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Combined Interpolation Scheme for Transition and Noble Metals*
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A combined interpolation scheme is presented for overlapping s-p conduction and d bands. The d bands
alone are treated by the tight-binding method. The s-p conduction bands alone are treated by the pseudo-
potential method. It is shown that there are two important interactions between the bands, which are
called hybridization and orthogonalization; previous attempts to construct combined interpolation schemes
included only the former interaction. By fitting the energy bands of Cu obtained by Segall and Burdick
in first-principles calculations, we show that for the d bands alone the two-center approximation is valid
to high accuracy. The rms error in the interpolated energy values for the five d bands and the lowest con-
duction band is less than 0.1 eV in both cases throughout the Brillouin zone. The relation of this scheme
to resonance theories is indicated, and possible applications of the method are discussed.

I. INTRODUCTION

~CALCULATIONS of the energy bands of solids can~ be classified into two broad groups: 6rst-principle
calculations which directly solve a given one-electron
crystal wave equation, or interpolative calculations
which describe the bands in terms of a minimal basis
set and corresponding disposable parameters. In the
first group we include orthogonalized-plane-wave
(OPW)' ' and augmented-plane-wave (APW)' methods
as well as the Green's-function method. 4 ' In the second
group are the atomic-orbital scheme of Slater and
Koster' and the semiempirical approaches based on
pseudopotentials. "

One of the first approaches to the band structure of
solids was the method of linear combination of atomic
orbitals (LCAO) or tight-binding method. The condi-
tion for its validity is that the one-electron wave func-
tions be highly localized around each atomic core, with
small overlap onto adjacent atoms. This condition is
usually well met by the valence states of the rare-gas
solids and ionic crystals. In particular, it has been used
to calculate the valence-band structure of KCl ' which
roughly corresponds to 3p atomic wave functions
localized on the Cl ions.

The valence bands of the alkali halides furnish a
simple example of the utility of an abstract approach.
Howland considers separately the cases where the
bands are derived from orbitals of 3p(C1 ) alone (a 3X3
secular equation), and where the basis set contains
3s(Cl ), 3P(K+) and 3s(K+) orbitals also (an SXS
secular equation). Energies from these two band struc-
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tures" are listed in Table I. The forms of the bands are
seen to be similar to within. 10%, but the widths differ

by a factor of 1.9. Hence, a good description of the
halide valence bands can be given in terms of only two
"effective" overlap integrals (ppo) and (ppm. ). The
"effective" overlap integrals turn out to have the same
sign and ratio as those calculated from 3p halide atomic
orbitals, but are only about half as large. The "effective"
basis functions are similar to Wannier functions, which
are more localized and hence exhibit smaller overlap.

TABLE I. Ratio of the energy differences of two calculations
of the valence-band structure of KCl (see Ref. 9).

Energy
levels

~15—X5
F15—X4.
X5.—X4.
L3' I 15
I'15—L2
L3 —L2

(3y,3)
secular

equation
(eV)

0.56
1.63
1.07
0.42
2.44
2.87

(8X8)
secular

equation
(eV)

0.27
0.98
0.52
0.24
1.26
1.51

Mean

Ratio
of (3X3)

differences
to (8&8)

differences

2.07
1.66
2.05
1.75
1.93
1.90

ratio = 1.89

M L. P. Bouckaert, R. Smoluchowski, and E.Wigner, Phys. Rev.
50, 58 (1936)."J.C. Phillips, Phys. Rev. 136, A1721 (1964).
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In view of the successful reduction of the actual bands
derived using eight basis functions to an abstract model
using only three basis functions and two shape parame-
ters, one may now carry the process of abstraction one
step further and determine the shape parameters
directly from experiment. This has been done for CsBr
from optical data; the measured parameters seem to be
only 3 of those calculated from eight basis functions. ' "
This indicates that a further reduction in calculated
bandwidth would be obtained from a complete set of
(exact) Wannier basis functions. From this example
we conclude that an abstract scheme may actually
yield better agreement with experiment than do first-
principles calculations. It also establishes a procedure
for obtaining matrix elements between abstract basis
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functions (in this case Wannier functions), although
the explicit determination of these functions is not
required and may be inconvenient in practice.

The formal treatment given in Sec. II closely parallels
the OPW method. However, calculation of the 3d states
requires a combined tight-binding and plane-wave
approach. " " Such an approach is cumbersome if
carried out rigorously. In Sec. III we show that existing
APW calculations justify representation of the d bands
alone by the Slater-Koster method. In Sec. IV, the s-p
conduction-band states are discussed including the
eRects of orthogonality to the d bands. In Sec. V we
treat s-d hybridization, and derive a parametric repre-
sentation for the s-d potential terms.

At first sight, it might appear that treatment of the
s-d interactions could be facilitated by use of group
theory. Along certain lines of the Brillouin zone, sym-
metrical combinations of plane wave conduction-band
states can be formed which will be orthogonal to most
of the d-band states. The symmetry employed is that
of the group of each symmetry line. This approach does
indeed simplify the treatment of s-d hybridization
effects along the (100), (110),and (111)axes. We have
found, however, that for general k values, this approach
alone makes it very diKcult to parametrize s-d
interactions.

For this reason we have found it necessary to intro-
duce a much stronger ansatz which goes beyond group
theory. However, the ansatz is valid to a good ap-
proximation, and therein lies its suitability for reducing
the complexity of the parametrized representation.
We assume that prior to hybridization with the lower
plane waves the radial d-wave functions in a given
atomic cell are the same for all

~

k
~

and are independent
of band index e. Thus the d states are regarded as part
of the spherically symmetric atomic core. We justify
our isotropic model for d states by direct comparison
with APW band calculations.

The interpolation scheme developed here determines
E„(k) throughout the Brillouin zone. Near points of
high symmetry k, one can also expand E (k) in powers
of k—k . This approach, usually called. k p perturba-
tion theory, furnishes relations between our parame-
trized interactions and sheds light on their analytic
character. It is discussed elsewhere. "

II. GEHERAL THEORY

I

5 dd
~

dc

(2.2)

In (2.2) d and c stand for d-band and conduction-band

states, respectively. At a general point k of the Brillouin
zone all the matrix elements in (2.2) are nonzero.

We assume throughout that our basis functions are
orthogonal, so that our secular equation has the form

det)H, , Ee;, )
=0. — (2.3)

The assumption of orthogonality is essential if the
abstract representation is to achieve the simplicity
desired. We brieAy mention here reasons for hoping
that a simple parametric representation of the matrix
elements of (2.3) is feasible.

To be specific, we consider in this paper only mon-
atomic fcc metals such as Ni and Cu, although our
results could easily be extended to monatomic bcc
transition metals as well. The basis states are chosen as
follows. To describe the d bands, 6ve states are required.
These are taken to be proportional to xy, xz, ys,
r2(x' —y'), and r2(1/&3)(3s' r')—, which form a con-
venient representation for the angular dependence of
tight-binding d states in a cubic lattice. The lowest
conduction bands in the positive 1/48 primitive section
of the Brillouin zone (see Fig. 1) can be described in a
manner consistent with crystal symmetry by using the
four OPW's which are degenerate at the point H/' in the
empty lattice (zero crystal potential). These are labeled

by their principal plane wave components (k+K;),
where the reciprocal lattice vectors K; are

K,= (0,0,0), K,= (-1,0, 0),
Kr= (—2, —2, —2), Ke= (—k, —2, +2), (2 1)

in units of 4m./a.
Using these basis states, our 9)&9 Hamiltonian will

have the block form

'~ Such a combined scheme was mentioned briefly by M. Sa6ren
in Ref. 13 only for states at X and L. Because he omitted the s-d
orthogonality terms, SaBren concluded that such a scheme was
not feasible. After completion of the bulk of this work. a brief note
appeared (see Ref. 14) purportedly discussing a combined inter-
polation scheme. Although no details are given, this scheme
appears to be equivalent to Saffren's and to suBer from the same
deficiencies. For example, we estimate that in the absence of un-
specified interpolation factors the rms errors incurred by omitting
the orthogonality terms would be well in excess of 1.0 eV.

'~ M. Sa6ren, in The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley R Sons, Inc. , New York, 1960),
p. 341.

"L.Hodges and H. Ehrenreich, Phys. Letters 16, 203 (1965)."J.C. Phillips, Phys. Rev. 133, A1020 (1964).
'"' J. C. Phillips, following paper, Phys. Rev. 153, 669 (1967).

FtG. 1. The Bril-
louin zone of the fcc
lattice showing the
1/48 primitive wedge
used in the calcu-
lations.



COM BI NED INTERPOLATION SCHEME

For the d bands we have the work of Fletcher and
Wohlfarth, " who neglected nonorthogonality terms
between d orbitals on different atoms. We show that
the form of the d bands alone, as given by APW
calculations, is very close to that obtained by Fletcher
and Wohlfarth.

For the conduction bands we find it necessary, in the
spirit of the OPW and pseudopotential methods, to
introduce energy-dependent orthogonality terms. These
occur in the c-c block, and their analytic form is deter-
mined by our ansatz of d isotropy. Because the width of
the d band is comparable to the difference in energy
between the conduction bands and the d bands, these
terms are no longer accurately proportional to (P- Pz), —
as in the OPW method. Also less appropriate, near d-c
crossover points, is the pseudopotential approximation
E~E„where 8, is a free-electron energy. "

Our procedure for establishing each term in the
secular equation is to make the general ansatz of d

isotropy and then to determine the radial behavior of
each term as a, function of k by direct comparison with
energy bands obtained by APW calculations involving
much larger secular equations. The full significance of
this procedure is treated in our summary. We find that
the approximations to the orthogonality terms men-
tioned in the preceding paragraph often produce only
small errors, and that for many purposes a simpler
representation is adequate. Nevertheless, the full
matrix form represents the most consistent and logically
correct development of the isotropy ansatz, and hence
forms the basis of our exposition. Our ultimate criterion
for the successful reduction of the large secular equation,
as well as our justification for the parametrization of
the various terms in the Hamiltonian, will be the same
one used in developing pseudopotentials, viz. , success
in obtaining E„(k) itself for the bands zz of interest.

III. TIGHT-BINDING REPRESENTATION
OF d BANDS

The tight-binding approximation may be formulated
in several different ways. One may retain or neglect
nonorthogonality terms between nearest-neighbor basis
functions. When the nonorthogonality terms are
eliminated by unitary transformation of the tight-
binding basis functions, the new basis functions are
called Wannier or I.owdin functions. Although this
transformation does not alter the atomic symmetry of
the basis functions and considerably simplifies the
secular equation, it is dificult to carry out accurately.
Another variation consists of neglecting three-centered
integrals and nonorthogonality terms. This simplifica-
tion, called the two-center approximation, leads to
substantial reductions in the number of overlap
parameters.

"G. C. Fletcher and E.P. Wohlfarth, Phil. Mag. 42, 106 (1951);
G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).

Neglecting the s-p conduction bands, Fletcher and
Wohlfarth (FW)" have calculated the band structure
of Ni using the two-center approximation. They obtain
a 5XS secular equation in terms of certain nearest-
neighbor overlap integrals. These they calculate using
wave functions and a potential derived by Hartree and
Hartree" for Cu+. Although FW calculate six parame-
ters, these are exactly equivalent to linear combinations
of three two-center parameters. The relations satisfied

by the six FW parameters in the two-center approxima-
tion' are

Ag= ', (—dd—o+ddb) )

Az=-', (ddzr+dd5),

Ag= 2(ddzl kB),
A4= dIÃ)

A, = ', (edda—+-ddh+ (9/4) dd&),

A, = —-,'(dd~ —ddt) . (3 1)

ddzr = (P4+Ps); Ps (3.3)

ddt= (P,+v3P,); -', (3P,—Pa); (P4 P,);-
(-',v3P6+Pz) . (3.4)

We compare the Gtted left-hand sides of (3.2)—(3.4)
with the values for the right-hand sides derived from
(3.1) in Table II. It appears that the two-center

TABLE II. Comparison of our derived two-center parameters
with those calculated by FW from Cu+ d-wave functions. The
deviation of the various values from their mean is a measure of
the validity of the two-center approximation.

Value
derived from

Overlap (3.2)-(3.4)
parameter (eV)

Mean
(eV)

Value
rms calculated

deviation by FW
(P) (eV)

—0.348—0.348—0.348

+0.163
+0.192

—0.0217—0.0217—0.0204—0.0217

—0.348

+0.178

—0.021

0,0

2.7

—0.338

+0.182

—0.026

~'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

"G.A. Burdick, Phys. Rev. 129, 138 (1.963).

Using our combined interpolation scheme, we have
fitted the d bands and conduction bands of Cu as
calculated by the APW method. " Initially, we treated
the general parameters such as A in (3.1) as indepen-
dent. Our best values for the first-neighbor parameters
can be used to determine the three two-center, nearest-
neighbor overlap integrals. The result, in terms of our
parameters P; (see Appendix A), is

ddo=(Pg —3v3'P6); (Pz %3P6); ~ (3—P3—Pz), (3 2)
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approximation is valid. to about 6%. The corresponding
differences in d-band energy levels are at most 0.004 Ry
with one exception.

The exceptionally large three-center contribution is
represented by the zero of energy of F» relative to F»,
which is described in the notation of Ref. 6 by
E»(000)—E»(000) =0.008 Ry. (Note that this is not
equivalent to I't2 —I'25.) We have therefore included
this correction explicitly in the Hamiltonian, but have
otherwise made the two-center approximation.

The detailed evaluation of the E or I' parameters is
given in Appendix A. BrieRy, the method consists of
obtaining a set of linear equations in the parameters
through the natural factorization of the secular equation
at Brillouin-zone symmetry points and along symmetry
lines. The matrix elements of the d part of the Hamil-
tonian can now be obtained from Slater and Koster's
Table III (reproduced in Appendix A), providing that
the zero of energy parameters are do for the triplet
degeneracy at I' and do+y for the doublet degenera, cy,
where y=0.008 Ry in Cu.

We conclude by discussing the four second-neighbor
E parameters. These were included in the determination
of parameters discussed in Appendix A, but they were
found to be so small ((0.001 Ry) a,s to have a negligible
effect on the band structure. For this reason, we have
not included them in our final scheme. Altogether, this
leaves the 5)&5 d-d block parametrized in terms of do,

y, ddo. , ddt, and ddt.

IV. REPRESENTATION OF CONDUCTION BANDS

At first glance, the calculated conduction bands of
transition and noble metals appear to be nearly free-
electron in character. However, on closer examination,
one sees that there are marked deviations in the lowest
conduction band, depending on whether one is above
or below the d bands. Moreover, the Bragg splittings
at the symmetry points X and 1. are much larger than
those found in "simple" metals such as Al.

To illustrate these deviations, we have plotted in
Pig. 2 Segall's results" for the first and second conduc-
tion bands in Al and the corresponding bands in Cu."
It is clear that the d bands are responsible for several
differences in behavior which we analyze in two limits.
;In the 6rst, the conduction band is close to a d band of
the same symmetry. Here hybridization has taken
plac- the d band and conduction band are split

equally above and below the point of crossover in the
absence of interaction. Ke call this splitting the direct
c-d effect.

In the second limit, the conduction band is well above
the d bands. There the conduction band is shifted above
the free-electron band by a roughly constant amount.
Note, however, that the shifts are different for the
various symmetry directions (100), (110), and (111),

"B.Segall, Phys. Rev. 124, 1797 (1961)."B.Segall, Phys. Rev. 125, 109 (1962).
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FIG. 2. Schematic representation of the hybridization and
repulsive effects between the Cu d bands and the lowest two
conduction bands along the symmetry line A.. Only the bands of
4& symmetry are shown. The dashed lines show the unperturbed
bands of Al or the tight-binding fg band of Cu in the absence of
these two effects. )The Al bands have been scaled so that
(e'k2/2m) p~ (it2k~=/2m) q„at k =L

being in the ratio (1:2: 1), respectively. (Note that this
is also the ratio of the number of d bands whose group
representation is the same as the lowest conduction
band for these three symmetry directions. ) Thus, if
we wish to incorporate these deviations into the secular
equation, we must have terms that are both amgllarly
as well as radially dependent.

The hybridizing and repulsive effects are indicated
for the energy bands" of Cu along the (110), (100),
and (111)symmetry axes in Pigs. 3 (a)—(c), respectively.
Our task now is to construct an analytic representation
of these effects. Procedures for obtaining the hybridizing
terms will be discussed in the following section.

To determine the repulsive terms, we assume that in
terms of pseudoplane wave states ~k) the conduction
band sta, te ~tt~) has the form

iy )=[ik)—P M .(k)id')]C (4.1)

where the normalizing factor Ck is given by

(4.2)

where C„ is the normalizing factor for the cubic har-
monic F„".(Note that we choose P„~C„F "(k) ~'= —', .)
Then

m,.(1 )=(t4.
~
I )

=C F "(k./k, k„/k, k./k) f(k). (4.4)

Because of d isotropy, f is a function only of k, and not
of k. The explicit parametrization of f(k) is given
below.

Our assumption of d isotropy can be used to determine
the orthogonality coefficients Mz„(k) as follows. Let a
d basis function be written as

l «)=A.(r) =C-F.'(~/r, y/r, s/r)g(r), (4 3)
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FIG. 3. The energy levels of Cu. The
solid circles represent the calculated
values of Burdick t Ref . 19) and the
solid lines represent the interpolated
bands obtained using the parameters
listed in Table III. The small diBer-
ences shown on the scale of the solid
circles are genuine and can be ascribed
to breakdown of the ansatz of d
isotropy.
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where Hg„,~„ is the appropriate matrix element between
the tight-binding d states contained in the d-d block.
The cross terms can be shown to have the form

H,+H~ H~ 2H4, —— —
H, = —g C„C„F."(k)F.'(k')

(4 g)

&&K'g(k)f(k')+C'g(k')f(k)], (4 9)

where g (k) is the hybridizing form factor discussed in
Sec. V. For our matrix element we 6nally have

&ek I HI 4') =c~ 'C' 'I Hr+H5 —H4] (4 1o)

We must also consider the terms

E(QQ I 4Q )=E[5]KQ' (1—Sing. )OT], (4.11)

Matrix elements in the 4X4 conduction block are
given by

Q, I HI y, )=c c,-'[H,+ H, +H,yH, ], (4.5)

where in units with k'/2m= 1,

Hl= (k +VO)Slick'+ VI—k'(1 Sing') ~ (4 6)

The terms V~ ~ represent the sum of the matrix
elements of the crystal potential V and the repulsive
potential Vg, between reciprocal lattice plane waves.
We let X; denote all the (111) and (200) reciprocal
lattice vectors. For E; larger than E;, we can apply the
general cancelation arguments' and set V(E',) =0. This
leaves us with two conduction-band pseudopotential
parameters V»& and Vgpp.

One finds that V»~ and V2pp alone produce band gaps
comparable to those of the "simple" metals. In Fig. 2,
we have labeled this part of the splitting of L~ and L2
by 2 V»g.

The d-d orthogonality terms in (4.5) are

H4 QC„C„F„"(k——)F„."(k')f(k)f(k')Hg„, d,„, (4.7)
n n'

where OT represents positive orthogonality terms. The
normalization factors in (4.11) make the diagonal
coefficient of E unity. The off -diagonal OT are in-
convenient, and if retained would considerably com-
plicate the machine solution of the secular equation.

In the pseudopotenti al approximation to the OP W
method, the terms E(OT) are grouped with the terms—E&(OT), which are represented by IV in (4.10). One
then makes the replacement E —+ E, (an average plane
wave energy) and assumes that the d bands are narrow
(Eq ~Eq). The resulting OT are proportional to E, El-
and are manifestly invariant to a change in the zero
of energy.

In our case, we have found it simpler to proceed as
follows. The conduction band width bE, is large; in
fact, |lE.) (E, Ed) How—ever, .one can consider the
OT in two limits: near s-d crossovers and near the (200)
and (111) Bragg scattering planes. In the former case
direct calculation shows that very good results are
obtained by neglecting the OT altogether compared to
the hybridization terms. This is not surprising, for the
hybridization terms are large in magnitude and have a
larger e6ect because of the quasidegeneracy of the d
bands and conduction bands.

On the other hand, near the Bragg-scattering planes
the nondiagonal OT can be made small by a proper
choice of the zero of energy. We have found that setting
E(X)=X'+ V0 Ogives good results f——or conduction
band states at L, X, and S'.

[By neglecting E(k)+ V0 at J- and W, we in effect
absorb small OT into our pseudopo ten tial parameters.
Again direct calculation shows that the error incurred
is small. ]

From d isotropy, one can see that as k ~ 0, f(k) is of
order k'. Thus a convenient form for f(k) is

f(k) =A j (kR0), (4.12)

where j2 (x) is the second spherical Bessel function that



664 F. M. M UELLE R

L X W

I I I

2X= I'
I

cn Q4
C

0.5
0
L

0.2
C3

e
Q

0.0
12.00 4.0 8.0

4 ok /m'

FIG. 4. The repulsive form factor f(k) exhibits a maximum for k
near the Brillouin zone edges. The value of f(k) shown here is
taken from the parameters used to 6t Burdick's band structure
(see Table III).

is obtained in the OPW method by expanding plane
waves in terms of Legendre polynomials. The energy
bands in the range of interest are not greatly affected
by interactions for k& 2L. Thus to improve convergence
f(k) is cut off beyond its second node. The value of
LRo is 2.9 for Cu and 2 =1.3. In Fig. 4, we show f(k)
explicitly. The procedure used to determine A and Ep
is described in Appendix B.

The orthogonality terms are responsible for the large
Bragg splittings at X and L, which are asymmetric
with respect to the free-electron energies at these points.
For example, neglect the effects of s-d hybridization
(Sec. V) and consider the conduction-band structure
associated with only the two lowest plane waves near
X or I. (X4 and Xi, or L2. and Li). Here the lowest two
bands have wave vector k and —k. We extract from the
secular equation these degenerate levels giving a 2)&2
determinant:

E'+ a X+Vo a—+V2x
( )a+ Vgx E'+a X+Vo—

where 'A is the eigenvalue, E is the kinetic energy, V2~
is Vyyy ol V2pp for L and X, respectively, and a is the
term derived from orthogonality. Solving this simple
determinant yields

(dna H'i yi, )=C„F„"(k)g(k), (5 2)

where g(k) is an isotropic hybridizing form factor. With
the absorption of the normalization factor C~, the
definition (5.2) is consistent with (4.9).

To be completely consistent one should represent the
first term on the right-hand side of (5.1) by a form
factor g'(k) and determine g(k) from g'(k) using (5.1).
In practice, the effects of hybridizing are dominated by
the first term, and it is not profitable to carry through
this separation.

Again it can be shown that, as k —&0, we have

g(k) —+ k'. Thus for small k we set

V. s-d HYBRIDIZATION

In this section we consider the matrix elements of the
Hamiltonian in the off-diagonal blocks c-d and d-c.
Although the conduction basis states given by Kq. (4.1)
have been orthogonalized to the d-basis states, c-d
matrix elements will still be nonzero in general. In fact
near c-d crossovers, where the orthogonality terms are
small, the hybridization terms alone separate c and d
terms belonging to the same irreducible representations.

It is consistent within our isotropic approximation
to represent the crystal potential as a superposition of
spherically symmetric atomic potentials. Just as second-
neighbor d-d overlap was found to be small compared
to nearest-neighbor overlap, so we neglect nearest-
neighbor overlap in computing the hybridization term.
Thus we regard the mixing as derived from interactions
in a spherically symmetric central cell.

Using (4.1) we have

(dn~H'(4 )=C~-'[(dn~H'(k) —H' „, „.3f „.(k)j. (5.1)

Strictly speaking, H' in (5.1) includes both the crystal
potential and the repulsive terms arising from ortho-
gonalization of the plane wave

~
k) to the s- and p-core

states. With complete isotropy the latter would vanish
in determining the matrix element (5.1) with d states.
In any case we are not concerned here with the details
of (5.1). For our purposes it is sufficient to write

&= (&'+a)~ (V2x+a)+ Vo (4.14) g (k) =8j2 (kRi), (5.3)

Hence we see that for the lower (odd symmetry)
eigenvalue the effect of orthogonality is identically
zero, whereas for the higher (even symmetry) level 2a
is added. The asymmetry of the repulsive term a in the
two eigenvalues shows that marriage of tight-binding
and plane-wave techniques requires orthogonalization
of the plane-wave states to the d states.

Another approach which reveals a relation between
the tight-binding diagonal block and the plane-wave
block, and which is independent of s-d hybridization,
is based on k p perturbation theory near X or L. One
can then show that orthogonalization terms in the
latter block are required to balance overlap (finite
bandwidth) terms in the d block."

0.4—
I

L X W

I I I

0.2
IL

O. l

Fzo. 5. The hy-
bridization form fac-
tor g(k). The linear
cutoff discussed in
Appendix B begins
at 4uk jx =9.3.

0,0
0

4ak/m
8.0 l2.0

with LR,=2.9 and 8=13.8 eV in Cu. We show g(k),
including a linear cutoff at large k, in Fig. 5.
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For a given crysta, l potential and an assumed d-wave

function (e.g. , tak. en from the free atom) we could
evaluate (5.1). However, to obtain agreement with

AP% calculations it would then be necessary to include
the effects of higher plane waves on the d states. For
reasons discussed in Secs. I and VII, this is just what
we wish to avoid. The form factor g (k) introduced here
includes these elfects consistently both in Eq. (5.2) and
in Eq. (4.9).

In Appendix B we discuss in detail the method used
to determine g(k). It is similar to that described in

Sec. III for determining the d-band parameters. There
we considered only d-band states of symmetry different
from the conduction band. Here we use d-band states
a.long symmetry lines of symmetry types the same as
those of the crossing conduction bands. Between these
d and conduction bands we have both hybridization and
orthogonality terms. The e6'ects of the former are
larger near s-d crossovers. [As discussed in Sec. IV, we

found it convenient to neglect certain orthogonality
contributions to the matrix elements in the region,
because of its tight-binding character. Had we retained
these terms, and introduced other (less accurate)
approximations instead, the orthogonality terms could
have been forced into the form (E—Eq) ~Mq„(k) ~'. In
this form one can see explicitly how to separate the
hybridization splittings from the orthogonality terms,

by assuming that the latter vanish near s-d crossovers
and using the construction of Fig. 3.] Indeed, we find

that nea, r s-d crossovers the hybridization terms
actually domina, te so strongly as to yield an unam-

biguous separation. On the other hand, near the zone
faces where Bragg scattering takes place, the ortho-
gonality terms dominate and the hybridization form
factor can be determined by iteration.

Another method for separating hybridization from
orthogonality terms near the zone faces relies on the
k y perturbation theory' near X and L. This method
is extremely accurate in the immediate vicinity of
symmetry points, but the interaction method described
in Appendix B yields more general results throughout
the Brillouin zone. These are also quite accurate, and

appear to approach the limitations inherent in the
ansatz of d isotropy.

VI. EVALUATION AND SIMPLE APPLICATIONS

To fit the d bands of a monatomic fcc metal using our
method, certain parameters must be specified. For the
conduction bands alone there are two parameters, V~~~

and V2pp. The position and shape of the d bands alone
are fixed by five parameters: dp (the d band energy-

relative to the conduction bands), ddp, ddt. , d d8, and the
three-center parameter y. Finally, the s-d in teractions
are specified by A, 8, Rp, and Ri in Eqs. (4. 12) and

(5.3). For convenience these 11 parameters are listed
in Table III. Values are given there which 6t the energy
bands of Cu as determined by Burdick from an l-

TABLE III. Values of model parameters chosen for two copper
band structures (Refs. 19 and 20). The significance of differences
between the parameters is discussed in Sec. VI.

Parameter 8urdick Segall

d bands

Conduction bands

Orthogonality

Hybridization

Errors

do
dd0

ddt
7

V111
I 2oo

A
LRo
8

LRI
g~.p

+5.84 eV—0.35 eV
10,18 eV—0.02 eV
+0.11 eV
+0.07 eV
+0.46 eV

1.29
2.88

13.78 eV
2.93
0.06 eV

+4.95 eV—0.45 eV
+0.24 eV—0.04 eV—0.01 eV
+0.26 eV
+0.55 eV

1.59
3.03

13.92 eV
3.47
0.08 eV

independent potential using the APW method, "as well

as those calculated by Segall using an l-dependent po-
tential in the multiple-scattering formulation" "

By examining the table one notices several differences
between Burdick's and Segall's calculations which arise
from the l-dependent potential used by the latter.
Segall's d-wave functions are more extended than are
Burdick's. This is reflected in the d-band overlap
parameters, which are about 30% greater for Segall's
bands than for Burdick's. The orthogonality and
hybridization strengths (A and 8, respectively) are
20% and 5% greater, respectively. (We believe that
this indicates that the two effects cannot be combined
into one. ) The pseudopotential parameters Uiii and

V2pp are also changed, and are larger for Segall's bands
than for Burdick's, reQecting the fact that the /-

dependent potential leads to greater c-d differences,
and somewhat stronger c-c interactions. The scale
factors Rp and Ri change by 5% and 16%, respectively,
which again suggests the independence of the hybridiz-

ing and orthogonality terms.
The accuracy of the scheme can be tested in several

ways. The overall rms deviation between our values
and those of Hurdick for the first six bands (five d bands
and the lowest conduction band) at 89 points of the
Brillouin zone is 0.08 eV. The values at I', X, I, and 8'
are compared in Table IV; for these points the rms
deviation is 0.07 eV. Similar results are obtained in
fitting Segall's bands. The most critical test of the
parameterization is obtained by comparing the rms
deviation of the set of 20 points used to determine
relations among the parameters fitting Burdick's bands
with that of the set of 40 points not used; the two values
are 0.07 and 0.08 eV, respectively. It can be seen that
within statistical uncertainties the deviations are
identical. Moreover, the uncertainties in various APK
Cu energy levels (apart from those associated with dp,

the position of the d bands relative to the conduction
bands) are still larger than these rms deviations, so that
a more accurate fit might not be significant. Finally, the

"We thank Dr. Segall for a list of his energy eigenvalues for
both copper and aluminum.
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TAar. E IV. Interpolated values of the lowest seven levels at I'„
X, L, and 8" (as obtained from the parametric values listed in
Tal&le III) are compared with the calculated values of Burdick
(Ref. 19) and Segall (Ref. 20). The ht is equally good in both cases.
(All values are listed in rydbergs. )

Energy in eV

2.0 3.0 4.0
I

5.0 6.0

Level
8urdick

point
Interpolation

6t Segall Int. fit

~l

r12
X1
X8
X2
Xg
X4
XI
LI
L8
L8
L2&

L&
8'2~
5';
5'1
8'I
H~8

—1.043—0.640—0.582—0.776—0.739—0.540—0.527—0.235
+0.152—0.775—0.642—0.538—0.429—0.094—0.723—0.671—0.585—0.527
+0.105

—1.043—0.647—0.574—0.776—0.740—0.535—0.534—0.243
+0.145—0.774—0.648—0.543—0.435—0.099—0.718—0.676—0.583—0.536
+0.116

—0.836—0.505—0.433—0.666—0.630—0.383—0.366—0.024
+0.389—0,646—0.511—0.380—0.247
+0.189—0.607—0.537—0.438—0.365
+0.310

—0.837—0.510—0.426—0.667—0.634—0.376—0.371—0.032
+0.401,—0.638—0.518—0.385—0,241
+0.201—0.599—0.536—0.438—0.371
+0.313

3.0
Energy in eV

4.0 5.0
l

6.0
l

E
O
cf,

tO
Co 2.0—
O

id

l

,200
I

.300
Energy (in Rydbergs}

i&,

400

FIG. 6. The density of d-band states in Cu retaining the width
due to the tight-binding interactions dd0, ddh, and ddt but omit-
ing the conduction bands as well as their interactions with the
d bands. Five major peaks appear in the density of states, at 0.27,
0.29, 0.33, 0.36, and 0.39 Ry. Note that we have increased V0 in
this 6gure to —0.104 Ry. This allows a direct comparison between
structure and Burdick's energy table.

levels at X, I, E, and 8" in the second conduction band
arc reproduced with an accuracy comparable to that of
the first-principles calculations.

As a simple application of our scheme wc have
calculated the density-of-states g(E) in the d-band
region both with and without mixing of the d bands and
conduction bands. In the calculations presented below
we have constructed histogram densities of states based
on the lowest 6 cigenvalues of our 9th-order secular
equations at 4500 randomly selected points in 1/48 of
the Brillouin zone. With an energy interva, l of 0.0025 Ry
this gives an average occupation m; of 300 and an rms

E
O

2.0

le

ZJQJ

.200 .300 .400
Energy (in Rydbergs)

FIG. 7. The density of d-band and conduction-band states using
the Burdick d-band parameters as in Fig. 6, but including inter-
actions with the conduction bands. In the d-band region the
densities of states are qualitatively similar, but numerous quanti-
tative diRerences are apparent. Thus the peak present in Fig. 6
at 0.27 Ry has disappeared, while the 0.29 and 033 Ry peaks of
Fig. 6 have merged into one peak here at 0.31 Ry. The peak at
0.22 Ry and the shoulder starting near 0.15 Ry arise from those
states near the bottom of the d band which hybridize strongly
with the conduction band.

.100

"G. F. Koster, Phys. Rev. 98, 901 (1955).

fluctuation in n, of about S%%uo. If one so desires (as we
did in the comparisons below), the same random
selection can be used in each set of samples.

We have considered three band structures related to
Burdick, 's Cu bands. The first, given in Fig. 6, corre-
sponds to the d bands alone. This case (which has been
calculated before") was used as a check on the tech-
nique. We see that this is quite similar to the results
obtained previously, except that our Fig. 6 has more
structure due to the seven times larger random sample.

In the other two cases (shown in Figs. 7 and 8) we
have added the s-d interactions to the bare d-band
structure of Fig. 6. The band parameters for case 2 are
taken from the ht to Burdick's calculation discussed
in Sec. V. Case 3 has the same band parameters, except
that the position of the conduction bands has been
changed with respect to the d-band complex. Here we
have increased the zero of energy do of the d bands
relative to the conduction bands, leaving the remaining
pa, rameters unchanged. Case 2 (Fig. 7) has do ——+5.84
eV (copper-like), whereas case 3 (Fig. 8) takes
do ——+7.20 eV (nickel-like).

By comparing Fig. 8 with Fig. 7' we see that shifting
thc conduction bands rclatlvc to thc d bands lcavcs thc
density of states throughout most of the d-band region
almost unchanged. This is what one would expect from
a, rigid band model, neglecting s-d mixing altogether.
Both the large peaks in the density of states near 0.3
and 0.4 Ry and weaker peaks near 0.22 and 0.35 Ry are
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Energy in eV
2.0 3.0 4.0 5.0

I I I I

6,0
I

E
4

C0
be
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Energy (ln Rydberge)
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FIG. 8. Here the conduction band has been shifted relative to
the d band by —1.4 eV from Fig. 7. The effects on the density of
states are very small, as can be seen by comparing with the
density of states shown in Fig. 7. For many purposes this provides
justincation of the rigid-band model often used to discuss the
properties of transition-metal alloys.

little changed, indicating that they arise from states of
almost pure d character.

In Figs. 7 and 8 we have indicated energies at the
symmetry points I', X, L, and 8'. These produce
Van Hove edges in the density of states. Other critical
points are important, however, and these are not located
at symmetry points. (For example, the peak in the
density of states near the top of the d band, which is
commonly supposed to explain the high specific heat of
Ni, is caused on the higher side by the L3 edge, and on
the lower side by an unidentified critical point. )

VII. CONCLUSIONS

The aim of this paper has been to develop a combined
interpolation scheme which could reproduce the energy
bands of transition and noble metals within 0.1 eV and
which would depend on the smallest possible number of
parameters. In reaching our goal we have shown from
APW calculations for Cu that

(1) Only nearest-neighbor interactions in the two-
center approximations (plus one three-center term) are
required for the d bands; (2) only two pseudopotential
parameters are required to describe the lowest conduc-
tion band; (3) that conduction-band —d-band inter-
actions are of two kinds. The first, hybridization, is well

known, but its magnitude has been evaluated and it
has been shown (apart from spherical harmonic factors)
to be isotropic. The presence of the second interaction,
a repulsive one arising from the requirement of ortho-
gonalization of basis states, had not previously been
recognized in APW calculations; (4) Both conduction
band d-band interactions are describable in terms of
form factors. Although the factors are similar, they
appear to be independent.

Some of the assumptions upon which our calculations
are based have been discussed in several recent
papers. '4" The d bands are regarded as a resonant level
overlapping the conduction band, and the phase shift
of the resonant level is introduced using scattering
theory. These discussions are entirely formal, whereas
our results demonstrate explicitly that an abstract
approach can reproduce APW or multiple-scattering
calculations very accurately. Although previous formal
discussions based on phase shifts have not been able to
separate hybridizing and orthogonality terms, we have
shown that both terms must be included to achieve
high accuracy. A major unsolved problem for the
resonance theories is how to incorporate five (rather
than one) d-resonance levels into the theory. We have
avoided this problem at the outset and then have gone
on to demonstrate (we believe for the first time) the
validity of the two-center approximation. A precise
sense in which the resonance analogy is valid is analyzed
in the following paper. "

Because of the simplicity and generality of the
interpolation scheme, it should have wide applications
to many problems in the quantum structure of materials
containing overlapping conduction and d bands, just
as the simple pseudopotential method has successfully
treated s- and p-band crystals. We mention only two
applications which follow immediately from the method
in its present form. Firstly, one may determine parame-
tric values to yield very accurate fits to observed Fermi
surfaces. " Secondly, the high speed of the method
together with the natural character of the basis states
(atomic d states or plane-wave conduction states) makes
calculation of direct interband optical spectra, including
proper oscillator strengths, straightforward. "We hope
to return to these applications elsewhere.

ACKNOWLEDGMENTS

We wish to express our gratitude to Professor J. C.
Phillips and Professor M. H. Cohen for suggesting this
problem. We are especially indebted to the former for
his constant help and encouragement, without which
this paper would never have appeared in its present
form. In addition, we wish to thank J. Hermanson, and
Dr. N. Ashcroft and Dr. D. Penn for useful conversa-
tions. Finally, we wish to acknowledge the excellent
service given by the staG of the University of Chicago's
Computation Center.

APPENDIX A

In Table V are listed the 8 parameters given by the
zeroth- and first-neighbor general overlap integrals.
(The second-neighbor parameters were found to be

'4 J. M. Ziman, Proc. Phys. Soc. (London) 86, 337 (1965).
» V. Heine, second following paper, Phys. Rev. 153, 673 (1967)."E.I.Zornberg and F.M. Mueller, Phys. Rev. 151, 557 (1966)."F. M. Mueller and J. C. Phillips, Phys. Rev. (to be published).
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TAgz. K V. The values of the Slater-Koster overlap parameters E; as obtained from fitting Hurdick's band structure for Cu are shown
in column 4. These are to be compared with the values listed in column 5 obtained from the two-center formulas of column 3. The
values of ddo. , ddt-, and ddt were also obtained by fitting Burdick's Cu bands and are listed in 7'able III. The percentage differences
listed in the last column provide an indication of the validity of the two-center approximation.

p
parameter

pl
P2
P3
P4
P„
P6
Pz
Ps

E
parameter

E,„,„(ooo)

I;...„(110)
I;.„.„(011)1.„..(011)

E„„„„(11O)

Two-center
approx.

do+1 o

do+v+1 o
—(3ddo+ ddt)
—,
' (ddt-+dN)
—,
' (ddt —ddt)——,'v3 (dd —ddt)
—,'(dd~+3dd&)
ddt'

Value of
parameter

in eV

—8.358—8,250—0.266
+0.083
+0.108
+0.141—0.103
+0.163

Computed from
two-center

approx. in eV

—8.359—8.250—0.266
+0.078
+0.099
+0.140—0.103
+0.177

diff.

0.0
0.0
0.0
40
7.0
1.0
0.0

10.0

about 5% of the corresponding first-neighbor param-
eters. ) There are two difficulties in determining these
parameters from a given band-structure calculation.
First, the eigenvectors of an energy level are not, in
general, wholly d, but have some hybridization with
the conduction bands. Second, even in those levels
which are most d-like, the energy level will depend on
several of these parameters, rather than on one or two.

Both of these difhculties can be overcome by con-
sidering energy levels at points in the Brillouin zone of
high symmetry. Then only one, or at most two, of the
d levels will have a symmetry type identical to some
low conduction band, a,nd only these d levels will

hybridize. The remaining levels at this point can be
used to determine linear relations among the param-
eters. In addition, along certain symmetry lines, the
reduced blocks of the secular equation containing d
states only may conveniently factorize into simpler
relations among fewer parameters.

There is one more criterion for selecting relations
among the parameters. The points and levels should be
chosen so that the resultant statistical weight of each
parameter is approximately the same. This results iri

equal errors in the parameters. Equality in statistica, l

weight can be guaranteed if the points used are equally
spaced along each symmetry line.

The evaluation of the parameters for copper was a
simple matter since the energy bands had been calcu-
lated by Burdick at 89 points in the Brillouin zone
and -', of these points were along symmetry lines. Thus,

approximately 150 useful levels remained after corn-
bining with five d levels, roughly half of which were
unhybridized or nondegenerate levels. Of these we
selected 48, so that each parameter wa, s represented
approximately five times. (Note that one of the two
zeros of energy must appear in each equation. ) These
relations yield the overdetermined linea, r equations

A;,X,= I'.;, (A1)

A;I,A;,X,=A, I,E;. (A2)

Calling A;sA, ,=Cs, and A,&E;=D&, then C is a sym-
metrical, nonsingular, square matrix. The desired
pa, rameters are given by

X,= (C ')a;Dp. -
(A3)

We can solve (A3) using a standard routine such as
sHARE from a computer library.

In Table II we list these parameters, as well as the
values calculated by Fletcher and Wohlfarth. The simi-
larity in values is remarkable, considering the divergent
sources of the two columns.

By allowing a full three-centered treatment of the d
bands in copper, we have shown that an additional
restriction to two-centered overlap integrals makes a
negligible error in the band structure. Henceforth we

where A is the rectangula, r coefFicient matrix, E.; are
the energy eigenvalues, and X, are the para, meters. (We
sum on repeated indices. )

The rms devia, tion of the X, will be minimized if

TABLE VI. The matrix elements of the d-d block in the two-center approximation.
The symbol x represents k, —,'a and similarly for y and s.

(xylxy)
(xyixs)

(xy ~

3s' —r')
(xs~xp-y )
(xs I

3s' —r')
(x2 —yp

~

xp —yp)

(3s' —r'
~

3s' —r')

(x' ys
~

3s' r')— —

dp+3ddo cos(x) cos(y)+2ddx(cos(x)+cos(y)) cos(s)+ddh(cos(x) cos(y)+2 cos(x) cos(s)+2 cos(y) cos(s))+Vp
2 (—ddt +ddt) sin(y) sin(s)
0.
V3 (ddo —ddt) sin(x) sin(y)
——,

' (ado. —ddt) sin(x) sin(s)
q3 (—dd(7+ddt) sin (x) sin (s)
d,+ +4dd cos(x) cos(y)+(-,'dd +dd + (9/4)ddt)(cos(x) cos(s)+cos(y) cos(s))+y,
d, +p+-,'dd (4 cos(x) cos(y)+cos(x) cos(s)+cos(y) cos(s))

+3dd21.(cos(x) cos(s)+cos(y) cos(s))+~ddt(4 cos(x) cos(y)+cos(x) cos(s)+cos(y) cos(s))+ Vo
-',~3 (dd~ —4dd~+3ddb) (cos(x) cos (s) —cos (y) cos (s))



COMBINED INTERPOLATION SCHEME 669

shall calculate the d bands in two-centered approxima-
tions except for the zero-of-energy parameter
Table VI lists the d-band matrix elements as derived
from plater-Koster. '

APPENDIX B

The choice of spherical Bessel functions j2(M) to
parametrize the hybridization and orthogonality form
factors is a natural one. The scale factor E represents
an average of the values of r for which the c-d potential
interactions or overlap (respectively) are largest. The
best value of E, which should not change greatly from
one transition metal to the next, is determined as de-

scribed below.
For larger values of k the replacement of a weighted

value of j&(kr) over a range of r by a local value js(kR)
will obviously be poor, because j&(kr) oscillates in sign.
This effect is incorporated into the form factors by
introducing a linear cutoff at large k. This cutoff plays
a small role in our calculations, because of the nearly
spherical shape of the fcc Brillouin zone. However, a
much greater effect is expected when the Brillouin zone
is more anisotropic, as for bcc crystals.

The "longest" radial symmetry dimension of the fcc
zone appears to be FLEX. The lowest conduction band
along EX is Z3, and when this band is continued onto
X=I'E, it becomes the second lowest conduction band.
For this range of k, the cutoff effects are important.
They can be separated by noting that the Z2 and Za

d bands are symmetrical with respect to F» in the
absence of interactions with the conduction bands. This
symmetry holds well for k between I' and ~E so that a
linear cutoff was introduced between E and ~~K.

With 11 parameters to be determined, it was neces-

sary to develop simple schemes to find best values. Our
scheme proceeded as follows. With the values of the
d-band parameters determined as described in Appendix
A A 8 Eo and R& were determined approximately by
solving 2&(2 and 3)&3 c-d interaction secular equations
along 6, A, Z, and Z. With these approximate values,
the rms deviation of the fit was determined to be about
0.2 eV. The parameters were varied by fixed increments
and quadratic interpolation was used to minimize the
rms deviations. This procedure converged rapidly
(5 min on an IBM 7094) and uniquely to the values of
the parameters quoted in Table III.
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Partial Sum Rules for Transition and Noble Metals*
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It is shown that because of the resonant character of d states in transition and noble metals the usual sum

rules derived from k. p perturbation theory must be modified. The relation between the modified sum rules,
Mueller's combined interpolation scheme, and Slater's augmented-plane-wave method is indicated. Pro-
cedures for deriving interband oscillator strengths between resonant and nearly-free-electron bands are
developed which are free of the defects in the methods used by previous workers. The partial sum rules

provide an operational procedure for dividing Bloch states into resonant and scattering states.

I. INTRODUCTION

'HE analytic properties of Bloch functions near
points k in the Brillouin zone of high symmetry

can be studied by expanding in powers of 6k=k —k .
Writing the wave function in Bloch form one finds' that
if atk

3'.„Iu.)=E.Iu.),

Et,„E„=It'"ak, 5k;/2m—;s, (4)

we obtain the usual result,

notation. .') Using second-order perturbation theory for
a nondegenerate level e and defining the effective mass
tensor (m,s)-' by

mtj ™nr

where Itt)= Iu..).
A variety of sum rules, valid to second order in bk,

can be obtained from (5). The rules in general are

then the wave equation at k is

(3'. + (k/m)bk p) I ut, )=E. t, I ut, ), (2)

Et, E~+ (kbk——)'/2m (3).
(We omit spin-orbit effects throughout to simplify
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f Alfred P. Sloan Fellow.

' C. Kittel, Quantum Theory of Solids (John Wiley R Sons, Inc. ,
New York, 1963), Chap. 9,


