
P H YSI CAL REVIEW VOLUME 153, NUMBER 2 10 JANUARY 1967
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The coupled Green's-function equations for the Heisenberg ferromagnet are approximated by two coupled
differential equations. The approximation agrees at low temperatures with Dyson s spin-wave theory. Com-
puter solutions of spontaneous magnetization for spin —, and a face-centered cubic lattice represent a better
fit to the magnetization of nickel than that aBorded by an earlier first-order theory. Compared with the
latter, the parameter 8,=kZ,/J for cubic lattices and for spin —, is found to give closer agreement with values
obtained from high-temperature series expansions. The renormalized exchange interaction, calculated
for all temperatures below the Curie temperature, falls off with increasing temperature, and apparently
represents a poorer fit to the experimental data than the results of the erst-order theory.

I. INTRODUCTION
' 'N this paper we apply the double-time temperature-
s ~ dependent Green's-function technique to the
Heisenberg Hamiltonian, utilizing a second-order ap-
proximation, in which the set of coupled Green's-
function equations is approximated by two coupled
differential equations. This represents an improvement
over a previous investigation' which approximated the
coupled set of Green's function equations with a single
6rst-order differential equation, in a manner introduced
by fallen. ' our approximation agrees at low tempera-
tures with Dyson's spin-wave theory. ' Computer solu-
tions indicate that the transition to spontaneous
magnetization found in the earlier erst-order approxima-
tion in Ref. 1 persists in the present improved ap-
proximation. The theoretical zero-field magnetization-
versus-temperature curve for S=-,' represents an im-
proved 6t to the experimental magnetization of nickel
compared to the result obtained from first-order theory.
The Curie point e,=kT,/J for the face-centered cubic
lattice is found to be equal to 4.00, in exact agreement
with the theoretical value of 0, given by Rushbrooke
et at. ' from a high-temperature series. The renormalized.
exchange interaction J,ff is calculated for all tempera-
tures. below T,. At T= T„J,ff is not zero as erst-order
theory predicts, but is still about 55%%uq of its zero-tem-
perature value. In Sec. II we derive the 6rst two coupled
Green's-function equations whose solution constitutes
the present approximation. The details of the solution
are given in Appendix I, and utilized in Sec. III to
obtain expressions for the renormalized magnon energies
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and lifetimes. Section IV contains the derivation of the
spin-spin correlation functions, the spontaneous mag-
netization, and the magnetic specific heat at low tem-
peratures. Here we demonstrate the equivalence with
Dyson's theory. Section V is devoted to obtaining
numerical results at general temperatures for the
spontaneous magnetization and the effective exchange
interaction.

II. TEMPERATURE-DEPENDENT
GREEN'S FUNCTIONS

The Heisenberg Hamiltonain is given by

X=—@HAS,*—Pg J,;S; S, ,
'b

where the sums over i and j range over all of the atoms
in the solid. The first term on the right-hand side of
this equation represents the interaction of an externally
applied magnetic field II, with the magnetic moment
tl, associated with each unit of spin (A/2). The direction
of H defines the s direction in space and 5,' is the s
component of the total spin angular momentum operator
for atom j. The last term of Eq. (1) represents the
spin-spin coupling of each spin to other spins in the
solid.

It is assumed that the wave-function overlap is
appreciable only for nearest-neighbor atoms so that
Eq. (1) can be approximated by replacing J,; by a non-

zero constant exchange energy J if i and j are nearest
neighbors and by zero otherwise. This is believed to be
a good first approximation to Eq. (1) for nonconducting
ferromagnets.

If J&0 the above Hamiltonian describes a ferro-
magnet. The system has a well-ordered ground state
with all spins aligned in the s direction, since this con-
6guration gives the lowest possible energy for the sys-
tem.

Let A(t) and B(t) be any pair of operators in the
Heisenberg representation which can be defined for
this system. The advanced and retarded Green's
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functions based on these operators are

G.(t t ) = —ig(t —t')([A(t)»(t )])
G.(t t') = —i'(t' —t)(LA(t)»(t')]),
8(t t')—=0 if t'&t,

if t& t'.

(2)

are connected to the energy states of the system,

G„(E)= lim Z 'QQ
&~0+ n tn

(C ~B(0)~C„)(C„(A(0)~C )(e ~ "—ge e )
X- (9)

E (E„—E„—)+ie

(A(t)) =Z-' Tr[e-e&A (t)],
Z= Tr(e e~) ~

(4)

The symbol P denotes the reciprocal of the product
of Boltzmann's constant and the absolute temperature,
Z is the partition function, and Tr indicates the trace
of a matrix.

In calculating physical properties of the system it is
necessary that the average over the canonical ensemble
of products of operators A and 8 be known. These
averages are known collectively as time correlation
functions. The two simplest correlation functions are

F»(t) = (A(t)B(0)),

(t) =(B(0)A(t)).

These time correlation functions can be obtained if
the Green's functions (2) are known. The direct con-
nection can be established by means of a spectral repre-
sentation of the functions involved. ' The result is

E„(t)= (A (t)B(O))=—lim
2' ™+

—ice te

X [G((o+te) —G(a&—te)]dko. (6)

The Green's functions are determined from their
equations of motion. These equations are formed by

i(d/dt) G„(t)= 8(t)([A(t),B(0)])
+~(t)([(dldt)A(t), B(0)]) (&)

The square brackets represent the commutator or
anticommutator:

[A,B]=AB qBA, —

where q= 1 for commutator and q= —1 for anticom-
mutator. The angular brackets in Eq. (2) indicate an
average over a canonical ensemble. That is

Thus the "poles" for G,(E) occur at E=E E„,w—hich
corresponds to the energy di fference between states
m and n.

The thermodynamic behavior of this system will be
determined by the use of the temperature-dependent
double-time Green's function defined by Eq. (2). The
choice of the operators A and 8 is made to e8ect a
quasiparticle description for the system. The retarded
Green's function, defined for the Hamiltonian (1), is
given by

G,(j,t) = —is(t)([s;-(t),s,+(o)]), (10)

I st+ s* ]=2'*4
[S;+,S;*]=+S,+8;;.

(12)

(1~)

The choice of the commutator (g=1) here is based
on the commutator of (12). The spin-deviation opera-
tors are not pure boson operators, since the commutator
is not a c number. However, at low temperature this
commutator approximates a boson character since the
operator 5,' will be about equal to the spin 5 for the
low-lying states. Thus it might be expected that this
system could be described in terms of boson quasi-
particles with corrections made for the non —c-number
commutator.

The equation of motion for G&(j,t), obtained from
the derivatives of the spin raising and lowering operators

i(8/Bt)s; (t) = t HS (t)——

+2~& LS *(t)S+. (t) —St (t)S.+,'(t)], (14)

where the spin raising and lowering operators S;, 5,+
are de6ned by

5,+=5,'~i 5,',
where S, and Sp are the x and y components, respec-
tively, of S,. The operators S,+, S,' satisfy the equal-
time commutation rules

i(d/dt)A (t) = [A (t)Pe].

The poles of the spectral function G„(E), is given by

[i(8/Bt)+t H]G&(j,t) = —2(S*)8(t) b, , o1
G„(E)=— G„(t,o)e'E'dt,

2~ +2~ t (t) Z ([s (t)s+.'(t)

The equations of motion for the Heisenberg operators i(g/gt)S, +(t) =&HS,.+(t)
are known to be

+2~ & I S~+(t)s+.'(t) —s *(t)SJ+.+(t)] (15)

~ D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Uspekhi 3, 320 (1960)j. —s,*(t)s,„-(t), s,+(o)]).
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As a result of the commutation rules (12), (13) the becomes
terms in the sum are not all G~ functions. These terms
couple the Gq function to a higher order Green's func [t(it/itt)+PH]Gij(It)+2JSQ [R(j,t)—Gi(j+p, t)]
tion G2. This coupling is based on the identity between
S and the operator S;-S;+, which can be verified from =—2(S*)b(t)h, ,o+2J p
Eqs. (11), (12), and (13). P

S,-(t)S,+(t) = (5—S;*)(S+5;+1).
For S=s, Kq. (1't) reduces to

S =S—S; S+.

~[G (j j+pj+p t) G (j+p j jt)7 (19)

where G2 is de6ned by

(18) Gm(1, 2,3,t) = —i0(t)([Sg (t)S2
—(t)53+(t),50+(0)]). (20)

From here on the equations are restricted to the case The numerals 1, 2, 3 will henceforth represent the
S=xs because of the explicit use of (18).The G& equation lattice vectors j&, j&, ja.

The equation of motion G2 is then

'(8/Bt) G,(1,2,3,t) = 8(t)([5 S 5 +,So+])—t ( )([A ( ),So+(0)]),
where

A (t) = [S;—(t),X]5 (t)S +(t)+S, (t)[S (t),X]5+(t)+S (t)S (t) [S~+(t),K].
Then using Eqs. (14) and (15) the equation of motion for the G& function is

[z(8/Bt)+PH)G2(1, 2,3~t) = —28(t)[Bz OS(S2 Sa )+82,05(Sz Sg+) 8y, 082, 0(Sy Sg+)—Br 0(52 Sp So+Sg+)

820(S—g S, o Sg+Sg+)]+2Jte(t) Q ([(Sg (t)Sg+~ (t) —51*(t)Sg+~ (t))Sg
—(t)53+(t))5,+(0)7)

(21)

(22)

+2Jtg(t) p ([Sq (t)(S2 (t)52+~'(t) —52*(t)52+, (t))53+(t),Sp+(0)7)
P

—2Jt8(t) Q ([Sg (t)52 (t)(53+~*(t)Sg+(t)—53+„+(t)Sg*(t)),50+(0)7) . (23)

Again because of the commutation (12), (13) G2 is coupled to a higher order Green s function. Using Eq. (18),
the above equation becomes

[i(8/Bt)+ttH)G2(1, 2,3,t)+2JSQ [Gg(1,2,3,t){1—282, g+p}
—G2(1+p, 2,3,t){1—28g g}—Gg(1,2+p, 3,t)

where

+G2(1,2&3+p,t)7= —28(t){Bx,oS(52 Sz+)+4,05(Sx Sa+)—@,082, 0(Sx Sa+)—8i 0(52 So So+5,+)

—82 0(St Sp 50+Sg+)}+2Jg [Ga(1,2, 1+p,1+p,3,t)—Gg(1+p, 2, 1,1,3,t)+Gg(1,2&2+P,2+p, 3,t)

—Ga(1,2+p, 2,2,3,i)+Ga(1,2,3,3,3+p, t)—G3(1,2,3+p,3+p,3,t)], (24)

G(1,2,3,4,5,t)= —ie(t)([5 (t)5 (t)5 (t)5+(t)5+(t) 5o+(0)]) (25)

The equation of motion for G& can be derived by the same method used above to obtain the equations of motion
for G~ and G2.'

It is clear that by continuing this process an in6nite set of coupled differential equations will be generated. In
order to determine G; the Green s function G~& must be known. This set of differential equations is restricted to the
case S=2 since Eq. (18) was used to produce the coupling.

III. SECOND-ORDER CALCULATION

Setting G;=0 for i) 1 in Eq. (19) yields spin-wave-theory results. Expanding G2 in terms of Gz represents the
erst-order theory previously treated. "

The second-order calculation begins with solving for G2 as given by Eq. (24) with Ga ——0. That is,

[i(8/Bt)+ PH)G2(1, 2,3)t)+2JSQ {Gm(1,2)3,t) [1—282, g+p] —G2(1+p, 2)3,t)[1—28g, m)
—G2(1,2+p,3,t)

+G2(1&2&3+p,t)}= —26 ~t)ps, 05(52 Ss+)+82,05(St Ss+)—bx, gb2, 0(Sx S3+)). (26)
' J. F. Cooke, Ph.D. thesis, Georgia Institute of Technology, 1965 (unpublished).
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The analytic continuation of Gz(p, o)) into the complex
co plane is then given by

[o)+o(p)o)) azr '(p—)o))/2]Gz(p)o)azo)
= —2(5*)+V(p, )oaio), (36)

where
o(p,~)=E' —&F'—Re[W(p, ~)j, (3&)

r '(P,~)/2=1m[W(p, ~)j (38)

Re[W(p, o))] and Im[W(p, o))] are the real and imagi-

nary parts of the function W(p, cu) which are generated

by the substitution

1 1
=6' ~Wi)rb(o) —or');

&—~&16 M —Go)
(39)

(P=principal value function,

8(x) =delta function.

These results are of a quite general nature. ~ The real

part of the pole given by the coefficient of the G~ func-

tion gives the renormalized energy of the magnons.
The magnon energy E is then given by the equation

E)))= o) = o(p)o)) .
The imaginary part of the pole gives the lifetime T

of this single-particle state with energy E .
At low temperatures the solution of (40) is clearly

E-= (P, = E:)=E:—E."' ~(p—) = (p) (41)

with the corresponding lifetime

r '(p, o)= E,')= r—'(p). — (42)

The renormalized magnon energy Eq. (41) is thus com-

posed of three terms. The first is the first-order energy.
The second term is generated by the Hartree-Fock
terms in (31) and is called the Hartree-Fock energy.
It represents a decrease in the energy of the magnon
due to its moving independently through an average
potential field, and therefore does not represent energy
correction due to magnon-magnon interactions.

The last term in (41) represents the energy contribu-
tion due to magnon-magnon interactions. This term
is the average energy gained by a magnon of momentum

p as a result of its correlations with all of the other
magnons in the system.

The function Z(p) is discussed in Appendix II and

r '(p) is discussed in Sec. V.
There is no justification for the renormalization pro-

cedure G~o —+G~ within the framework of the approxi-
mation characterized by G3=0. We will now try to
justify this replacement of G&' by G& as being consistent
with the effect of an improved approximation on G3.
A more detailed account of the following is contained
in Ref. 6.

Suppose we write out the equation of motion for

Go(1,2,3,4,5,t) defined by Eq. (25). This equation con-

'I.. KadanoG and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962), Chaps. 3 and 4.

IV. CORRELATION FUNCTIONS, MAGNETI-
ZATION, AND SPECIFIC HEAT

The correlation function (S„(t)so+(0)) can be cal-
culated from the knowledge of the Fourier transform
of the G~ function,

1 00

Gz(j,t) = Q Gz(p, o))e '"e'&'&dpi

2xS ~

In terms of Gq(p, co)) Eq. (6) becomes, in the limit
g —&oo,

(43)

(5 (t)So+(0))= lim
) o (2~)4

tz, iP n~—i(Ot

[Gz(p)o)+z') Gz(p)o) z') 3 (44)
1—e &"

tains inhomogeneous terms coming from the equal-
time commutators, terms proportional to G3 expressing
the dynamics of the three reversed spins, and terms pro-
portional to G4 expressing the interaction of the three
reversed spins with other spins in the lattice. We put
G4 ——0 and keep only those terms in G3 corresponding to
noninteracting spin deviations. The solution of the
resulting equation is

G,(1,2,3,4,5)')=G, '(1,")[(S;S4+)(S;5,+)

+(5 5')(5 5')j+Gz'(2, t)[(sz 5')(5 5')
+(S3 54+)(5&

—So+)j+Gz'(3) t) [(5&
—S4+)(Sz—So+)

+(Sz Sz~)(5) So+)].

Now replace G~' by G~ and utilize the Hartree-Pock
expansion of Gz in terms of Gz given by Eq. (31) above
(with U=O). This yields the approximation

Gz(1)2)3)4)5)t) (Sz 54+—)Gz(1)3)5)t)+(5, 54+)

XGz(2)3)5,t)+(Sz 54+)Gz(1)2,5,t).

If now this Go is substituted in Eq. (24) for Gz, there
results a new renormalized coeKcient for G2. The coef-
ficient of Gz in Eq. (29) is now replaced as follows:

(&o+tzR+E„o+E„,o E„,') ) (o)+)tz—R+ I'„,+I'„,—I'„,)
with

I +0,@IF

showing that E„' has been replaced by E„'—E„H in
the solution for G2. Therefore, the replacement of E~'
by E, in the Gz equation (I14) seems to be consistent
with the effect that the G3 functions have on this equa-
tion. The proof is not complete, because the energy
E~' E~"~ differs—from E~ by the function W(p, o))

given in Eq. (35).This difference is the magnon-magnon
interaction term and was generated by a detailed solu-

tion of the Gz equation. Such a term as W(p, &o) would

presumably enter the renormalized G2 coeKcient if a
more detailed representation of G3 were made in this
equation. The explicit demonstration of this remains a
program for future work.
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In order to evaluate M the renormalized energies o(p) cancellation can be seen in the third and fourth terms
must be known. From Eqs. (II25) and (II27), in (59):

o(P) =~(Vo—V.)D—~ij—(Q—I)J(Po)'fo(2'), (2~)'-(2~.)'=4 j'(-:)
38

+2~vs(o)t(o)

3g 3/2

~.(g) =t-(l) +:--j(!)
2m'PpP

3g 5/2

3g v/2

+0(g) o/o+7lcalo v 'f(o)
2mypP

~(g) =t (l) +4~vi (o)
2~V~D+Qfo(T')3

3ISI 5/2 3e
+s'o/o'v'1 (-,')

2z'PpP
X

2X'P pP

&~).'bo —V.)d'p,
(2n-)'

where the second term in (62) is the leading tempera-
ture and momentum term in Z(p).

E/quatlon of the eta functions in powers of T gives

2x'P pP

+ " -4 f'(-')
2' pP

30
+2~vt(o) j (o) +".

2%'P pv

It is also noted that the T'4 terms contributed by
these terms exactly cancel. The T' term is missing in
the second-order expression because of its cancella-
tion by the gi, ohio, o(S1 So+) term in the Go equation.
Thus G2 being zero if I =2 is a necessary condition for
the removal of this anomalous T3 term.

Syeci6c Heat

The specific heat per site is calculated in the follow-
ing manner. The total energy of a system of magnons
at a temperature T is given by

=~o(g)+3 j(-:-)1(-,')Q +0(g"'),
2x'p pP

38
+0(g'//o)1/1(g) =2orvj (-,')

2~ypP
with

g=k, r/J= I/ZP. (67)

38 '/' 38-! ~(-,')
2% +pv

S/= 1—2t (-,') 2' pv

—2''o/o'v'1 (-', )
2' PpP

The constants o/o', t (x), and v are given in Appendix III.
The magnetization at low temperatures then becomes

17=2 &~&.F-.'—o Z &I&.r &v"'+~(P)j, (71)

where the factor of 2 accounts for the double counting
of the Hartree-Fock and the magnon-magnon inter-
action energies, and (/1)v is the occupation number for
magnons of energy E„at the temperature T. Equation
(71) is valid in the approximation of neglecting the
imaginary parts of Gi(P, o/) and W(P,oo). These terms
will make contributions to the energy of order higher
than the 8' term to which we restrict the accuracy of
this specihc-heat calculation.

From Eqs. (62) and (66), Eq. (71) becomes

~=~(I-~) Z & &,(v.-v, )

fo(T) Z (&& (p/1)' (72)
2 p30 4

-6 e(l) j-(!) —0(g»'). (6s)
2x'P pP

The average energy per lattice site is then U/X,
The value of Q for the sjmple cubjc lsttjce derjved jn where E is the number of lattice sites. ExPansion of

Appendix II is U/X in a power series in T gives

0=I+l +l(1'/(l-l')), (69)

which agrees exactly with Dyson's value. For the other
cubic lattices the agreement should also be exact since
this was found to be the case for the simple cubic lattice.
The values of Q for the cubic lattices are given in
Appendix III.

The anomalous T3 term which is present in the
magnetization formula given by erst-order theories
has been cancelled out in the second-order theory. The

U 38—=J vryovt (-,')
2vry pv

5/2

+(5/4)~'v'vof(o)
2x'P pP

+4~"'VoQt'.l(o)j'
2x'P pP

5 +0(g11/2) (73)

+(7/3) v~o'~"'t (-')
270+pv
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1.0

MDER

L,

The iirst-order result for S„ is given by Eq. (51). The
second-order theory could be used to calculate 5„ for
all p, provided one could do the complicated integrals
which are functions of P. A compromise between these
two methods is to use the Hartree-Fock approximation,
given by Eq. (31) with U(1,2,3,f)=0, to calculate 5„.
It follows that

Vo—'Yy
dsp

(2tr)s e&P(ro vp)—tt—e)

1.0

d U 15 38 "' 105c= —=/, —f(-,')— + ~(l)
dT X 4 2zyov 16

30 30 7/2

X +—vr'vstoss| (-ss)

2x'pe 2~go

30
+3o QD(l)3' +o(d"'), (&4)

2'.pop

which agrees exactly with Dyson's result.

V. RESULTS AT GENERAL TEMPERATURES,
RENORMALIZED MAGNON ENERGIES

The second-order calculation has produced a re-
normalization of the 6rst-order energy E„,The second-
order energy expression at low temperatures is given
by Eq. (II1).This result can also be written as

e(P) =~(7s—v.)LI—C'j —&(P),
where

0 . 5

RELATIVE TEMPERATURE TO 5/2 POWER, {T/T~)

I"ro. 1. The renormahzation factor for a face-centered cubic
lattice. The 1st-order, dashed curve is from Ref. I. The 2nd-order
curve is Kq. (92) of the present work. The experimental data are
those of Stringfellow and Torrie in Ref. 8.

The ratio J.tt/J can be measured by inelastic neutron
diffraction. ' Figure 1 shows a plot of Eq. P9) with C (ti)
given by (80) for a face-centered cubic lattice, as
evaluated on the Georgia Tech Burroughs 85500 com-
puter. A value of 0,=4 was used to determine ii/0, .
It should be emphasized here that this choice of 0, does
not in any way inQuence the values of 4 for a given 0.

Figure 1 also shows the results from experiments on
nickel, which is a face-centered cubic lattice with s
close to one-half (0.6 holes in the d band), which were
reported by I.owde. The results from I are also given.

The experimental J,ff falls off more rapidly with tem-
perature than predicted by this theory. The main
reason for this is that the nearest-neighbor model dis-
cussed here cannot be applied to nickel. ' This point is
discussed in more detail in the next section.

From Fig. 1 it follows that the magnon energy does
not go to zero at the Curie point. It is clear that better
approximations of S~ calculated in this termination and
higher order terminations of the Green's functions will
cause the energy near the Curie point to decrease

1.0—

2v 5„
C= bo —Vs)&'P.

(2n-) ' 2(5*)
p6)

The lowest order temperature and momentum term
in Z(P), given in Appendix II, can be reproduced by
the function

0 I I I 1 1

.5

RELATIVE TEMPERATURE T/T
C

1.0

~(P) =~( Q—1)(vo—v.)c'

Substitution of this result into (75) gives

e(P) =~(7o—7.)L1—Q~)=—~.«(vo —~n)

J,it/J = 1—Q@.

(78)

P9)

Fzo. 2. Theoretical magnetization curve for a simple cubic
lattice. The 1st-order, dashed curve is our earlier result from Ref. 1.
The present work yields the curve marked 2nd order.

8 R. D. I.owde, J. Appl. Phys. 36, 884 (I965). The experimental
data in I'ig. 2 are those of M. %. Stringfellow and B.H. Torrie.' B.E. Argyle, S.H. Charap, and K. W. Pugh, Phys. Rev. 132,
205 i (f963}.
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1.0
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LU

f'cc, s = -',
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0
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.5
RELATIVE TEMPERATURE, T/T

1.0

Fzo. 3. The magnetization curve for nickel compared with
theory. The 1st-order, dashed curve is from Ref. 1; the present
work results in the 2nd-order curve.

further. The question of whether or not it will actually
go to zero at the Curie point cannot be answered in this
termination.

The Magnetization

The magnetization formula (68) for the nearest-
neighbor approximation is in exact agreement with
Dyson's results to order 84. In order to extend these
results to higher temperatures only those terms which
contribute to the magnetization formula to order 84

or less are retained. That is,

The relatively poor agreement with the nickel data
in Fig. 3 is due to the fact that the nearest-neighbor
model is incapable of 6tting the low-temperature
magnetization data on nickel. ' The coefficients of the
T' ' and T' ' terms in the magnetization formula depend
only on J and the value of J computed from the ex-
perimental value of the T' ' coefFicient gives the wrong
experimental T' ' coeKcient. As pointed out in Ref.
9, this difficulty can be solved by assuming a posi-
tion-dependent J, J(r), and expanding M in terms of
the moments of J(r).

Further evidence for the necessity for including
longer range interactions than nearest neighbors comes
from the ratio of the coeKcient E of the T'~' term in
the energy expansion to the coefficient C of the T '
term in the magnetization. This ratio, calculated in the
Har tree-Fock approximation, yields X/C= —,'. The
present theory which accounts for magnon-magnon
interactions yields E/C=-2Q. Accounting for inter-
actions of arbitrary range in the Hartree-Fock approxi-
mation gives S/C= 2(1+2p), where A2 is a function
of the moments of the interaction J(r)."

In Ref. 9 E/C is determined to be about 4.1 for
nickel. A second estimate comes from I owde's ex-
periment by fitting his points to a D=D2(1—ST'~2)
curve, where the value of C is given in Ref. 9, with a
resultant E/C value of about 4. This last number may
be too high because the lowest temperature used in
Lowde's experiment is nearly 42% of the Curie tempera-
ture, and higher order terms in the energy may be com-
parable to the T'" term. Nonetheless there appears to
be adequate evidence for the necessity of including more
than nearest-neighbor interactions, and these will affect
our predicted magnetization curve.

M=1—2g, (81)

where g is de6ned by Eq. (61), which is calcula, ted using
(79) and (80).

The magnetization given by (81) has been evaluated
on a computer and the results for the simple cubic (sc)
and face-centered (fcc) cubic lattices are plotted in
Figs. 2 and 3, respectively. The simple cubic and body-
centered cubic (bcc) curves intersect the (0/0, ) axis
and continue on for negative values of Jtj/J, eventually be-
coming double valued. The face-centered-cubic curve
may become double valued before reaching the 8/8,
axis somewhere in the range M(0.07. In order to settle
this question an accuracy of about 0.01% is needed in
the calculation of C for temperatures near 8,. The
values of C' were calculated to about 1% accuracy. The
fact that these curves do not give zero for 8& 8, is due to
the approximations used and in the termination G3——0.

The values of 0, found from (77) are given in Table I
below.

These values of 8, are in close agreement with those
given by Rushbrooke4 from the high-temperature series
expansions and are somewhat closer than those predicted
by I or by Callen.

Lifetimes

The imaginary part of the renormalized energy given

by (38) is interpreted as the lifetime of a single-particle
state. The low-temperature expansion of (38) is obtained

by using (51) for S~. After one integration, the leading
term is

2J~2p2g2 a& w 2w

(22r)4 0 0

TAsr, E I. Curie temperatures given by different approximations.

sc
bcc
fcc

Present
work

1.91
2.64
4.0

Rushbrooke

1.68
2.52
4.0

2.0
2.9
4.5

Callen

2.7
3.7
5.6

"W. Marshall (unpublished).

x
l
p'

l

' cos'22d'p', (82)

where y is the angle between p and p'. The leading term
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of (82) is then

6 'J
T '(P)= t-(-')(p )'0"'

p~ 16m'

6
-'(p)= t-(3)(p )'0',

ppP 67/

(83)

pa«8" ', (84)

Professor F. J. Dyson. We wish to thank Dr. M. W.
Stringfellow for making available to us the unpublished
experimental data plotted in Fig. 1. One of us (H.A.G.)
wishes to acknowledge the hospitality extended to him

by Dr. D. S. Billington and Dr. M. K. Wilkinson, of
the Solid State Division of the Oak Ridge National
Laboratory during a summer visit, when the work re-
ported here was begun.

where u is the lattice constant.
Equation (83) agrees with the lifetime calculated

from Dyson's' mean free path, after Eq. (111)of Ref. 3
has been corrected by replacing f(23) by i (—,').

VI. CONCLUSIONS

This work shows that it is possible to solve the
second-order Green's-function equations defined for the
Heisenberg Hamiltonian within an energy renormaliza-
tion framework, providing in the case of the nearest-
neighbor approximation expressions for the magnon-
magnon interaction energy and lifetimes for single-
particle excited states. These expressions are generated
by the G2 equation and are not introduced into the
theory from external arguments.

Because of the agreement of the results obtained in
this work with Dyson's results, it is concluded that the
Green's-function theory is providing a well-ordered
scheme for calculation of the physical properties for
the Heisenberg ferromagnet. The second-order theory
presented here yields results only slightly diRerent from
first-order theory for the temperature dependence of
spontaneous magnetization. There is a larger diRerence
in the predictions of the two approximations for the
temperature dependence of the eRective exchange in-
teraction. Apparently, there is no experimental data
for insulating ferromagnets with spin ~ which would
allow comparison of effective exchange interactions as
given by the two approximations. The case of nickel,
for which some experimental information is available,
appears to call for including longer range exchange in-
teractions than merely nearest neighbors. From the
theory side, it would be useful to have calculations ex-
tending the present results to the case of longer range
exchange interactions. Also, extension of this second-
order calculation to include higher spin values would
probably be worthwhile. Finally, it would be desirable
of supplement the computer results with analysis in
the vicinity of the Curie temperature.

Apparently the results of neutron diffraction experi-
ments determining the eRective exchange interactions
and the magnon lifetimes as the Curie temperature is
approached will provide sensitive tests for this and
other refinements of the first-order theory.
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APPENDIX I: CALCULATION OF G2 FOR
NEAREST-NEIGHBOR APPROXIMATION

Equation (29) is solved by letting E-+O2. In this
limit p becomes a continuous variable and

1 v
d3p

E 2 (22r)3

where the integration is taken over the first Brillouin
zone. The symbol 1/e denotes the number of particles
per unit volume. In this limit (29) can be solved with
the aid of Fredholm theory. "Using (I1) and making
the substitution

L~+I &+~(vo »l &»+—v»)—7G2(pl~p2~P3»)

=F(Pl P2 P3») (I2)
Eq. (29) becomes

2Jv
F(plpp2yp3y&) F(p )pl+ p2 p )P3)&)

(22r)'

Vgl —p Vg
d3pl

~+I &+~(V3—Vn 7»+» ~+Vu3)—

= —&(2~)'/"7s»L~(pl+P2)+~(P2+P3)7+2sn» (I3)

where b(x) is the Dirac delta function. Let

n, (x) = Pun/(2~) 37Le'*'—17,

g
—tX'P

~,()= (I5)
~+~&+~(vo—v' —v. +. .+v.)—

Then with the substitution plex, p2~pl+p2 —x,
(I3) becomes

F(x,pl+ p2 x,P3») — F(x,pl+ p2 ——x,P3»)

&&+ n, (x)P,(x')d'x' =—L2(2r) '/v7S»

Xp(x+P3)+~(pl+P2+P3 x)7+2S„—=I(*). (I6)

This is a Fredholm integral equation of the second
kind. The solution is obtained by a direct application of

'~ R. Courant and D. Hilbert, Methods of Mathematica/ Physics
(Interscience Publications, Inc., New York, 1953), Chap. 3.
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the Fredholm theory. Let

Cp, p
= ep(x)Pp (x)d'x,

fp= I(x)Pp(x)d'x.

Then the solution of (I6) is

(17)

(IS)

F(x pl+ p2 x P3 ~)

=I(x)+D-2P P ~,(x)D; f;.
P P

The functions f, are given by (IS):

fp(p»p j+P2+PP)

Pl+Enp

+hp(p&+ p»p»P2) 2

(I12)

F(x,p2+ PP
—x,p2,a)) =I(x)+Q xpep(x), (I9)

where the x, are solutions of the matrix equation

g (P2 pl+p2+p2) —g [g n2'p+e &(Pl+P2+P3)' p]
(22r) 2

hp(pr+P2, P»pp) = 2SP2

[I C]X=—f, (I10)

where I is the unit matrix. For these cubic structures
C is a yo)&yo matrix.

The solution of (I10) can be written in the form

xp ——D 'Q Dp pfp. ,
P

where the f, are given by (IS) and D is the determinant
of the matrix [I C].The D—;p are minors of the matrix
[I C] which —arise naturally in the solution oi' (I10)
by Cramer's method. It is assumed that the minors
carry the appropriate factor of (—1)".Then

X -dPP', (113)
~+En'+En +n n' —E~n -n'-

E. =I(vo-v, )+~II

where E„ is the first-order magnon energy.
Substitution of (I13) into (I12) gives

F(x,pl+ pl x,p2, w) . —
Then using (I3) and (I2) one obtains the G2(P2, PP,PP,w)
solution. Evaluation of this result for PP=P —P2—PP
gives

(22r) ~nm —nl- 2I~n nl n2 Vp nl+—Y—p n2 Vn Vn nl n2— — —
~~(p- p)+~&p- p.)]+

2&SP)P 2(S*) P2+En, '+En, '—En n, n, '
2' (P )g '(P P& P»P)L&m '& ']d'P—+ ZZ

2(5*)(22r)' p DL~+Enl'+Enp' En nl n2']—[pp+En-'+-Em+nl n' —En m nl'-] ~+En'--
4JvS~„, „, Vnl n' Vn'd P-25„

~+Enl +EP2 En nl n2—(2~)' [~+En '+E-'—En . P2'3[~+En'+-En—l+n~n' —E~nl n2']-
2Jv D"~.(p')h'(P~+PP P—P2—P2 ~)L~m '—~n ]d'P-

(22r) p p' DL++Enl +Enl En nl nl ][pp+En' —+E—n' m nl Ennl —n2—]--
The above equation is written in a form to suggest the method of renormalization. The substitution [Eq. (50)]

-2(~ V(-+E, )=G (P,-) -G (P,-)
js now made in (I14). A discussion of this replacement is contained at the end of Sec. III.

(I15)

APPENDIX II: THE RENORMALIZED MAGNON ENERGY

The renormalized energy 2(p) is a sum of three terms:

~(p) =E' En"' Z(P)— —

)=
(2-)' 2&

2v'J'
+ ZZ

(22r)2 p 2&S')DLEn '+E. ' E.'—E~m n'][En'—+Em+n "-En' E. n n']-——--

The interaction energy P(P) can be shown to reduce to the form

n m nlLVnl+Vnl Vu mV—Pn—2]—-
d pid p2

S*)[E„,+E„,'—E„—E
p(P')gp'(P P& p»p)[vnm+vn-n2 &m &nl vn2-]b'm n' 7n']d P&d PPd P—
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The 6rst term in this expression is the result which can be derived from second-order perturbation theory. It is

obvious that P (p) is even in p and P(p=0) =0. Thus the first possible nonzero term in an expansion of P (p)
in powers of p is of the form p (p) =Ap'. This approximation can easily be obtained for the simple cubic lattice.
Introduction of the variable

"=Pi+P~ P (II3)

for p&, expanding the integrands at (II2) for small x and p, and using Kq. (51) for S„gives the leading momentum

and temperature term for p(p) as

Z (p)= J Z & d- (p p)(p p')f; (T)+JR' Z Z d. ,—.e. .(p pi)(p p2)f. ;.(T), (II4)

where
P 0

dv v~=
(2)r)'

(2)r)'

Pl P2 P3

cospi' (p—
p )

d p»
7(} Vm

e4p. )))[e)p.))) 1
d'

(II5)

(I16)

and R is given by
R= (Di+Da 2D2)/D—o )

b

b
Dp

c
b

b

b b c b b

a b b c b

b a b b c
b b a b b

c b b a
b c b b a

a b b c b'

b a b b c
Dy= b b a b b

c b b a b

b c b'b a

(II8)
b b c b b

b a b b c
D2= —b b a b b

c b b a b

b c b b a

b b c b b

a b b c b

D3 ———b a b b c
c b b a b

b c b b a

(2)r)'

1—cosp' p I
d'p=1 ——,

Yp Yu +0
(II9)

v cosp (p—p') —cosp. p'
f4= — — — d'p; PWP', —p',

(2)r) ' yp —y„

cos2p y
—cosp g

d3 .
(2)r)'

(II10)

The temperature-dependent term f„,»(T) in (II4) is Because of the orthogonality of the p, for the simple

the leading temperature term of the integral cubic lattice, (II4) can be reduced to a relativelysimple
form:

(n)), (k pi)(k pg)d'ir
(2)r)'

4m- v
=—gX'P2

3 (2)r)'
Define fo(T) by

~(p) =&(p )'fo(T)

(„)I 4' (II12) X {2[do+dej+4Reo[d, +d 2d2j}, (II15)—
where

(II13) dp dp pp dy=dvl, —vi d&=dp, p' i fOr pity ~ y

then
{-(-',) . ,fo(T) = 0'i', O=keT/J. (II14) ep=

(2)r)'

(cosp p)(cosp p
—1)

d'p . (II16)
Vp Vy
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In terms of Dyson's

Is

and

(23r) 3

(cosp y&)(cosy gp
—1)d'p,

'0 'yu
d3p

(2~)' v p

the above constants become

eo=-' di ——-'3 I's+-'(n —1),

Then
dp=-p'(~+1), dp=-p'(~ —I'). (II19) ~(p) =~(p )'fo(T){Q—1)+". (II27)

(II28)

Therefore the leading temperature and momentum term
in the renormalized energy is

p(p) =~(p&) '{1—Qfp(T) }.
(II17) It can be shown that Eqs. (II25) and (II26) are correct

for the other cubic lattices with fp(T) defined by(II12)
and (II13) for those lattices. The constant Q is much
harder to determine for the fcc and bcc lattices because
of the nonorthogonality of the p; and the larger rank
of the determinants involved. Thus for all the cubic
lattices

The constant R is evaluated in terms of I s by „s,„g the The constants 3' are given in Appendix III, and Q is

identities given by (II24) for the simple cubic lattice.

giving
(II21)

APPENDIX III: VALUES OF CONSTANTS
USED IN THE TEXT

Di+D3 2D3 {—
3t 1—+I' ])3(1—I' )

Dp

v=1
2i/3

3X2- /

sc
fCC

bcc
(III1)

Then

with

(II22)
pS

(II23)

(II24)
Q =1.68

1.35
j..45

sc
fCC

bcc

capp= 33/32 sc
15/16 fcc
281/288 bcc

(III2)

(III3)

The Hartree-I'ock energy can be evaluated in a similar
manner, giving

2v

(~)'Leo—vn ~&+~. '3d'p'-
(23r)'

=J(pa)'fp(T)+ . (II25)

The Riemann zeta functions have the values

{(33)=2.612,

{.(-,') =1.341,

{.(-', )=1.127.

(III4)

(III5)

(III6)


