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It has been shown recently that the calculated electronic band structure of transition metals may be
represented quite precisely by a model Hamiltonian with a nearly-free electron sp band crossing and hy-
bridizing with a tight-binding d band. The form of this model Hamiltonian is now exhibited as a transforma-
tion of the fundamental Korringa-Kohn-Rostoker formulation of the energy-band problem. The hydridiza-
tion appears as a resonance between a localized d state and the plane-wave band. In addition to throwing
light on some details of the model Hamiltonian, the derivation serves to express some of its constituents in
terms of simple atomic quantities. In particular, the structure and width of the d band and the hybridization
areall related to one infra-atomic matrix element. The d band appears as an interference between resonances,
its shape determined by purely geometrical structure constants and its width by the width of the resonance.
These relations are demonstrated quantitatively for the band structure of copper.

I. INTRODUCTION AND OUTLINE

HERE are three ingredients to the present
work. Saffren,! Ehrenreich and co-workers,? and
Mueller® have shown that the electronic band structure
of copper, up to somewhat above the Fermi level, may
be fitted very well by a model Hamiltonian of four
orthogonalized plane waves hybridizing with five
tight-binding 3d functions. Secondly, Anderson and
McMillen,* among others,?% have emphasized that the
hybridization springs not so much from a true s-d in-
teraction mediated by a nonspherical symmetric poten-
tial, as from a resonance interaction with the /=2 com-
ponent of the plane waves. Indeed, they found this
gives rise to some of the structure of the d-band in a
model of “liquid iron.” Finally, Ziman® has shown
formally from the Korringa-Kohn-Rostoker (KKR)
method?® that one must get the kind of band structure
one finds,® 1 if one postulates a 3d-resonant state in
a plane-wave band.

The first purpose of this paper is to carry Ziman’s
analysis® further in Sec. IT and derive in detail the
model Hamiltonian in Sec. III. At the energy where the
nearly-free-electron (NFE) band crosses the d band, the
interaction between them is a resonance interaction
with a phase shift

ne=tan"'GW/(Es— E)). 1)
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At energies high above E4, the dynamical effect of the
3d states on the plane waves (PW) is to make them into
orthogonalized plane waves (OPW). We formulate
therefore in Sec. IT the PW-d interaction in a complete,
consistent, phase-shift formalism embracing both the
hybridization and orthogonalizing effects. We find in
Sec. III that they give terms in the model Hamiltonian
precisely as postulated by Mueller.? It becomes ap-
parent from the derivation why the hybridization in-
teraction cuts off for £ somewhat beyond the radius of
the first Brillouin zone,® contrary to what one would
expect simply by calculating a PW hybridization
integral. This also serves to explain partly the approxi-
mate sum rules of Phillips.!! At the same time we
find an important extra potential term not included ex-
plicitly by Mueller,? the omission explaining why his
orthogonality coefficients differ radically from what
one would calculate from an atomic d orbital in the
usual OPW manner. The omission also explains why
he finds the main Ly'L; band gap in the NFE band
given largely by d effects, whereas simple estimates
from atomic energies would suggest that it is largely
due to s-p splittings. We should emphasize that we are
only interested in the band structure of one electron,
or rather one Landau quasiparticle, moving in the
periodic effective potential. We also restrict ourselves
to the nonmagnetic state, although extension to a
ferromagnetic one is formally straightforward. We do
not concern ourselves with the question (considered by
Hubbard!? and others) of when some magnetic state is
energetically favorable. Incidentally, we assume the
model Hamiltonian, with trivial changes for the body-
centered cubic (bcc) structure, applies to all transition
metals. Besides Cu,'~%1% it has been applied success-
fully so far to Ag,'® Au,'® Ni,2! and bcc Fe,' and the
band structures of other transition metals as far as they
are known are qualitatively similar.
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The main consequence of the resonance point of view
is that the d-d interaction in the band structure arises
from the interference between resonances on different
atoms. Let us consider one copper atom placed in a
free-electron gas. If we integrate outwards from the
origin at an energy FEg4 the wave function inside the
sphere of radius R inscribed in an atomic cell is approxi-
mately an atomic 3d function;

Pp(r<R)=dn=0(r) Y n(6,8). (2a)

Here ¢ is a radial d function normalized according to
JS'd%%dr=1, ¢ is the complete d orbital, and ¥y, is
the usual spherical harmonic. The function is contained
by the “centrifugal barrier” /(I4-1)/7? of the radial wave
equation, and once outside it, ®,, becomes a spherical
Bessel function behaving asymptotically as!é

®,,(r>R)~ (W /2K)Y%r 1 sin(Kr—3lr+1) Y 1. (2b)

Here K2 is 4, the energy of the resonance above the
bottom of the free-electron band. Equation (2b) is
proportional to W12 because W in (1) is essentially the
probability'¢ of the state ¢,, ‘“escaping from the barrier”
or “decaying into the plane-wave states.”

The d-d part of the model Hamiltonain derived in
Sec. III is almost identical with the /=2 submatrix of
the KKR secular equation, and in the Appendix we
rederive it in the approximation of a narrow band by a
“tight-binding” calculation with the orbitals ® of (2).
That this is possible is not immediately obvious because
the tail (2b) stretches to infinity and ® is not normaliz-
able. However, it turns out that the tight-binding
Bloch functions formed from ® are normalizable be-
cause there is so much destructive interference among
the tails from all the atomic sites. The outer part of ¢
merges into the first hump of the phase-shifted
function, and if one pictures the overlap with the first
shell of nearest neighbors, it will not differ much from
that of the more usual atomic orbitals. However, there
are some qualitative differences from the normal tight-
binding theory, because the energy E; lies above the
bottom of the plane-wave band, so that ® does not
decrease exponentially at large distances. We find that
in the limit of a narrow band (W — 0) the three-center
integrals disappear and all two-center integrals become
proportional to W. The latter can be seen as follows. A
two-center integral is

(®(site0) | V (site0)| tail from site s). 3)

One factor of W2 comes from the amplitude of the
tail. The remaining integral is, apart from irrelevant
factors, the matrix element

v (Koymie=0) = (0| V| ko) , @)

where | ko) is a plane wave of energy Eg with ko parallel

6L, D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press, Inc., London, 1958), pp. 441-3.
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to the axis of quantization of the m=0 function ¢,.
Now (4) is just the transition matrix element governing
the probability W of a particle escaping from the well.
Thus (4) gives a further factor of W2 and (3) is pro-
portional to W. We note that the contribution of distant
neighbors is of the same order in W as near ones, though
presumably much reduced by interference. The re-
mainder of (3) is a purely geometrical quantity con-
nected with the expansion of the tail centered at s in
terms of spherical Bessel functions and spherical har-
monics centered at the site zero. Dividing through by
W, we obtain a 5XS5 secular equation for the d band

det]|(const) Bum — [(E— Ea)/3W Joum (=0, (5)

where the B’s are determined by the geometrical fac-
tors. They turn out to be in fact just the structure con-
tants of the KKR method,® and we are back to the same
secular equation as found for the d-d part of the effec-
tive Hamiltonian in Sec. ITI. The analysis in the Ap-
pendix establishes therefore that the d band can indeed
be interpreted in terms of theoverlap of resonance
orbitals ®(2) centered at each atom, exactly as in the
tight-binding method except that the term ‘“tight”
binding is here a misnomer since the orbitals are
unbound.

Finally, in Sec. IV we illustrate the usefulness of (5)
for numerical and analytical work. We show that our
arguments can be substantiated quantitatively for the
band structure of copper as calculated by Segall.? The
KKR structure can be determined from tables!”!® ag
a function of k and E. If we set E in the B’s equal to
the mean position E4 of the band, then the skape of
the d band is determined purely by the structure
constants, and its scale by the hybridizing interaction
W. Moreover, it is the same W that gives the hybridiza-
tion splitting which can be seen® in E(k) between the d
band and the plane-wave band where they would other-
wise cross. W'/2 can be evaluated from (4), the vital
part of which is what we term the reduced matrix
element

M= / Vrtdr. (6)

We have estimated M by graphical integration from
the Chodorow potential® which is very close to the /=2
potential used by Segall,® using for ¢ a Hartree-Fock
orbital. The only quantity taken from Segall’s band-
structure results is the mean energy E, of the d band
above the bottom of the plane-wave band. With simply
a slide rule we can then calculate the hybridization
splitting between the d band and the plane-wave
band, and with the tabulated KKR structure con-

17 B. Segall and F. S. Ham (unpublished). A copy of this report
may be obtained as described in Ref. 18.

18 F. S. Ham, Phys. Rev. 128, 82 (1962).

19 Taken from the table in Ref. 10.
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Fic. 1. Symmetry levels in
the d band of Cu calculated by 3
the method of Sec. IV and 03
compared with Segall’s results
(Ref. 9). L

This
Calc.

Segall

stants,”?° the levels of the d band. The main energies
in the d band at symmetry points are compared with
Segall’s® in Fig. 1. The over-all agreement is excellent
within the 109, accuracy of some of our estimates.
Our levels L; and X; lie lower than Segall’s, as they
should, because we have neglected the big L,L," and
X X band gaps as explained in Sec. IV. Incidentally,
we note in connection with our discussion of Eq. (5),
that although Segall’s d bands are considerably wider
than those of Burdick, the ratios of the overlap integrals
are nearly the same, resulting in bands of very nearly
the same shape.

It is interesting that the width of the d band in (5)
is determined through W by the inifra-atomic matrix
element (4), (6). No inter-atomic overlap integrals of
the normal kind enter our formulation of the d band.
The ratio between the different overlap integrals, if
one expresses the d band in tight-binding terms,?3:2!
is contained implicitly in the structure constants B.
Conventional atomic overlap integrals are difficult to
calculate reliably in solids, and still more so their
change with interatomic distance. However, in our
theory we might expect the intra-atomic reduced
matrix element (6) to remain constant under small
changes of structure or volume of the metal. Our
method should therefore allow calculation of the changes
in band structure with strain or more complex distor-
tions, relating to measurements of the piezoreflectance
of transition metals and the whole formulation of the
electron-phonon interaction. This hope is borne out
by the first such calculations,!® which will be presented
elsewhere, namely, a simple volume change in Cu and
Ag where the predictions of the theory are checked
against detailed band-structure calculations. Since we
have shown that it is fundamentally valid to describe
the d band in tight-binding terms, a simple volume
change should establish the variation of the overlap

M} am indebted to Roy Jacobs lor letting me use his table of
the C’s which are the Clebsch-Gordan coefficients relevant to the
particular definition of spherical harmonics used in Ref. 17.

21 J, C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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integrals with distance, and this in turn determine the
change of band structure under a shear strain without
the necessity of ever having to recalculate the KKR
constants for the sheared structure.

II. THE SECULAR EQUATION

For monatomic crystals Ziman® has derived the form
(in units #=2m=1)

det”(lk_gl2"E)5gg’+rgg’“=0 (7)
for the secular equation for the band structure, where
Tge=T(k—gk—g’)

[(4vr>2N ,][jz(Ik—glR)jz(lk—g’lR)]
— tann;
JUKR)ji(KR)
X[ Vin*(k—8)Vim(k—g)], (8)

l

cotn,’=cotn;— [#(KR)/7,(KR)]. )

Here #; is the phase shift, K?is the energy E, N~1is the
volume of the unit cells, R is the radius of the inscribed
sphere, and the other symbols have their usual meaning
as defined by Ziman.® In his formalism, the spherical
harmonics ¥, were chosen in such linear combinations
that they were all real, but that restriction is not neces-
sary in what follows. The argument k—g of V., denotes
the angular direction of the vector k—g. As regards the
/=0 and 1 terms in (8), the phase shifts will be small
(modulo 7) because of the cancellation theorem,?*—24
and T corresponds to a weak pseudopotential as dis-
cussed already by Ziman.® He has also pointed out®
that an /=2 phase shift of the form (1) will give some-
thing like a resonant, hybridizing interaction between
the NFE and d bands.

We now consider the /=2 phase shift in greater
detail. We first note that if 12 is given by (1), then

cotny’= FW) Y Es— E)— (ns/ j2) k=

=GW)(Ed—E), (10)
where £4 is a shifted-resonance energy
E/= Ed—'%Wﬂ2(KR)/]2(KR) . (11)

Thus 55’ has the same structure (1) as 5z, and we shall
henceforth drop the prime from E;" for the sake of
simplicity.

The parameter W can be evaluated by substituting
(2), (3) into the integral formula for the phase shift.?

22 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

23 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
( 2 B) J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
1962).

% A, Messiah, Quantum M echamics (North-Holand Publishing
Company, Amsterdam, 1961), p. 405. Note that the particular
form of this reference requires ¢ of (2) to be multiplied by
(2K /W )2 for appropriate normalization.
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At resonance 7y'=1r and we obtain

00

GEw)iiz= —K”“/ Jo(Kr)Veridr, (12)

0

where V is the potential acting on the /=2 wave. In the
case of the 3d transition series, this is the full potential:
for the 4d and 54 series it is a pseudopotential with 3d
and 3d, 4d cancellation, respectively.?*=24 Thus the first
bracket in (8) becomes

—(4m)?!NK™! tanp,’

0 2
[41rN” 2 / 7o(Kr) V¢r2dr:|
0

- - RNCE)

We turn now to the opposite limit £>>F4. With the
usual OPW construction,?® we write

Y(r)= j2(Kr)—Bo(r), (14)

b= [ ja(Kr)dridr, (15)
0

and again substitute in the integral formula for the
phase shift,? obtaining

sinn2'=—K/ 7o(Kr)V jo(Kr)r2dr
0

—I—KB] Jo(Kr)Veridr. (16)
0

Here we have written 7o’ rather than z, because the
difference has already been absorbed into (13). In order
to simplify the last term of (16), we write V as
—T+T+V, where T is the kinetic-energy operator.
The —T operates forward on 73(K7) giving a factor
K?=FE (since 7, is just part of a plane wave), and the
remaining Hamiltonian H= TV operates on ¢, giving
a factor E,4. Thus the last term of (16) becomes

00

—(E—EBK ] ). an

0

Actually, ¢ is not strictly an eigenstate of H and we
should include the asymptotic tail (2b) which makes a
small contribution to the integral in (17). It can be
evaluated with the Wronskian theorem,?” and vanishes
in the limit of a narrow resonance, so that we drop it.
Since (16) applies at an energy where the scattering
has become small, we ignore the difference between

26 J, M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, England, 1964).
27 Reference 25, p. 99.
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sine and tan, and we write

— (4m)?!NK' tany,’

= (4w)2wa [7e(Kr)2Vridr+-(E—Ea)

X[47r]\71/2/
0

Having obtained the two formulas (13), (18) in
different energy regions, we now add them to give the
variation of tanny’ over the whole range. This procedure
is justified by the fact that one obtains the first term of
(18) together with (13) in a more careful treatment? of
the resonance. Furthermore, in order for tanyy’ to have
the correct K21 analytic variation® near K=0, we
need to interpret K in (11) as E'?, i.e., varying with
energy, and not as its value E,? at the resonance. This
appeal to analytic properties is not just an empty
gesture, since in some calculations®® the d band straddles
the zero of energy which in the derivation of (8) is
the muffin tin constant.

The remaining two factors of (8) may now be grafted
onto (13) and (18). The 73(Kr) in (13), (18) may to a
very good approximation be replaced by (K7)? over
the range of integration which really extends only to
R. The same applies to the js’s in the middle factor of
(8), and its effect is therefore simply to replace the two
j2(Kr) in (13), (18) by ja(|k—g[7) and jo(|k—g'[7).
As usual,

o0

jz(Kr)¢r2dr:| . (18)

drNV22 3, Go(kr) Y om (1) Van* (k) (19)

is the /=2 component of the plane wave | k) normalized
over the unit cell. The last factor of (8) can therefore
be incorporated in the integrals to express them in
terms of plane-wave matrix elements. We have from
(8), (13), (18), and (19) that the /=2 contribution to
Fggl is

~"Zm’Y m*'y 'm
e Yo+ (E—ED) L bgn*bgm, (20)
E;—E
where
Ygm™= <¢m[ Vlk"'gl> ’ (21)
bg’m= <¢m! k—g,> b (22)
Vage={k—g| VP k—¢'), (23)

and P, is a projection operator to pick out the /=2
component. The last term of (20) is the usual orthogo-
nality term of an OPW secular equation,? and the
middle term the /=2 contribution to the gg’ Fourier
component of the potential. The secular equation (7),

28 W. Brenig and R. Haag, in Quantum Scattering Theory,
edited by M. Ross (Indiana University Press, Bloomington,
Indiana, 1963), p. 64.

20 Reference 25, p. 392.



153 s-¢ INTERACTION IN

still expressed entirely in a plane-wave representation,
can therefore be written

Zm'y m*'Y 'm
detX=det||Mp———""l1=0,  (24)
E,—E
Mgg'= (lk—gl 2_E)6gg’+zl Vl,gg'
+(E'— Ed) Zm bgm*bg’m ) (25)

where /=0, 1 terms are expressed for brevity as Fourier
components Vg of the pseudopotential.

III. THE MODEL HAMILTONIAN

In order to arrive at the model Hamiltonian, two
transformations of (24) are necessary. Consider

My vem™
detZ=det|| = ° |=o. (26)

(Ea—E)8mm i

’)78’m

Abbreviating the matrix (Eq—E)dun as C, we have
the identity

’M v* I 0’ ,M—’y*C‘lﬁi v*
5 ¢ l=cy 1l | o

Now C'is (Eg— E) " '8um and detC= (E;— E)®, whence
(27) becomes

@7

detZ= (Eq— E) detX, (28)

which proves the equivalence of the secular Egs. (26)
and (24), the factor (E;— E)® being of no consequence.

In order to describe the band structures of transition
metals up to and including the first band gap of the
NFE part, we wish to have an effective Hamiltonian
with a limited number of plane waves. As usual in a
face-centered cubic (fcc) structure we need four? (which
we denote by G), and we want to decouple them from
the higher plane waves (HPW, denoted by h). The
principle is exactly the same as with nontransition
metals.’%-%1 We write (26) in the form

My M (v¥am
M*¥ew Moer (v¥om (29)
7~mh’ 'imG' (Ed_' E) amm’

and eliminate the terms connecting My, with the rest,
using the transformation

4 BXII —A‘IB~
B* cl |-CcB* I
A—BC-'B* 0
=' _ ' (30)
0 C—B*4—'B

%0N. W. Ashcroft, Phil. Mag. 8, 2055 (1963).
3P, W. Anderson Concepts in Solids (W. A. Benjamin, Inc.,
New York, 1963), p. 37.
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Here the first determinant on the left is proportional to
the product of the two subdeterminants on the right,
and the roots of the former considered as a secular equa-
tion are to be found in the latter pair. We take for B

the matrix
[(Mue (v)am ], (31)

and find in the lower right position our desired secular
equation

(Maer (v )am
H ¢ =0. (32)
(7 )MG' mm'
Here v’ is the “renormalized” interaction matrix
) en— (V) e uw (V)1 m- (33)

Similarly, M’ has the same form as M (25) except that
the pseudopotentials are renormalized by higher order
contributions

— (7 ea(M Vs Viver (34)
from the HPW’s. Finally, the d-band part of (41) is
Dy = (Ea— E)8mm— Fms(M)ue (V) , - (35)
of which the lowest order term is
Y muY hm! *
(Eq—E)bmm—>n———— (36)
) " |k—h|2—

We multiply this by —2K/W, substitute in (21), and
undo backwards the steps (19), (10), and (12) to obtain

QK /W) Dy =3 Flias® K cotnd
- mm! = ———————— Omm K COtR2’,
"|k—h|*—E ’
(Ik=hIR) e
Fop=4r Nt /zj—z——*—yzm(k h).
Jo(KR

Equations (32) to (37) define our model Hamiltonian.
We note the reduction to a 9X9 secular equation is in
principle an exact procedure,®®3! at the cost of the
resultant matrix elements becoming energy-dependent.
One hopes this is not large if the choice of separation
has been judicious, and much of it can in any case be
absorbed into the £ dependence of the matrix elements
by putting E~%? in the NFE band. The nearly-free-
electron part M’ and hybridization matrix elements
have the form (25) and (21), except that the numerical
magnitudes are altered by the higher order corrections.
M’ contains I=0, 1, 2 pseudopotential matrix elements
apart from the explicit display of the repulsive terms
for =2 in OPW form. This is precisely the form used by
Mueller,?® while Ehrenreich and co-workers? absorb the
OPW terms into the pseudopotential matrix elements.

In (29) the d band has zero width, and it is interesting
that the hybridization yu» with higher plane waves
provides the width and structure of the 4 band in
(35) and (36). This presumably reflects the need for
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short-wavelength components to correct the wave
functions in the region of overlap. The hybridization
remaining in the model Hamiltonian is therefore only a
residual interaction, the long-wavelength part. This
explains why Mueller’s® hybridization matrix elements
differ radically from what one would naively expect
from (21). We estimate from (21), in the manner of
Sec. IV,

Yiem=2475(0.6%)Y 5, (k)Ry, (38a)
whereas Mueller gives?
Yiem=0.5972(4.3k) Y 2(K)Ry. (38b)

Expansion of the Bessel functions shows that the two
agree approximately at low &, but Mueller’s cuts off
much more rapidly at & around the radius of the
Brillouin zone because this part of the bare hybridiza-
tion has been transformed away into the structure of
the d band.

The mathematical transformation between (29) and
(32) gives some formal justification for the approximate
partial effective-mass sum rules noted by Phillips.!t
Let us consider (29) truncated at some large finite num-
ber 444 plane waves. An effective-mass sum rule is
simply a statement of the invariance of the term in k2
in the trace of the Hamiltonian, and the (m*)~! sum
over all bands for (29) must be 244, the d bands con-
tributing zero because of zero width. In the form (30)
the upper left matrix would describe the % upper bands,
which by the usual cancelation theorem??-%¢ behave
as nearly-free electrons and hence have an (m*)!
sum close to k. This leaves the remaining lower 445
bands of our model Hamiltonian with an (#*)~! sum
close to 4. The sum rules exhibited by Phillips!! are
special cases of this at symmetry points.

In order to investigate the nature of the d band, let
us arbitrarily extend the summation in (37) over all
g’s, i.e., include the four G’s, and consider the resulting
5X5 secular equation in isolation. Comparison with
Ref. 8 shows it is precisely the /=2 part of the KKR
secular equation:

detHBzm,m: - Bmm'K COtY]z” =0. (39)

Including the four G’s in the summation affects all the
d levels at a general point k, but only one state along
I'X and T'L with A; and A; symmetry, respectively,
these are the hybridizing states. For the remaining
states the v'yx_g,n are zero for the lowest two G’s
by symmetry and small for the other two G’s because
the effective hybridization matrix elements cut off at
large |k—G]|, let us call these the pure d states. We
can say precisely how much hybridization the 5X5
equation contains: The energy denominators in (37) or
comparison with the full KKR equation with no=7;=0
shows (39) contains hybridization with a pure free-
electron band, and K must now be measured with
respect to the bottom of that band. By substituting (1)
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into (39) we may write it as

Z’K'W aB 2m2m’
()
Ka 47

Beeby and Edwards® have shown that the KKR
equation may be transformed to tight-binding form
in the case of negative energies where the atomic
orbitals decrease exponentially with distance. In the
Appendix we give a proof for positive energies which
shows that the d-d part (40) of the model Hamiltonian
can be interpreted as due simply to the overlapping of
resonant orbitals ®,,, Eq. (2), on all the atomic sites s.
We construct, exactly as in the tight-binding method,
the Bloch function

Yim(r)=N'"2 3 exp(ik-s)®u(r;s), (41)

and prove that the Hamiltonian matrix in such a
representation gives exactly the secular equation (40)
in the limit W — 0 of a narrow band. One point of
interest emerges. The structure constants B in (40)
depend on energy as well as k. If in them we set E to the
mean value £4, we obtain a band whose width is pro-
portional to W and whose shape is determined by the
B’s. The results in Fig. 1 were calculated in that way,
and the excellent agreement with Segall® for the struc-
ture of the band as regards the pure d states suggests
that it is a good approximation. Now in the analysis of
the Appendix we find that this approximation is
equivalent to taking two center integrals only, the
three center integrals contributing an infinitesimal
fraction of the bandwidth as W — 0. In Mueller’s
scheme,® the shape of the d band was fitted first by
seven nearest-neighbor parameters P, to Ps which were
later reduced to three two-center integrals and one
three-center. The success of the narrow-band approxi-
mation in Fig. 1 suggests that it may be more significant
to introduce two-center integrals for nearest and next-
nearest neighbors which are intrinsically of the same
order in I¥, and to ignore three-center ones completely.
We note the three-center integrals correspond to crystal
field effects, since in the KKR procedure the potential
is spherical in each cell. It is interesting that they appear
to be so small, at least with a “muffin tin” potential.
Incidentally, one can, of course, always do a tight-
binding expansion of E(k) and interpret the coefficients
as overlap integrals of Wannier functions, but in general
these depend on the crystal structure, whereas our
orbitals (2) and the two-center overlap integrals are
independent of structure. Their variation with distance
in different types of strain should therefore always be
the same.

In Mueller’s® model Hamiltonian, the orthogonality
coefficients are given by

bim=0.9275(3.8%) Vo (K) ,

det

!=0. (40)

(42a)

32 J. L. Beeby and S. F. Edwards, Proc. Roy. Soc. (London)
A274, 395 (1963).
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which differs radically from what we have estimated
from an atomic orbital??

b= 7.4 72(1.26) Vam(K) . (42b)

The two agree approximately at low %, but Mueller’s
cuts off much more rapidly at larger k. Unlike the
hybridization matrix elements, the orthogonality terms
are not transformed away by (30), and the cause of
the discrepancy is a different one. In Mueller’s model
Hamiltonian the (000), (111), and (200) matrix ele-
ments of the potential are treated as constants, in-
dependent of %, and this approximation has certainly
been found to work quite well in many elements as
regards the weak /=0 and 1 pseudopotential. However,
comparison with (23) and (25) shows that Mueller’s
potential matrix elements include V,, the full I=2
potential, approximately equal and opposite to the
orthogonality terms which later largely cancel it.
Moreover, this large potential has a strong % depend-
ence, approximately as k* in the diagonal element.
Since by, varies as k2, the last two terms of (20) should
therefore have the form (in the diagonal matrix
elements)

—ak*+(E— Eq)Bk:. (43)
We can write the first term as
—akt=—aky*—a(l—ke*/kY)k*, (44)

where ko is the value of % where the free-electron
parabola crosses E4. Now the first term in (44) is a
constant which can be included with the pseudopoten-
tial matrix elements, and the second term included with
the second term of (43) to give an effective

Bgffz' ﬁ-—a(l - k04/k4)/(E— Ed> .

The neglect of the term —ak* therefore makes the
pseudopotential matrix elements algebraically smaller
and results in reduced, partially cancelled, orthogonality
terms, as found in Mueller’s scheme.

The omission of an explicit —ak* potential term ex-
plains another curious aspect of Mueller’s results.?
In his analysis, the LiL,’ band gap in the conduction
band is largely due to the d-orthogonality terms, i.e., of
I=2 origin, whereas very simple estimates {rom atomic
data suggest it is largely an s-p splitting. By treating
the states L, Ly’ as purely s and p, respectively, we
can estimate the gap by taking simply the difference
A1—Ao in the well depths of the model potential of
Abarenkov and Heine.?>3 We find?®” 0.30 Ry compared
with 0.335 and 0.436 Ry calculated by Burdick!® and

(45)

3 B. J. Austin, thesis submitted to University of Cambridge,
1963 (unpublished).

34 Reference 3, Fig. 2.

3% V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).

36 A. O. E. Animalu and V. Heine, Phil. Mag. (to be published).

$71. V. Abarenkov and V. Heine, Tech. Report No. 1, Solid
State Theory Section, Cavendish Laboratory, Cambridge,
England, 1965 (unpublished).
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Segall,® respectively. The gap is given by terms
Voi(4+)+Va(—=)+(OT)(+), (46)

i.e., I=0, 1 pseudopotentials, /=2 potential, and /=2
orthogonality terms, where all three appear to have
approximately the same magnitudes and signs shown.
By lumping the first two together in a total matrix
element V(111) which is small, Mueller finds the gap
given largely by the third. However, a more rational
interpretation is to group together the last two terms
in (46) since they are both /=2 and cancel approxi-
mately in the usual manner of the OPW cancellation
theorem.2?=2¢ The gap is then exhibited as due to the
1=0,1 pseudopotential.

IV. HYBRIDIZATION AND THE d BAND

We have emphasized in Sec. I that the shape of the
d band is largely determined by the KKR structure
constants at energy FEg4, while the width of the d band
and the hybridization with the conduction band are
both determined by the reduced matrix element M,
Eq. (6). We shall now exhibit these relations numerically
in the band structure of Cu as calculated by Segall,®
and in the series V to Cu calculated by Mattheiss.

The first step is to calculate M, Eq. (6), which we
have done taking the nearest Cu 3d orbital at hand,?
and the Chodorow potential'® which does not differ
substantially from the /=2 potential used by Segall.?
By graphical integration we obtain

M=6.1 Ry atomic units (a.u.). 47

For % along the symmetry directions T'L(111), (Fig.
2), and T'X(100) in the Brillouin zone, only one of the d
bands (A1 and Ay, respectively) hybridizes with the PW
band due to symmetry. These consist of d states with
m=0 quantized about the direction of k as axis. The
hybridization matrix element therefore is (4)

v (k,my=0)
=4x N2V 3(§=0) / Fo(kr) Vrdr. (48a)

Our % is sufficiently small that we may write 72(x)
=22/15, and (48a) reduces to

(4wN/45)12k2M (48b)

We have estimated %o and y(ky) from Segall’s band
structures in the manner of Fig. 2, since the place where
the NFE and d bands would cross in the absence of
hybridization is a convenient place to discuss y. The
results are shown in Table I and compared with the
v’s calculated from (48b) by substituting for ky. The
agreement is satisfactory within the 109, accuracy
inherent in reading the curves and in our estimate of M.

38 L. F. Mattheiss, Phys. Rev. 134, A970 (1964).
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TasLE I. Hybridization matrix element at
d-PW crossover.

Direction ko v (calc.) v (Segall)
a.u. Ry Ry
TL 047 0.080 0.087
rXx 0.50 0.092 0.105

We now turn to the form of the d bands as deter-
mined by (40). In Segall’s band structure these may
be taken to lie at a mean energy of?

E.s=0.35Ry (49)

above the bottom I'y of the NFE band. This corresponds
roughly to e=0.37 in the dimensionless units of Ref. 17,
which is one of the energies at which the structure
constants have been tabulated. With these tables!” and
the appropriate Clebsch-Gordan coefficients?® we have
evaluated the dimensionless constants (aBam,om:/47)
in (40). The energy levels at T, X, and L are given in
Table IT in terms of (eB/47). They have to be multiplied

TaBLE II. Energy levels of d band at symmetry
points in units of 27W /Ka.

T2 Ty X1 Xs X3
1.711 —0.23 —6.24 3.50 —4.02
X L, Ls Ls
3.03 —6.57 3.12 —0.47

by 2oW/Ka to give E— E4, where W is given by (12).
With the same expansion of the Bessel function as
before we have with the use of (6):

2aW /Ka=(47/225a)K* M. (50)

Since the structure constants vary approximately as
K~ it is important in (50) to take K2=0.315 Ry cor-
responding exactly to the e=0.37 of the structure con-
stants. The final energy levels incorporating (50) and
(47) and the addition of (49) are compared with Segall’s
in Fig. 1. The agreement for the pure d levels (i.e.,

Fi6. 2. Band structure of Cu (schematic) along T'L. Solid line—
hybridizing bands; dashed line—pure d bands, dotted line—how
the plane wave and A; d band would cross at %o in the absence of
hybridization. The hybridization matrix element v at ko, would be
given exactly by half the gap at the minimum separation of the
two bands if y were a constant. Since v varies as &2, the value so
obtained is only approximate.
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all except L;, X1) is remarkably good, except that the
width is somewhat too small, which is not surprising in
view of our method of estimating M. The important
point to note is that increasing M by 99, would result
in excellent agreement for doth the width of the d band
and the hybridization interaction in Table I, which
verifies our assertion that these two quantities are
determined by the same parameter.

The levels L, and X, in Fig. 1 are depressed by an
amount y2/AE because of hybridization with the higher
levels of the same symmetry. In Segall’s band structure
these latter lie at the top of the first band gap in the
NFE bands. In our case, (40) corresponds to hybridiza-
tion with a perfectly free electron band, i.e., in the case
of X; with a level at (2r/a)?=0.86 Ry. From Segall’s
table? of energy levels we have that our AE is 0.690 Ry
compared with his 1.055Ry. The total amount of
hybridization can be estimated?®® as 0.072 Ry for Segall,
which incidentally is enough to depress X; from above
X3 in a pure d band, to below X;. Our hybridization
should therefore be about 0.038 Ry larger. Moving our
X level up by that amount would restore its position
relative to X; nicely the same as for Segall. A similar
argument may be applied to L;, where the effect is even
larger because the L; NFE level lies lower.

It is illuminating to consider the over-all width of the
d band from a cruder point of view derived from the
cellular method for band-structure calculations. We
expect the lowest energy state in the d band to have
bonding character between nearest neighbors. Indeed,
we find this to be so in the x=0 plane if we form a tight-
binding function with atomic orbitals of yz symmetry
for the X3 level at k= (27/a)(1,0,0) which in the absence
of hybridization lies lowest in the band.* We would
therefore expect in the spirit of a Wigner-Seitz cal-
culation that its energy corresponds approximately to
the boundary condition

(dy/dr)r=0,

applied to the /=2 radial function at the radius R of
the inscribed sphere. One might argue whether to use
the mean atomic radius instead of R, but the angular
functions concentrate the orbitals in specific directions
and R, half the nearest-neighbor distance, is probably
what is relevant here. Similarly, the level X5 at or near
the maximum of the d band is given by the antibonding
boundary condition

(51a)

Y(R)=0.

Now the wave function at and beyond R is completely
determined by the phase shift (1) according to Eq.
(A3) of the Appendix, and we can calculate the energies

(51b)

3 Reference 3, Figs. 6 and 7. Note, however, that these really
refer to the Burdick band structure, but that the hydridization is
nearly the same for k near the zone faces (Ref. 3, Table III).

4 Reference 3, Fig. 6.
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which give (51),
Emax_‘ Ed = %W(n2(KR)/]2 (KR)) ’

Emin"_Ed= —%W(’}’Lz’(KR)/]2’(KR)) . (52)

We again expand the Bessel functions and obtain for
the width A of the d band without hybridization

A= Eppx— Enin="56.25W (KR)~®. (53)

This result can be simplified by substituting for W
from (12) and (6);

A=3M?R-5, (54)
We obtain from (54) A=0.227Ry, in unexpectedly
good agreement with X;—X3=0.226Ry calculated
(Fig. 1) with the KKR constants for the same value of
M. The closeness of agreement must be regarded as
fortuitous, since Wood** for example found the 3d
bandwidth of iron to be 159, greater in the bcc phase
than in the fcc with essentially the same potential,
so our formula can only be approximate. We note from
(54) that A is independent of K, i.e., of how high above
T'; the d band lies. In this regard it behaves like a con-
ventional tight-binding band, and the resonance effects
which depend on K all cancel out. The prediction of
(54) that the bandwidth should decrease as R—5 on
expanding the lattice appears to be in close agreement
with the results of actual band structure calculations.'®

Tasie III. Bandwidth and hybridization in the 3d-
transition series, after Ref. 38.

v Cr Fe Co Ni Cu
ARy) 0.49 0.50 0.38 0.32 0.29 0.21
v(Ry) 0.24 0.24 0.20 0.15 0.14 0.11
ko(a.u.) 0.64 0.65 0.69 0.62 0.61 0.57
Structure bce bce bce fcc fce fce

Eq. (55) 14 14 1.9 2.2 21 1.9

We can use (54) to trace the relationship between
hybridization and bandwidth in the series of metals V
to Cu. The values of v and k&, (Fig. 2), as read off from
the band structures,® are shown in Table III. Elimina-
tion of M between (48b) and (54) gives

Ak?*NR5/y2=45/8r=1.79. (55)

The left side of (55) is also given in Table III, and is
reasonably constant about the predicted value, whereas
A for example varies by a factor of 2.4 between Cr and
Cu. It is not clear whether the remaining discrepancy is
real, or comes from the manner of reading v from the
curves as described in Fig. 2, or from the fact that the
E(k) were calculated only at three intermediate values®?
of k£ between 0 and 27/a. In particular, the low values
of the product (55) for V and Cr are puzzling, since the

41 7. H. Wood, Phys. Rev. 126, 517 (1962).
# L. F. Mattheiss (private communication).
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bec structure tends to give a larger A than the fcc, as
already remarked.
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APPENDIX

Our purpose is to prove that the Hamiltonian matrix
H,w (k) calculated with the “tight-binding” basis set
(41) leads directly to the secular equation (40).

®in (2) is the solution of

(—V2—E)®=—V(r)® (A1)

and can be written
&(r) = ®(free)+ / Gox, V()o@ )dr', (A2)

where ®(free) is the free-space ‘“unperturbed” wave
function. The two terms are exhibited explicitly in*
KR (A3.2)

(1)~ AL jo(Kr)— tanngna(Kr) ]V m(r),  (A3)

and since at the resonance n,=3iw, the first term is
negligible compared with the second and we drop it
from (A2). G, is given by KR Eq. (A2.2) but we need
it in the slightly different form

Gl =~ vjany 3 T

K'—1Lig

appropriate to periodic boundary conditions in a box
of M cells and total volume M/N. We therefore have
from (A2) in the notation of (41)

®,(r;8)=

2 T T g, 49
M ® ®2—E,y FIen )

where using (2a) we have written ¢,, instead of ®,, on
the right since V extends only to radius R. The factor
exp—1x-s comes from centering the ®,, at s.

Down the diagonal of H,,,.» we have of course Eg8um’
and we now calculate the two center terms

> expik-s{®,(0)| V(0)| D (s)). (A6)

Here the term s=0 is excluded. Let us temporarily
include it and subtract it out later. As before, we can
replace ®,,(r,0) in (A6) by ¢n(r) because the V term

4 We denote in this way the equations of Ref. 8.
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operates only in cell zero, and we substitute (AS) for
®(s). Equation (A6) then becomes

N ' expix- (r—1’)
o //ZSZZK: expz(k—x)-s—T-E———fﬁm(f)

Ki—Llq

XV(@) V(") pu(r)drdr'. (A7)
The summation over s gives zero unless k—« is some
reciprocal lattice vector g in which case it gives M. The
central part of (A7) becomes therefore

xpi(k+g)- (r—r’
Ny expi(k+g)- (r—1’) , A8)
£ (k-+8)*—E,

which is just the Green function G(r,r’) of Ref. 8. We
now note from KR Egs. (A2.21), (A2.2) that the
s=0 term of G which we have to subtract out is just
Gy, and from KR Eq. (A2.1) that G—Go=D, whence
(A7) becomes

/ / D(,t" )¢ @)V (@) V(") (t)dr'dr. (A9)

The expansion KR Eq. (A2.3) and our Eq. (12) show
(A9) is equal to

Aom,2em(W/2K),

from which (40) follows.*

The proof is incomplete in two respects. First we have
assumed implicitly that yi. is normalized correctly to
unity. It is clear from (2b) that S| ®,|%dr diverges
but only as the cube root of the volume. It is easy to
verify that /*|Yxm|2dr on the other hand is finite. This
follows from (41) and (AS), and again using the sum-
mation on s to restrictx to k+g. We obtain for the norm

(A10)

Victg,m 2

(k+g)*—E,

What is not clear is that this is nearly unity. We con-
clude that there must be sufficient destructive inter-
ference among all the tails of the &,,(r,s) to eliminate the
infinity, but they can and do still give a finite contribu-

(A11)

g

4 The A’s and B’s differ only in the convention chosen for the
angular factors Yi,. See Refs 8 and 17.
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tion. The norm of Yy, is M |¢in|? integrated over one
cell, say the zeroth one. In that cell we expect Yim
to be approximately equal to ¢, but it cannot be ex-
actly equal if for no other reason than that Y, must
vary with k. The difference is in fact the sum of the
tails from the other centers and hence of order W?/2,
Its functional form is the sum of plane waves and hence
the /=2 component is proportional to 72(K7) in any
cell. We therefore write in cell zero

#’km_‘ﬁmNWlij(Kr) )

and the normalization only adds terms of order W3/2
through the two-center integrals.

Finally there are the three-center integrals which
together may be written

(A12)

/Nkm—tﬁml V(r)dr, (A13)

the integration being over cell zero again. (We include
among the three-center integrals the special term
(®(s)| V(0)| ®(s))) We have already noted from (3)
and (4) that the two-center integrals are of order W,
and we may write their sum as

/ IV iem—bm)dr=0(W). (A14)

Since from (A12), y—¢—0 as W — 0, (A13) tends
to zero faster than (A14), i.e., is negligible to order W.
There is at first sight a slight paradox here. If we sub-
stitute (A12) directly into (A13) we have

W/[jg(Kr)]2V(r)47rr2dr, (A15)

and might suppose the integral to be of order unity,
i.e., the three-center terms to be of order W. However,
the transition matrix element W2 tending to zero
demands that V be concentrated more and more closely
to the origin, and the integral in (A15) tends to zero
because [ j2(K7)]? varies as 7% The same argument ex-
plaines why (6) is O(W/2) and not O(1).

We have therefore derived (40) from a conventional
“tight-binding” calculation applied to the overlapping
resonance orbitals ®, only the two-center integrals
contributing to lowest order W in the bandwidth.



