.2)

where e=-1 for the singlet case and e=—1 for the
triplet case. We expand ¥ s(ry,r2) as

Vs(ryre) =3 ArusVrus(tyrs), (2.3)

where M denotes the total orbital angular momentum
projection. Since e%/r12 does not mix states which differ
in L or M, the Schriodinger equation can be written as

(H—E)\I/LMS(I‘I,I'Q)=0. (2.4)
The total energy E is given by
E=Epc+E'=—13.6 eV-+%4%2/2m,

where Ero and E’ represent the ground-state energy of
the hydrogen atom and the energy of the incident
electron, respectively. Since only the elastic channel is
open, and since the scattering is independent of M, the
scattering for fixed L and .S, for all M, is characterized
by a single parameter, the phase shift 5zs. We will often
omit one or all of the subscripts L, M, and .S. The phase
shift , modulo =, is determined by the asymptotic form
of the regular solution of (2.4), given by

W(ry,re) = (14 €S12) R(r) Yooz (Q2)
sin(kro—%Lx+1n)
2%, sin(n—0) ’
71 Or 13—,

(2.5)

where the exchange operator Sy, interchanges the co-
ordinates r; and ro. The coordinates r; are given by

(2.6)

where the angles refer to some arbitrary space-fixed
axis. R(r) differs from the normalized ground state
wave function ¢ ro(r) of the hydrogen atom only by a
normalization constant. We have

R(r)=(4m) % 1(r)=2a5~%2 exp(—r/a0) , 2.7

where @y is the Bohr radius. The vector spherical
harmonic Yzoz™ is defined by

Youn(Que)= 2 Cuas(L,M ;5 m1,ms)
m1,m2
XY tym1 (1) Y 13m2(Q2)

ri=7,0;0:=7,Q;, i=1 or 2,

(2.8)
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where the Ci;,(L,M;mi,ms) are the Clebsch-Gordan
coefficients. /; and I, are the orbital angular momenta of
the two electrons, and m; and m, are the orbital angular
momenta projections. The normalization constant 6
is arbitrary.

The VB formulation requires the introduction of two
projection operators, P and Q, such that QHQ has no
continuous spectrum below the energy E. The projec-
tion operators required!? are

P=Py+Py— PP, (2.9)

and

Q=1-P, (2.10)

where P; projects onto the ground state of the hydrogen
atom in the space of the first electron, such that, for
any function F(ry,rs),

P1F(r1,x2) =Yro(r1) f dryYro(ri)F(r.1s), (2.11)

and P, is the corresponding operator in the space of the
second electron. It is convenient to include in the
operator P; the angular coordinates of both electrons.
It is easily shown that for functions of the form

F(rlyt2) = f(?’l,fz) ‘yLllk(Ql?) ) (212)
Eq. (2.11) can be written as
PlF(rl,rz) = R(rl) ‘yLoL(le)/71/2d71/d912/R(?1,)
X Yror*(Qu)F(ry 79, 02"), (2.13)

where Q15 denotes 81, o1, 05, ¢2'.
The VB inequality with the subtraction terms deleted
is given by?

(k%12/2m)[cot(n—0)— cot(nP—6) J< 2(P¥ P, PHQW,)
+(Q¥,Q[5c—EIQ¥,). (2.14)

Q¥,(ry,rs) is the trial function, which vanishes faster
than 1/73/2 as #;— . P¥P is the regular solution of
the static or no-polarization equation

P(H—E)P¥?=0, (2.15)
which has the form
PUP(r1,12) = (1+ €S12) R(r1) Yror(Q12)
XuP(rs)/(21%r5), (2.162)

where #P(r;) is regular at the origin, and, as r,—>,
has the asymptotic form

uP(ry) — — kro[ (singP)nr(krs)— (cosn®) 7. (kre) ]/
sin(n?—6). (2.16b)

( 12 ;()' Hahn, T. F. O’Malley, and L. Spruch, Phys. Rev. 128, 932
1962).
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The j; and »; are spherical Bessel and spherical
Neumann functions, respectively, and 5% is the static-
approximation phase shift. Substituting (2.16a) into
(2.15) and operating on the resulting equation with Py,
one obtains the integro-differential equation for #(r,),

D(ro)uP(rs)+¢ / i driW (ryra)uf(r)=0, (2.17)

0
where

hz[—dz L(L+1)

D(r)=— ;;'f‘ +V00(7)~k2:| (2.18)

2
and

W (ri,re)=riR(r1)r2R(rz)

2 7’<L

x[—(E— 2Ero)s10+ ] , (219

2141 r Lt

where 8z is the Kronecker delta symbol. The static
potential (#2/2m)Vq is defined by

2m
Voo(”z):‘;l"{ /7’12d7‘1d912 | R(71)Yror(Que)|?
—e ¢
x[——+—]
Yo 712

-2/71 1 — 27,
G
ao \ay 72 a (2.20)
and 7< and 7> are the smaller and larger, respectively,
of 7, and 7,. The static equation (2.17) can be solved

numerically on a computer and »* can thus be deter-
mined. The modified Hamiltonian 3C is defined by

Se=Q[H-+HPGFPH]Q, (2.21)

where G¥ is the static Green’s function defined by
GP=P[P(E—H)P]P, 2.22)

and the boundary conditions determined by the
asymptotic form of P¥ and P¥? in the equation

P\I’=P\I/P+GPPHQ\I/ . (2.23)
The Green’s function G® has the form?1?
GP(ryre; 11,1y ) =3 2X 3 (14 €S12) X 3(1+6S12")
XR(r1)Yror(Qu2)R(r1) Yror *(Qus”)
Xg(e; ro,rs)/(rars), (2.24)

where in the sum e assumes the values +1 and -1,

and where S5 interchanges r,’ and ry’. Here g(e; 72,75')

31. Aronson, Y. Hahn, P. M. Henry, C. J. Kleinman, and L.
Spruch (to be published) contains a complete discussion of the
formal specification of GF and of the procedures that enable one to
numerically determine GP.
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is the solution of the equation

g(e 72,72')=go(’2,’2/)+€/df go(’%t)/ds W(t,s)g(e; s,ra’)

+6L00_1€ /lﬂ go(rz,l)tR(l)rle(rgl), (2.25)

where

2m
g0(72>"2/) = ﬁ{uregD<r<)“irregD(r>)

—[cot(n?—0) Jutreg® (7<) theeg®(r>) } .

Here #:,? and #imeg” are the regular and irregular
solutions of the equation

D(r2)uP(ry)=0,
with the asymptotic forms, as 7, —, given by

uregD (7'2) - — k?’z[nL(krz) —cot (nD)jL(er):] SiIl’r)D

uirregD (7'2) —_ - er[j L (kfz)
—cot(nP)ny(krs)sing®?. (2.28)

The phase shift 52 is defined by (2.27) and (2.28).

We write the trial function Q¥,(ry,re) in terms of the
set of coordinates 7y, 72, Q12 rather than the set of co-
ordinates involving 7y, 73, 713, and three Eulerian angles.
The advantages and disadvantages of using the former
set have been discussed in Refs 5. and 6. We expand the
trial function for the two electrons in terms of one-
particle functions each of which corresponds to an elec-
tron in a definite orbital angular momentum state I.
This differs from the close-coupling approach, where
the trial function is expanded in states of both definite
orbital angular momentum / and principal quantum
number # of the target. The advantage of our expansion
is that we thereby include the effect of many eigenstates
of the target with different values of #, including con-
tinuum eigenstates. We note that for L>0 and for
;>0 more than one value of I, is allowed by the usual
vector addition rule

(2.26)

(2.27)

|L—h| <LLZL+1, (2.29a)
subject to the parity conservation rule
(—=1)ttr-l=1, (2.29b)
We impose the restriction that
L>h, (2.29¢)

to avoid duplication of terms in the trial function, and
designate a pair of values of /; and I by y. We take a
trial function of the form

QW(r1,72,02) = (14 6S12) 22 criw(l,byi; 71/ a0)
Yt

Xw(la,dyi; 72/ @0) Yru1a(Qa2) / (r17200"%)
EZ CqQ‘I’tq- (2'30)
q
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For any fixed L, the index ¢ varies from zero up to some
arbitrary value which depends on v; in the last form,
we let the index ¢ stand for both v and 4. The ¢’s are
linear variational parameters while the 4’s and the
d’s are nonlinear variational parameters. The function
w must satisfy the conditions

w(lit;x) >, x—0 (2.31a)
and
w20t %) >0, x—o0. (2.31b)
We choose for w the form
w(lt; ) =ale " —8(14-)"3we~=60.  (2.32)

The distinction between /=0 and /5%0 is a consequence
of the fact that for /0 the orthogonality to ¥zo is
automatically accomplished by the presence of the
Yry, while for /=0 one must choose the radial func-
tion to be orthogonal to ¥ q.

We introduce the quantities

N o= (2mao/#?)(PY?,PHQV,,) (2.33)
and

K 9= (2mao/1)(Q¥,Q[3— E]Q¥,y), (2.34)

where ¢’ represents 4’ and 4’. Equation (2.14) can then
be written as

kao[ cot(n—0)—cot(nP—0)]< Ay, (2.35)
where Ag is defined as
80=23 cNot+X cKoqte (2.36)
q ¢’
or, more compactly,
Ag=2CTN+C7KC, (2.37)

where C and N are vectors and K is a symmetric matrix
whose dimension is equal to the number of terms in-
cluded in Q..

For a given choice of the nonlinear parameters, C is
determined by minimizing the right-hand side of (2.37).
We obtain

C=—K"N, (2.38)
so that

Ap=—NTK-1N=N7C. (2.39)

Note that Ag is independent of the normalization of the
trial function Q¥,, which enters quadratically in the
numerator and in the denominator in (2.39). If we
choose §=3m+»7F, the inequality given by (2.35) reduces

to the simple form
kag tan(n—9P)>—A, (2.40)

where A represents Ag for §=31nr+y?.

3. RESULTS AND DISCUSSION

In order to check the computer program, we first
obtained a bound on the L=0 phase shift for the case
when the target is allowed to be virtually excited to
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Tasik I. The L=0 phase shifts in radians in various approxima-
tions. The 1s or static phase shifts were obtained by iterative
techniques. CCA, VB, Mod VB, Var, Pol Orb, and Non Ad are
abbreviations for the close-coupling approximation, variational-
bound, modified variational-bound, variational, polarized-orbital,
and nonadiabatic methods, respectively. A number in parentheses
gives the uncertainty in the last digit.

Singlet Triplet
States Method kay=04  kay=0.6 kay=0.4
1s 1.2395= 0.8691= 2.2573»
1.2390 2.257>
1s+2p VB 1.2993
CCAe 1.2993
All's VB 1.2695 0.9100 2.2578
Vard 1.2696 0.9107 2.2579
All (s+p) VB 1.4029 1.0278 2.2922
Vard 1.4001 1.0275 2.2923
Final VB 1.4135 1.0374 2.2938
Mod VBe 1.409 1.034 2.2936
Vard 1.4146(6) 1.041(1) 2.2938(4)
Pol Orbf 1.469 2.320
Non Ad 1.45(6)¢ 2.2936h

& Obtained in the present calculation.
b See Ref. 1(a), p. 472.

¢ See Ref. 14.

d See Ref. 7.

e See Ref. 15.

f See Ref. 16.

& See Ref, 17.

b See Ref. 18.

the 2p state only, which corresponds to the close-
coupling approximation (CCA). The VB result must be
less than or equal to the CCA result. The VB calcula-
tion can easily be performed by taking only states with
lhi=1 and setting 51;,=0.5 and using several values for
dy; in the trial function (2.30). The result for the 154-2p
singlet phase shift for kao=0.4 is given in Table I, and
agrees with the result obtained by Fraser and Mc-
Eachran,'* who performed a CCA calculation.

In Table I we compare the results obtained for the
singlet and triplet phase shifts using the VB method
with those obtained using other techniques.”-15-18
(Modifications of the VB approach which avoid the
necessity of evaluating G? have been introduced,
particularly by Gailitis.’® The advantages and dis-
advantages of the use of G? are discussed in Ref. 13.)
The most accurate values of the phase shifts are con-
sidered to be those obtained by Schwartz,” who used a
modified Kohn variational scheme. The results given
by Schwartz include all s alone, all (s+p), and the
final phase shifts, and in all of these cases our results
are somewhat lower than, but quite close to his results.
The fact that our values are below those of Schwartz

14 R. P. McEachran and P. A. Fraser (private communication).

16 M. Gailitis, in Fourth International Conference on the Physics
of Electronic and Atomic Collisions, Quebec, 1965 (Science Book-
crafters, Inc., Hastings-on-Hudson, New York, 1965), p. 10.

16 A, Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).

17 A. Temkin, Phys. Rev. 126, 130 (1962). (In the work by
Temkin and his colleagues, the wave function is assumed to con-
tain a restricted set of values of the angular momentum /, and the
subsequent problem is solved exactly by numerical means.)

18 A. Temkin and E. Sullivan, Phys. Rev. 129, 1250 (1963).

19 M. Gailitis, Zh. Eksperim. i Teor. Fiz. 47, 160 (1964) [ English
transl.: Soviet Phys.—JETP 20, 107 (1965)].
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is not a shortcoming inherent in the VB method but
rather the result of our choice of the trial function.
Schwartz includes the ri2 coordinate, which accounts
more directly for the effect of the correlation of posi-
tion of the two electrons. We were interested in the
VB formulation for arbitrary L, and it is much simpler
to do this with our choice of coordinates.

We have found no anomalies or infinities occurring in
tany, contrary to the usual variational principles,
where, as one increases the number of terms in the
trial function, the ‘‘stationary” value of the phase
shift does not converge smoothly, and may on occasion
turn out to be grossly inaccurate. However, by proper
interpretation of the calculation, the correct results
can be extracted.?® With the VB method the continuous
spectrum below E has been eliminated, so that the
phase shift converges monotonically to the true value.
Thus the form of the trial function as well as the choice
of the variational parameters which appear in it may
be chosen according to a well-defined procedure.

The VB results are considerably better for e H
scattering than for e*H scattering. As is apparent from
(2.40), a VB calculation gives a bound on A, and the
bound on 7, which is what we are really interested in,
is obtained by solving (2.40) for . The accuracy with
which A is obtained is not necessarily reflected in the
accuracy with which » is obtained. The fractional error
in n is related to the fractional error in A by

on OA (q—nP )
n AN g

From this equation it is clear that the most favorable
situation is when n—n»® is small with respect to 7, in
which case the fractional error in % is much smaller
than the fractional error in A. This condition holds
for ¢eH scattering, where the static phase shift is
positive and accounts for about 909, of the final value
of the phase shift, unlike the ¢*H case, where the static
phase shift is negative and the true phase shift is posi-
tive. Furthermore, whereas in the etH case the con-
vergence in /; is very slow, since one has to account for
the formation of virtual positronium and this is very
hard to accomplish with the form of the trial function
that was used, in the ¢e"H case the convergence in /; is
rather fast. This explains why the CCA, while relatively
ineffective in the e*H case, is quite effective in the eH
case. The contribution to 5 from the state /;=1, as seen
from Table II, is by far the most important one, as
expected, since the induced dipole potential which
varies as 1/r% is the leading term in the effective long-
range interaction.

In summary, the VB method gives results which are
in good agreement with results obtained by other
methods, with the advantage of giving rigorous lower
bounds. It should be noted that recent methods have
been developed for calculating upper bounds on the

2 C. Schwartz, Ann. Phys. (N. Y.) 16, 36 (1961).
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TaBiE II. The L=0 phase shifts in radians for kgg=0.4 ob-
tained with the variational-bound formulation. The estimate
7(VB) neglects the Green’s function term. The 5(VB) are the
rigorous lower bounds on the true phase shifts obtained by
restricting the virtually excited hydrogenic states to specific
values of the orbital angular momentum /. The quantity # is the
number of linear parameters used.

Singlet Triplet

States n  #(VB) 79(VB) n  #(VB) n(VB)
1s42p 8 1.2993
All s 13 1.2677 1.2695 5 2.25784 2.25784
All p 15 1.3910 1.3795 16 2.29195 2.29203
Alld 13 1.2619 1.2615 7 2.25970 2.25970
All f 10 1.2455 1.2455 5 2.25767 2.25767
All g 7 12417 1.2417 5 2.25738 2.25738
All (s+p) 28 1.4120 1.4029 21 2.29214 2.29222
All (s+p +4d) 41 1.4210 1.4112 28 2.29348 2.29356
All (s+p+d+1) 51 1.4229 1.4129 31 2.29365 2.29373
All (s+p+d+f+2g) 58 1.4235 1.4135 38 2.29368 2.29376

phase shifts,?21:22 thus bounding the phase shifts from
both sides, but these have not yet been applied.
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APPENDIX A: DETAILS OF THE CALCULATION

1. Form of the Matrix Elements

Since
PHQ=P(e?/r15)Q, (A1)
Eq. (2.33) can be written as
N o= (2mao/5*) (PP €*/112]0¥ 1) , (A2)
and K ., defined by (2.34) can be written as
K=K oo+Kuqo+Ke oo, (A3)

where
Ki o= (zmao/h2)(Q‘I'tq;[_ (%2/2m) (V24 V2?)

—e2(1/r4-1/r)—EJQ¥,,), (A4)
Kb,q0=2mao/1%)(Q¥ ;[ €*/712]10¥01) (AS)
and
K.,qq = (2mao/1?)(Q ¥4, (62/712)GT

X(e*/712)]0%0). (A6)

The 1/r;2 term is expanded in terms of Legendre
polynomials as

Ura= 3 SxPr(1+72), (A7)
A=0

where
Sa=r/rst, (A8)

21, Spruch, in Few Nucleon Problems, Ninth Summer Meeting
of Nuclear Physicists, Hercegnoui, edited by M. Cerineo (Federal
Nuclear Energy Commission of Yugoslavia, 1964).

2 Y. Hahn, Phys. Rev. 139, B212 (1965).
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The angular integrals occurring in (A2) through (A6)
involve f) and g, defined by

H=Ala, 05 L) = (Yrni(@ue), PrY oy (), (A9)
and

H=4 (l17l27l1,) l2/§ L)

=(Yru1(Q2), PrAY L1ty (Qe1)).  (A10)

Since
(A11)

Yraa(Qa1) = (— 1)+ LY 111, (Qns)
the relationship
(o)l 1" L)= (= )= L (Do, b\ l'; L) (A12)
follows. We also have the relationship
o=\ 1)""n, (A13)

where the f» and /%, are tabulated by Percival and
Seaton??® for all transitions for which ;<2 and ,'<2.
States with /;>2 were also included in our trial func-
tion Q¥,; the f) were evaluated by using the expression

fl(la:lb;lcald; L) = (— 1)l,l+l¢——L
X[(2la+1)(2h+1)(2041) 2lat-1) ]
la lc A lb ld A la, lb
G o o o ol
0 0 0/\0 0 0/l I
A tabulation of these symbols is given by Roten-
berg et al.?* The f’s are real and satisfy the relations

Jollylol b5 L) = 81,1181y (A15a)
f)\(llyl%lll:lz,; L) = f)\(ll,)ZZ/’llyl2; L) ) (AISb)

f’\(llyl%O;L; L) = 01 (A15C)

We introduce the operator J which interchanges I,
and I, and b, and d,, so that for an arbitrary function
F(ll)l2; bQ7dq):

]F(lbl?; bmdq):F(l?,ll; dq,bq) ’ (Alé)

and we let x;=7;/ao. Using Eqs. (2.15), (2.30), (A7),
(A8), and (A15), N, can be written as

Nq: (2/00)1/2(1+ej)fll(llyl%()’L; L)

i} . (Al4)

and
if L.

X/drzw(lz,dq; xg)uP<7’2)/d7’17’1R(1’1)Shw(l1,bq; x1).
(A17)
Using (2.30), (A7), (A8), and (A15), and introducing

rrdr LlA41)7 e

A= ——[——- :I—— , i=1 or 2, (Al8)
2mldxs? x:2 Xg

21, C, Percival and M. J. Seaton, Proc. Camb. Phil. Soc. 53,

655 (1957).

2¢ M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
Jr., The 3-j and 6-j Symbols (The Technology Press, Massa-~
Elguslst)&tts Insititute of Technology, Cambridge, Massachusetts,
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we have

4m

K =—(1+ 5])6lx11'5lzlz'
h2
X[ / driw(li,be; x1)w(ly by ; %1)
X/di’z?/Z)(lz,dq; xz) (A2'_E)w(l2/’dq’; xZ)
+ / draw(la,dg; x2)w(ly\dg 5 %)

X/dflw(l1,bq; xl)Alw(ll’,bq»; xl):' N (A19)
and
Kb,qql = 200—1(1—}-‘ E]) Z f)\(l1,l2,l1/l2,; L)
A

X / draw(le,dq; x)w(ly,dy 5 %2)

X/dﬁw(ll,bq; xl)wa(ll’,bq:; x‘1). (AZO)

Using in addition (2.24), K., .y may be written as
Ko g0 =(26¢*/a0)(1+€J)(1+eJ") fuu(l1,l2,0,L; L)
Xfll’(lll’l2/:O7L; L)

X / drargw(le,d q; x2) / dro'rd'g(e; ra,ra )w(ly \dy ; o)
X / dririR(r)w(ly,bg; %1)Sy

X/d?’;[lﬁlR(ﬁ,)wa],,bq'; xll)Shr 5 <A21)

where J’ exchanges /' and /', and b, and d,, and
g(e; 7,7") is given by (2.25).

The expression for N, given by (A17) requires the
knowledge of #P(r), the solution of the static equation
(2.17). This equation was solved numerically by itera-
tion. While the singlet case gives little trouble, the
triplet case requires special treatment because of the
existence of the solution #R(r) of (2.17). A procedure
given by Saraph and Seaton,?® which generates a
solution which is orthogonal to 7R(r), was used.

2. Choice of the Nonlinear Parameters

The trial function (2.30) contains two nonlinear
parameters, b and d, for each linear parameter c.
Certain values of b and d are not allowable since they
lead to singular matrices. In the triplet case, b can not

% H. E. Saraph and M. J. Seaton, Proc. Phys. Soc. (London)
80, 1057 (1962).
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equal d, and in both the singlet and the triplet cases one
cannot take two terms in the trial function with the
values of & and d interchanged. Furthermore, neither
b nor d can assume the value unity for /=0.

Two important simplifications are possible in the
course of searching. The nonlinear parameters are not
very sensitive to the coupling between different / states,
and the search was therefore carried out for each state
separately. The linear parameters are determined in
the final calculation in which all coupling is taken into
account. The K, 4 terms, which involve the static
Green’s function, are neglected during the course of the
searching. These terms have to be evaluated numerically
and this requires over 809, of the total machine time,
although their contribution to the phase shift is only
a few percent.

Different methods were used to obtain the d’s and
d’s for kap=0.4 and kao=0.6. For kay=0.4, a systematic
searching procedure was used. We first searched for a
one-term trial function by letting 4 and d run through a
wide range of values and choosing that set which gave
the largest value for the phase shift. Then, keeping the
first term fixed, we searched for a second term. As
additional terms were introduced, the old parameters
were kept fixed while the new parameters were varied.
This procedure was continued until the addition of more
terms contributed very little to the phase shift. For
kag=0.6, a procedure was used which saved much
machine time, was less tedious than the previous
method, and gave results which were almost as good.
In this case we simply formed many sets of #’s and
d’s for each I and chose the set that gave the largest
value for the phase shift and then searched for one or
two additional pairs of &’s and d’s as in the systematic
search procedure.

It was found that as the number of terms in Q¥,
became large, the accuracy in solving for V, defined by
(2.33), was often sharply reduced owing to cancella-
tion between elements of the matrix K, defined by
(2.34), during inversion. To insure the accuracy of our
calculation various checks were used, and only trial
functions which gave reliable results were retained. The
normalized determinant of K, N.D.(K), defined by

detK
N.D.K)=—-o/,

PR )

was used as a criterion for ill-conditioning of the matrix
K. If the addition of another term in the trial function
caused a marked decrease (several orders of magnitude)
in the value of N.D.(K), that term was rejected.
Another accuracy check was that the quantity

o= [lzn: <E] Kij6j+]\7i)2:,1l2 ’
n i=1 N,’

where the ¢’s are the computed values of the linear
parameters obtained from (2.51), be less than about
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1075, A further check used was to calculate A from (2.36)
and compare this result to the value for A obtained
from (2.39). The inequality (2.35) holds for any ¢ no
matter how inaccurate the inversion may be, and
therefore we have a rigorous result independent of the
inversion error. In practice we required that the two
values of A obtained from (2.35) and (2.39) agree to
five significant figures.

APPENDIX B: MATRIX ELEMENTS FOR L=0

We present here expressions for the vector elements
N, and the matrix elements K,(=Ka petKp pq
+K. g defined by (2.33) and (2.34), respectively,
where we replaced ¢ by p and ¢’ by ¢. The matrix ele-
ments are given for /=0 and /=1 where I=y=l=1,
for L=0. In the following we set 2m/%%*=1, and we use
the notation

Byy=bytby, Dp=dptd,,
A4,=140b,, Tpo=14d,,
a,=84,73, t,=8T ;3.

N, and K,,,, defined by (A21), are given in terms of
integrals involving #P(x) and g(e; x,2") defined by
(2.16b) and (2.25), respectively. Since #P(x) and
g(e; x,2’) can only be obtained numerically, these
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integrals must be evaluated numerically. We have

N=4v2 / e Py (a),
and " ’
Kc,,,q=32/ dxdx'ny(x)nq(x')g(e; x,2")
where o0

np(%)= (14 e/ ) (= ) 2+1)2w(l,dy; %)

X[Z(l7l+2;Ap) x)_a’pZ(l;Z)Z: x)aﬂl]
Z is defined by

Zmn,b; 2)= / 0 (. 23)m(&/5) xp(— )
0

which can be evaluated explicitly.® We may write
(1+€])Mpq= Ka,pq+Ks,pq,

and the M’s are given here in terms of the quantity 7,
where

I(mmn,b,p,d)= / dx Z(m,n,b; x)xPe%,
0

This integral can also be evaluated explicitly.® The
values of p and ¢ in the matrix elements correspond to
the first and second pairs of subscripts on the M’s,
respectively.

M iiro= S(ququ)_g[bpbq‘dedq— qu‘"qu_' (kz_' 1)]" apanpqns(dpdq— DM— kz) - tpthpq—'3(bpbq— Bzzq_ k2)
— 050,05t (1452 +4[1(0,2,B,4,2,D ) — 4,1 (0,2,4 4,2,D ) — 0,1(0,2,4 ,2,D 0) — 1,1 (0,2,B 4,2, T)
—1,1(0,2,B4,2,Tp)+0,0,1(0,2,2,2.D,.)+a,t,1(0,2,4 ,2,T )+ 05,1 (0,2,4 4,2, T )+ 2,1 (0,2,B4,2,2)
+a,t,1(0,2,4 p,2,T )+ 048, 1(0,2,4 p,2,T ) — a2yt [(0,2,2,2,T ) — a4t 1(0,2,2,2,4 ,)
— 00t pl (0,2,2,2,T ) — aptpt1(0,2,2,2, 4 )+ 0,044 51,1(0,2,2,2,2) ],
Miamo=—4X3"V2[I(1,3,Bp4,3,Dp)— ol (1,3,4,3,D ) =t I (1,3,B 14,3, Tp) 0ot (1,3,4 ,3,T5) 1,
Mirin= 2(4 !)2(ququ)—5[bpbq+dpdq—%(qu""‘ qu) - (k2_‘ 1)]+ [1(074>BP9)4)D17¢1) + (2/5)1(2,4,qu,4,qu)] .



