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Space- Time Symmetry Restrictions on Transport Coefficients.
II. Two Theories Compareti

%'. H. KLEINKR

Lincoln Laboratory, *Massachusetts Ilstitute of Technology, Lexington, Massachusetts
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The space-time symmetry restrictions on transport coeKcients given by two recent theories are compared
and the differences are exhibited in detail for the zero-magnetic-field electrical conductivity. The symmetry
restrictions of one of the theories are shown to be inconsistent with the existence of the extraordinary Hall
effect in ferromagnets.

l 'HE theory of symmetry of properties of crystals
has a long history. The implications of spatial

symmetry for macroscopic properties of crystals were
developed exhaustively by Voigt. ' Other restrictions
were introduced by Onsager" for transport coefficients.
The Onsager reciprocity relations are a consequence of
time-inversion symmetry. These developments, which
have been reviewed by many authors, 4 6 dealt with
crystals which are nonmagnetic (diamagnetic, para-
magnetic).

The eRect of spatial symmetry and time-inversion
symmetry on properties of magnetic as well as non-
magnetic systems was discussed initially in 195j. by
Landau and Lifshitz, ' ' was developed for equihbrium
properties by Le Corre' and Birss" and for linear
transport properties by Birss, '0 and. has been reviewed
at length recently"" Le Corre did not distinguish
between equilibrium and transport properties. Hirss,
in an example following his basic discussion" of the
symmetry of transport coeNcients, discusses the appli-
cation of symmetry restrictions to a (nonpyromagnetic)
antiferromagnet. He employs, essentially, the following
prescription (prescription A) for the symmetry restric-
tions on transport coefficients: combine the symrfIetry
restrictions arising from all spatial symmetry operations
mth the restrictions embodied by the usual OrIsager rec-
iprocity relations From B.irss's subsequent discussion'3
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"Birss does not adhere to prescription A in his subsequent
discussion of transport properties of magnetic crystals (Ref. 11,
pp. 149, 153, 226-236) which is confined largely to ferromagnets
and ferrimagnets magnetized to saturation. These systems are
represented by a model (Ref. 11,pp. 150, 153) in which the mag-

of saturated ferromagnets it appears, however, that he
does not regard this prescription as being appropriate
to all types of magnetic crystals. More recently sym-
metry restrictions on transport properties of crystals
have been derived by Kleiner'4 "treating time inversion
and spatial transformations on the same footing. This
results in a diferent prescription (prescription 8) for
symmetry restrictions on transport coefficients. The
spatial symmetry restrictions are the same as those of
prescription A, but for restrictions related to time in-
version, generalized OrIsager relations replace the usual
ones. In the present paper the symmetry restrictions
resulting from these two prescriptions are contrasted
and are confronted by experiment with particular re-
gard to thermogalvanomagnetic coefficients.

The space-time symmetry restrictions on the thernio-
galvanomagnetic coefficients of a crystal are determined

by its Laue group, ' " since spatial translations and
spatial inversion do not aRect these coefficients.
Symmetry-restricted matrices of the thermogalvano-
magnetic coefficients have been tabulated" by Kleiner
for each of the Laue groups according to prescription B.
The corresponding symmetry-restricted matrices ac-
cording to prescription A can be read from the same
tables by using an "eRective" Laue group instead of
the actual one. The "eRective" Laue group is obtained
from the actual one by prescription A and is a Laue
group in category" (a). It is the group generated by
adjoining time inversion as an element to the purely
spatial subgroup of the actual Laue group.

The symmetry-restricted matrices resulting from the
two prescriptions are in general diRerent, although they
are the same for nonmagnetic crystals. To illustrate the
difference, Table I exhibits the zero-magnetic-held

netization or spin distribution is determined solely by the applied
magnetic field. The magnetization distribution can then be re-
garded simply as an external influence acting on an electively non-
magnetic crystal, a situation in which the ordinary Onsager
relations apply. With this treatment Birss finds (in agreement with
experiment and in contrast to the result when prescription A is
used) that the extraordinary Hall eBect in ferromagnets is not
ruled out by symmetry (Ref. 11, pp. 231, 235).

'4 W. H. IQeiner, Bull. Am. Phys. Soc. 10, 1101 (1965).
j5%'. H. Kleiner, Phys. Rev. 142, 318 (1966).
"The Laue (or enantiomorphous) group of a given group is

defined here as the group obtained from the given group by
replacing every spatial translation by the identity translation and
every improper rotation by its proper counterpart. There are 32
crystallographic Laue groups, 11 of which characterize non-
magnetic crystals.
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TABLE I. Symmetry-restricted conductivity matrices
for H=O according to two theories.
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symmetry-restricted electrical conductivity matrices'
of the two theories for the 12 crystallographic and 2
textural' Laue groups for which they differ. This table
can be used in designing a comparative experimental
test of the two theories. Notice that for some Laue
groups the matrices are more highly restricted according
to one prescription, but for other Laue groups the other
prescription gives more highly restricted matrices. All
the Laue groups in Table I are consistent with the pres-
ence of a magnetic moment, and therefore describe ferro-
magnets, except 4' and 4'22'. One can expect that for
more complicated properties than conductivity the
difference between the symmetry-restricted transport
coefficients of the two theories will tend to increase.

Prescription A for symmetry-restricted matrices ap-
pears to be inconsistent with the existence of the extra-
ordinary Hall effect in ferromagnets. This conclusion is
based on the usual interpretation of Hall-effect data
taken on a ferromagnet, ""in which the electrical
resistivity component p„,(H) is assumed to be pro-

portional to RaP+RqM. Here H=BH is the mag-
netic field, M is the magnitude of the magnetization
(M= MM) Rp is the ordinary Hall coeKcient, and R&

is the extraordinary Hall coefficient. Consider the
ferromagnetic metal Co, for example. It has the hcp
structure and the easy direction of magnetization is
along the principal axis. The domain magnetization is
either Moa or —Moz, where Mo is the saturation
magnetization and 9 is a unit vector along the principal
axis. Consequently, M= (ft f&)—Va, where ft and f&
are, respectively, the fractions of domain volume with
M along z and —z. ft then follows that p„,(0) RqM,
and that p„,(0)WO if there is an extraordinary Hall
effect (Rq/0) and a remanent magnetization (M&0),
as in Co. To compare this experimental result with the
symmetry-restricted matrices" determined by theory,
we note that the Laue group for a single-crystal single-
domain sample of Co is 62'2'. It follows from Table I
that, according to prescription A, p„,(0) =p,„(0)=0,
in contradiction to R~/0. The same is true for a multi-
domain single-crystal sample, where p„,(0) is an average
over the domains. "On the other hand, prescription B
requires only that p„,(0)= —p,„(0),which is consistent
with 8~&0 and with the observed effect of exchang-
ing the subscripts x and y or reversing the magnet-
ization.

Antiferromagnetic structures for which the two pre-
scriptions predict different symmetry-restricted con-
ductivity matrices, as given in Table I, are exemplified
by MnF2, FeF2, and CoF2. The space group of these
crystals is P4'2/mam' and the Laue group is 4'22'. On
the other hand, the array of magnetic ions" alone has
the Laue group" of higher symmetry 4221', for which
the two prescriptions predict the same form for sym-
metry-restricted thermo galvanomagnetic coeKcients.
Thus, the lowering of the magnetic symmetry due to
the presence of the anions is essential in order that the
two theories give different predictions for the symmetry-
restricted conductivity. Because of the low electrical
conductivity of MnF&, FeF2, and CoF2, it may be that
an experimental test can be more readily accomplished
by measurement of a thermogalvanomagnetic coefficient
matrix different from electrical resistivity, or possibly
by a photoconductivity experiment.

cVote added ie proof. Shtrikman and Thomas" point
out that prescription A for symmetry restrictions on
transport coefficients excludes an extraordinary Hall
effect, in agreement with a conclusion of the present
paper, and they point out in addition that a magneto-
conductivity with a component linear in H is also ex-
cluded by prescription A.
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