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Formulas are derived for the constants x; and & of superconducting alloys for arbitrary temperatures and
impurity concentrations. Beginning with Gorkov’s equations in matrix form, we calculate the free-energy
density up to fourth order in |A|, using Abrikosov’s assumption of a fluxoid lattice. The impurities are
treated by the usual averaging technique, retaining only s and p scattering, and a special technique is de-
veloped to treat exactly the nonvanishing commutator of different components of the gauge-invariant deriva-
tive. The results contain the already known limiting cases. Intermediate values are obtained by performing
machine calculations using the general formulas developed here. It is found that the values of x; and s
drop relatively strongly even for small impurity concentration, and also depend unexpectedly strongly on
the ratio of s and p scattering. The recent result of Caroli, Cyrot, and de Gennes is confirmed according
to which «, is approximately equal to «; in the dirty limit.

I. INTRODUCTION

THE magnetic behavior of type-II superconductors
was first explained theoretically in Abrikosov’s
fundamental paper! using the Ginzburg-Landau equa-
tions. These were later shown by Gorkov? to follow from
the BCS theory of superconductivity for temperatures
near T'.. Subsequently, a considerable amount of work
has been done either to derive generalized equations of
the Ginzburg-Landau type® and, using these, to re-do
some of Abrikosov’s calculations,*® thus extending the
theoretical description to temperatures somewhat lower
than T, or to proceed more directly from the Gorkov
equations for the gap parameter A to obtain various
results in several limiting cases.5—11

Formulas have been obtained for the upper critical
field Beo(T) or the corresponding parameter «:(T) by
Gorkov® for the “pure” limit; by Shapoval,” by Maki,”
and by de Gennes’ for the “dirty”” limit; by Tewordt* for
T near T.; by Helfand and Werthamer® for the general
case (taking into account only s-wave scattering of the
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impurities); and by the author? (taking into account s-
and p-wave scattering of the impurities).

Formulas for the magnetization slope dM/dB at
Beo(T) or the corresponding parameter xs(7) have been
derived by Maki and Tsuzuki® for the clean limit, by
Neumann and Tewordt near T,,% and by Maki!* and
Caroli, Cyrot, and de Gennes!'?in the dirty limit. As was
pointed out by Caroli, Cyrot, and de Gennes,2 however,
Maki’s!! k(T is incorrect, whereas in Ref. 12 the p
scattering of the impurities is omitted, leading to the
substitution of the transport lifetime 7 by the s
scattering lifetime 7 in the otherwise correct formula.

In the present paper, we give calculations of «; and
ke for all temperatures and impurity concentrations,
taking into account s- and p-wave scattering of the im-
purities, i.e., considering x; and k. as functions of 7, 7,
and 7. Our results contain the already known limiting
cases and give predictions for the intermediate regions
of impurity concentrations, thus connecting the ‘‘pure”
and “dirty” limits.

No new physical idea is involved in the calculations.
The achievement is purely mathematical and rests
mainly on two new methods: the exact treatment of the
nonvanishing commutator of different components of
the gauge-invariant derivative, and the introduction of a
special set of quasi-doubly-periodic functions by means
of which the space variation of the gap parameter and
its powers is easily described for every simple bravais
lattice of fluxoids.

The results are the following: Compared with all
simple periodic arrays of vortices, the triangular array
has the lowest free energy for all T, 7, 7 at Beo.
At a given T, k1 and ke mainly depend on 7, which de-
pendence is already contained in the Ginzburg-Landau
k(7). We consider then the ratios ki/k and ko/k as
functions of T/T. (0<T/T.<1), &/lw=1/20T ;T4
(0<E/ly< ), and of ly/l=7u/T (1<l/1<2). Both
ki/k and ko/k are always greater than 1, and xe>x;

12C. Caroliy M. Cyrot, and R. G. de Gennes, Solid State
Commun. 4, 17 (1966).

584



153

except in the dirty limit, where they become equal
within 19, accuracy.

The dependence on I/l is not negligible, «’s with
higher //l always being smaller. For intermediate
£/l the k,/x drop as much as 159, when /,/! goes from
1to 2.

The dependence on £/l appears for rather small im-
purity concentrations. For £/li,=1/20 the x have al-
ready been found to deviate a few percent from their
behavior in the pure limit. Also this dependence is not
monotonic; with /i/! held fixed and 7'=0, «;/x has a
more or less sharp minimum at £/li,~1; for the reason-
able value ly,/l=1.5, it goes down as far as 1.13, com-
pared with 1.26 in the pure and 1.20 in the dirty limit.

Various graphs of the k,/k as a function of the different
variables are given in Sec. 8.

II. OUTLINE OF THE PROGRAM

The difference of the thermodynamic potentials per
unit volume Q/V of a specimen in the superconducting
and normal state in an external homogeneous magnetic
field B,=rotA,(r) at temperature T can be written in
the form

Q—Q,

1
g / 102 Ko(TLAG) T2, Dv* (1)

1
i / 441d%2d%3d% K (T,[A(r)],4,3,2,1)
XYY R)*(2)¥(1)
—l——l— /dﬂi(rotA(l)—rotAe(l))Z-l-O(a"'), (2.1)
|4 8w

where af(r)=A(r) is the gap parameter, ¥(r) being
normalized according to

/ W@l v=1,

and B(r)=rotA(r) is the microscopic magnetic field
inside the specimen.

Both agf(r) and A(r) have to be determined by mini-
mizing g. In particular, B(r) has to be determined by
the equation

L rotB() = —aim [ as1am— KT LA 2,1
:L;ro (t)=—a V_/ oAG) «(7,[A(1)],2,1)

Xy*(2(1)+0(e),

which, however, leaves an additive integration constant
open. Since we want to escape the boundary problem, we
split B(r) into a constant part B;=B2=rotA;(r) and a
varying part a?Bo(r) with zero average flux, as was done

(2.2)
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in Ref. 13:
1
B(r)=B.:+a®B(r); - / Bo(r)d»=0. (2.3)

Equation (2.1) is then also minimized with respect to
B,, whereas Bo(r) is uniquely determined by (2.2)
and (2.3).

The upper critical field Beo(T) is the limiting external
field strength below which a negative g is possible with
an infinitesimal & and certain functions ¢(r) and B(r),
whereas above Beq(T) the free-energy density g is
positive with an infinitesimal o, whatever (r) and B(r).
Since the magnetic term in (2.1) gives at most a con-
tribution of order a*, Be¢s is that external field strength
B, for which the lowest eigenvalue E, of the equation

1
= / 1 KoT,[A0)],2,D09() = E(T,BYY(2)  (2.4)

vanishes. The solutions of (2.4) turn out to be identical
with the well-known eigenfunctions of the Schrédinger
equation for a particle of charge 2¢ in the magnetic field
B,. The eigenvalues E also have the same infinite
degeneracy as for that Schrodinger equation.

In Sec. 4 we determine the lowest eigenvalue Eo(7',B).
From this Beo(T) is determined and

x1(T)=Bex(T)/N2B(T)

[where B,(T) is the thermodynamical critical field cal-
culated and shown in the graphs of Sec. 87].

For external field strengths just below B¢e. we use
Egs. (2.1), (2.2), and (2.3) and get

1
gmat / 051492 Ko(T,[AM T2 0* Q9 (1)
V

. 1
o / d*1d%24%3d% K (T,[A(1)],4,3,2,1)
XU OPEWHRU()
1 1 1
—oi— | d@1—Bg2(1)+—(B,—B,)? 5). )
- f B+ B-B)HOE). ()

The optimal ¢(r) which minimizes Eq. (2.5) still satis-
fies (2.4) with E=Ey(T,B) as long as we neglect con-
tributions to g of order of or higher. However, the
fourth-order term now mixes the different eigenfunctions
belonging to E,, and whereas in principle the minimum
condition should tell us which of these functions is to be
used, this is not feasible in practice.

Instead, we shall assume with Abrikosov,! that we
have a plane bravais lattice of simple fluxoids which

13 G. Eilenberger, Z. Physik 180, 32 (1965).
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means that |¢(r)|? is doubly periodic in the -y plane obvious abbreviations),
with unit-cell area wc/eB, and is independent of z (2 ) _
axis parallel to B,). It is no surprise, then, that we g=a?Eo(T,B)+a*{K4,T,b}

always find the triangular lattice to have the lowest g —a{ B, T,B}+(B.—B,)2/87+0(at).
as is the case for calculations with the Ginzburg- From
Landau equation.'®:14 ag g
Given a certain lattice according to the conditions —=0, —=
stated above, Y(r) is completely determined by (2.4) dar 0B
with E=Eo(B,T). We get then, instead of (2.5) (with follows
1 E|(T,B
oot oT,B) L0,

2 {K‘hT:B}_ {Bﬂsz;B}

1 EXT,B) 1 _
=—- - —+—(B.—B)*+0(cf),
4 {K4;T1B}_{BOZ)T>B} 8m

1 _ 1 Eo(T,B)oEy(T,B)/dB
M=—(B—B,)=- ~ —+0(a?)
4r 2 {K4T,By—{B,T,B)

1 [0F(T,Bs)/dBJ*(Bo—B.s) o)
= at),
2 {K 4, T,Bes}—{ B, T, Bz} — 20 [0Eo(T, Bez)/ BT |
1 M\ {K4T,Beo}—{Bo*T,Bea}
__=_( . ) - 140(at). (2.6)
X 9B, 22[9Eo(T,B.s)/ OB

In Abrikosov’s theory! the formula corresponding to (2.6) is
—1/xX= (2= 1)I+0(at); Io= / [y(x) |4d®/V.

In our more general case, it turns out in Secs. 6 and 7 that we can write

{K4’Tchz}
2w dE(T,B.2)/0B]?

=2 T g+l oAl s+,

{3027 TaBC2}
20 [ 8Eo(T,Bus)/ OB

+i=glotolotSadst-- -,

where I, I, etc. are integrals similar to 7o containing higher eigenfunctions of Eq. (2.4). The parameters A, {,

however, are small compared with 2«,% and 5, respectively, the total corrections to the first term not exceeding

1%. They may thus be neglected for any practical purpose. The deviation of 5 from 1 is also negligible for most

cases, but if 2«,2 is near 1 it may be of influence for small 7" and small impurity concentration, where it reaches 1.12.
Formulas for «; and 5 are derived in Secs. 6 and 7 and plotted in Sec. 8.

III. DESCRIPTION IN TERMS OF GREEN’S FUNCTION

To determine the kernels K, and K, we use the notation and some of the formulas developed in Ref. 9. It is not
convenient here, however, to use formula (1.6) of Ref. 9, which is appropriate only if one wants g in powers of the
derivatives of A.

Instead, since the functional derivative of g with respect to A*(r) and A(r) yields

A(®)/A\—iF(0,r,r) and A*()/A+iF+(0,r,r),

14 W, H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133, A1227 (1964).
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respectively, we can use for the free-energy term in g:

LA e % g
o i S ol st S ECICYRE R LIRS 6.

where Gy, Gs, etc. are the contributions of 1st, 3rd, etc. power of |A] to G(w;,r,k), which is connected to the Green’s-
function matrix averaged over all impurity positions:

(G(w7r7k7kl)>imp. = (27‘-)353(](_ kl)é(w,l',k) .
G(w,rk k) is defined by the equation

iwt-¢+ivpkd, 0 .
( )G(w,r,k,k') ——/

Py

dq
0 — i ¢+ivpkd, )

(2 3 V<k— q)é(w;r’q)k,)

=E(m)%*(k—K)+A0Gwnek), (3.2)

9-(y 0 ) 2 )

To solve (3.2) we define the following operalors, which are supposed to work on functions A(r), A*(r):

1
ettt ivek, 0
Gor®(w,r k') = R 1 (2m)?63(k—K'),
0 ————
—iw+{+1vpkd,

éool)(w;r)krk/) = GOOOP(w,t,k,k/) +G00°P(w,r,k,k1’) V(kl, - kl) GAOOop(w)r’klsk,)
+Gorr(w,t K ki) V (ki — k1) GooeP (0,1, k. ke ) V (k' — ko) Goo (e, r ko, K )+ -, (3.3)

and

Gop (w,r,k,k’) = GOOD (w;r7k)k,) +GOOp (w:r7k)k1) A(r)é'oop (w)r;klyk,)
+ GOOP (w,r,k,kl) A (l') GOOD (w;r’kbk?) A(l’) GOOD (w,l",kz,kl) + Tty (34)

where (3.3) and (3.4) are meant to include integration /"d%/(2m)? over repeated k variables.
Obviously, the application of G°? on £ solves (3.2), i.e.,

Gyt k) =Gor (o, K K)E.

Using these representations, the trace in (3.1) can now be evaluated up to fourth power of |A|. We get in the pure
case:

1 1 +w a% -1 1
KZ(T,[Ai<r>J,2,1)=a3<1—2><—+— 5 X ) (3.5)
A Bi=—=J (2m)iwti+ivpkdr —iwt
and
K4(T,[A,~(l‘)],4:,3,2,1)= 53(1_2)53(1~3)53(1_'4)
1 4w % 1 1 1 1
X~ / - : : . (36
Bi—w) (21)3 2 iwrti—ivpkds —iwit-¢+ivpk( 914 8s) dwit-¢Fivpk 8y —iwr i

Since Egs. (3.5) and (3.6) are finally to be integrated (3.3). Doing this by the standard technique!® requires
over the 7 variables, we made use of the fact that dif- pairwise “contraction” of factors ¥V without “crossing”
ferentiation with respect to r may be shifted by partial of impurity lines in the corresponding graphs.

integration with respect to r.
Ig he i P e h h . 15 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
n the Impure case, we have to average over the posi-  pre04s of Quantum Field Theory in Statistical Physics (Prentice-

tions of the impurities in the scattering potentials ¥ in  Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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The totality of those contractions, where both factors
V are contained in the same G 7, yields the replacement
of all w by w+1/27. In the following we therefore shall
use w; always in the meaning

wr=(7/B)(2I+1)+1/2r.

Contractions connectmg factors V in different opera-
tors Go°® give rise to vertex corrections, which are
treated in the next section.

IV. THE QUADRATIC TERM AND ITS
VERTEX CORRECTIONS

The term quadratic in |A| has already been treated
very briefly in Ref. 9. We give a more extended treat-
ment here to explain the method of handling the
noncommuting components of the operator 9., which is
used throughout the following.

The operator d,/7, when working on A, has the

components
0 0 9
G35
10% c zay 102

taking the magnetic field in the 2 direction. Since A(r)
is assumed not to depend on z we have in polar
coordinates

—ivpk d,=vp(eB/c)!?
X (cosd) (ei¢F 4~ i¢F_) = vp(eB/c)2EF,
1 Jd a e_
=— ( .' 2y—B);
2(eB/c)”2\i6x dy ¢
1 / d 9 e._
= t +2y-B> :
2eB/o)v\idx 9y ¢
When working on A*(r), we have instead

+ivpk 8, =vp(eB/c) ' *(cosd)
X (¢=i¢F ¥+ ¢ieF_*)=vp(eB/c)V2EF *,

with

(4.1)

with
-1 / 9 9 e_
Fy¥=—ro F——2y- );
2eB/o)?\idx 9y ¢
(4.2)
-1 g 9 e._
F_*~—————(————2y— )
2(eB/c)Y2\idx 9y c
We have

[F_Fy]=[F_*F.*]=1.

It is convenient in the following to measure all energies,
i.e., ¢, 1/8,1/7,in units vp(eB/c)'/2. The right-hand side
of Eq. (3.5) becomes then (with N being the density of
states at the Fermi surface):

5%(1— 2)<“§ z a

/+wd§/d21% 1 o 1 )
dr i ¢—kFy —iwt/)

GERT EILENBERGER
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If we carry out the ¢ part of the integration over all
directions £ in this expression, the result contains F,
and F_ only as powers of F F_;i.e., the functions ¥,(r)
with F_y(r)=0 and the functions F+”xlxg(r)/ (n)'2 are
the eigenfunctions of the kernel K. It is not difficult to
see that this is also true after insertion of vertex cor-
rections for the impure case. In the pure case it is also
possible to show that the eigenvalues increase with in-
creasing #; in the impure case this is likely, but it is
difficult to prove since the vertex corrections become
complicated for high »n. The vertex correction to Eq.
(4.2) consists of an operator O which has to be inserted
into the integrand between the two factors which are
the remainders of two G¢oP. Here O has to account for
all possible configurations of impurity lines connecting
the two G, after the averaging process, and therefore
obeys the integral equation

O(F,) =1+ / T / d2’31<1 Skkl)

X 0(hF.)
w+§—ielF R iy

, (4.3)

which contains s and p scattering of the impurities.
Since the kernel in Eq. (4.3) is linear in £ the operator O
must be so and Eq. (4.3) therefore is solved with the
ansatz

O(EF,) = (1+A4 (2w) 2w+i£F,))/D(2w).
Inserting (4.4) in (4.3), the { integration can be done
immediately. The only problem left is the proper
evaluation of the integral

/ azk <1+3kk1) 1
47r 20)+1;k1F

which is not completely trivial, because the two com-
ponents of F=¢?F +¢~*F_ do not commute. We may
write, however,

(4.4)

————= [ dp exp[—2wp—3p? cos?¥]
20-+ikF, /0 ’

Xexp [—ip(cos?) ei*F ] exp [—ip(cos?)e™F_],

having used
eA+B — gApBo—[A,B]/2,

Now F_ can be equated to zero, since we want to
apply the operator only on functions o with F_y,=0.
The idea of considering operator identities which are
valid only if applied to functions ¥, is the basic trick
that makes the derivations of this paper possible. It
is always applied in the following without explicit
mention.
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The £ integration in Eq. (4.3) can now be done and we
get the result

3
AQw)=— 2_(1 —2wf(2w)),

4.5)
1 1
D(Q2w)=1—-f(2w)+ (Zw-—)A (2w),

where
0 /2

flx)= / dp e=%° / d¥(cos?) exp[—%p? cos?d]. (4.6)
0 0

The function f(x), its properties, and related functions
are treated in the Appendix.

Similarly, the integration in K, can be done, resulting
in an identity

Eo(T,[A:(r)],2,1)=6°(1—2)E«(T,B),

valid only if applied to a function ¥y; i.e., Ey is the
eigenvalue of K belonging to y,. We get

_ T o 1—2w;f(2w;)
E|(T,B)=N|In— _ ). 7
@5 (lanEo <z+%>u<zw,>) 4D

In Eq. (4.7), w; is still measured in units vz(eB/c)V/2
Equated to zero, the right-hand side thus gives an im-
plicit equation for Bes. The result coincides with the
results of Gorkov® for the pure limit, of Maki'? for the
dirty limit, and of Helfand and Werthamer? for 1/7,=0.

SUPERCONDUCTORS WITH

IMPURITIES 589

Directly below T'; we get from Eq. (4.7)

_ T—T, _(e/c)vw?
Eo(T,B) =N( +B
T, 3m2T 2
w 1
X2 )
i=0 (21+1)2(2+14+1/20T erss)
With
8TN\V2T,—T
B.=2xT c(——-—)
7%(3) T.

Gorkov’s? result follows:
3rT, (75‘(3))1/2

K(m)=8 o\ N

TN

- 1 -1
. (48
X (Eo (20+1)2(214+-1+1 /27rTmr)) .8

V. THE PERIODIC EIGENFUNCTIONS OF
K, WITH EIGENVALUE E,

Next, we consider the periodic eigenfunctions of Ko,
which shall be used in the following sections. Because
we assume independence of z, all variables will be re-
stricted to the x-y-plane in this section.

We assume the primitive lattice vectors

(5.1)
which are restricted by the flux-quantization condition
2m/x1y= (2¢/ C)B .

r1=(®5,0); r= (%)

Let

291\ V4 4w 2 (y+pym)? ?
wo(r]0)=(——1—r) > exp il {— P } ipyn(x—l—~x11)} (5.2)
X1 p=—® X1Y11 2 2
e\ 174 2 1
=(—JE) exp(— e )03<1(x+iy) —“(xn-!‘iyn)) (5.3)
X1 X1Y11 X1 X1

in the notation of Whittaker-Watson.® Also let

2w

yox>¢0(r+r 00), (5.4)

X1Y11

vir=en

and

Ya(r|10)= Fompo(r|1o) . (5.5)

()2

The set of functions y,(r|ry) has the following impor-
tant properties:

(a) Fo(r|ro)=0, i.e., the ¥, (x| 1o) are eigenfunctions
of the Schrodinger equation for a particle with charge
2e in the magnetic field B and are thus eigenfunctions
of K 2.

WE. T. Whittaker and G. N. Watson, 4 Course of Modern
Analysis (Cambridge University Press, New York, 1952).

(b) The functions are doubly periodic in the fol-
lowing sense:

Yn(t+r1r|10) = exp(Zm‘&)l//n(r] 1o),

Y11
Ya(r+rm|ro) =¢a(r|10) (5.6)
Yo X1r)o ¥ X11
Xexp(—Zm' F—- )
¥r Xy X1 21
(c) The set of functions ¥,(r|ry) [#=0, 1,2, --+; 7o

contained in lattice cell] forms a complete, orthogonal
system of functions in the x-y-plane with

/"/M*(rl I'O)‘Pm(l'l ro')d2r= nyIIB,.m52(ro-— l‘o,) . (57)
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(d) There is no other set of functions with the proper- It is obvious, that
ties @, b, c. This follows with Eq. (5.3) from the unique-

ness theorem on doubly periodic analytic functions. oFr_o(tr)=0, oF._o(ty)=0,
(e) The functions have inversion symmetry
Yar|ro) = (—1)"Pn(—r1| —10). (5.8) where oF_ is defined like F_ but with 25 instead of B.

Hence ¢(r,r’) can be expressed in terms of the functions
apo(r| 1) which are defined like o(r|ro), but with a

I o lattice cell spanned by the vectors ri/2 and ry, cor-
%(_2"[—? responding to a doubled magnetic field. Using the
and periodicity, symmetry, uniqueness, and normalization

o, T N of the functions involved, we get the important result
¥(0/0) _¢"(;}0)_¢"<?lo) =0, for odd x. which will be used in the following:
’)

I1—1I

o

2

I Ir1—1I2|fx
_)zxﬁo( —) (5.9)
2 2 2

() It follows from Egs. (5.8) and (5.6) that

0)=0, for even #

Because yo(r|1o) differs from yo(r|0) only by a shift of
coordinates and a corresponding gauge factor, we may 0 0)=
assume in the following that Volts| 0)fu(re| 0)=aut

A(r)=oao(r|0).

In the fourth-order terms we have to deal with +bz¢0(
products

(r1+r2

11+10

(r1+”, _) — pa(ra|O)o(:] ).
2 2

with |e|2=b|2=%.
VI. CALCULATION OF THE MAGNETIC FIELD TERM

The expression for [6/6A;(r)]K follows in the pure case by differentiating Eq. (3.5) with respect to A;(r). We
get [1/8, w; always in units vp(eB/c)V2]:

L otBo()= lim &2 / Gl A W L S VL S P
— rotBo(r) = - —2- . (6.
T A Bl g ) am\ T e it ey —dert it BF

In the impure case we have to introduce similar corrections as in Sec. 4. The corrected expréssion can be repre-
sented by the graph of Fig. 1.

The integration of Eq. (6.1) will be demonstrated only for the pure case. It is done in the same way for the im-
pure case except that more terms have to be put together. In Eq. (6.1) the { part of the %k integration can easily be
done, leaving the expression

32aN » [d% koo 1
— rotBo(t)=——3% | — lim - — ”
(eB/c)2 Bg 1=0J 47 1=2=r k(F;—F 2*)\2wl+1kF o 2w;4-ikF

)w*(zw(l). ©6.2)

The integral in this expression, we call it U, can be written

T[2

27 d§0 ]
U= lim cosddd / 4— / dp exp(— 2w10—%p? cos?¥){exp[ —ip(cosd)ei¢(Fao ¥ — F1_)]
0 mJo

1=2=r /¢
a

k
—exp[—i io(Fpy—Fy * b*(29(1). (6.
exp[—ip(cosd)ei? (F1y ] (o) (G (P Fa ) e i#(Fr ) Yo (2o(1). (6.3)

The operators F1,.—Fs * and Fi_—F». ¥ commute with each other; if we imagine ¢*(2)¢ (1) being decomposed into
its Fourier components, they act in the limit 1=2 as pure ¢ numbers for the single component. Suppose that
|F1_—Fs.*| acting on a certain component gives a ¢ number larger than |Fi,.—F, *| does (the final result being
independent of which one is larger), then the last operator in Eq. (6.3) can be written as
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Fic. 1. The open circles with the curly lines

around them stand for O(£F;) and O(EF;*), re-

spectively; the closed circle stands for the factor
2(e/c)k.

The ¢ integration in U,—:U, can now be done, yielding
) ) T/2 0 (p Cos )2v
U;;— ’LUy= lim cosddd / dp exp( zwlp"—ﬂp COSzty) Z —(')——'(F1+—Fg_*)V(Fl_—"Fz.i_)”—l’g&o* (2)1’/0(1) .
1=2=r J o 0 =1 21/ ’

This expression has a common factor F1,.— F»_*, which becomes

1 9 d
e
(eB/c)'2\dy  dx

in the limit 1=2=7. On the left-hand side of Eq. (6.2), however, the sum of the # component and (—1) times
the y component amounts to

1 a a By
(eB/c)m(ay+ ax) ).

Omitting the common operator on both sides thus integrates Eq. (6.2).
Including the vertex corrections, we get the general expression

Bo(”)=16ir2N§ {[%fl(zwz)'l-(l—2w;f(2wl))A (260) I(|o(1) |2— 1)+ lim ny(sz)
BB =0 D*(2w) Ry
X((Frp—F2 *)(F1r-—Fo ) Wo*2Qo(1) {, (6.4)
where

0 /2
fi(x)= / dp e / dd p?(cosd)2rHlg—iet cos?d
0 0

The functions f,(x) are related to f(x) and discussed in the Appendxx The 1 beside |¢(r)|% in Eq. (6.4) is the
1ntegrat10n constant chosen such as to satisfy Eq. (2.3).

The main contribution to Eq. (6.4) comes from the first term; this term reduces to the result of Maki and
Tsuzuki® (formula 22) for the pure limit and to the result of Maki®! (formula 17) for the dirty limit. The evalua-
tion of

_ 1 1
{B&T,By=— / @ r—B(r)
V 8w
is done by means of the identity (5.9). After some transformations one arrives at the result

/d3’ hm= [(Fs—Fo *)(Fp—Fo*)

XL (Fuym ) (Fy— F2+):|”11/0*(4)\1/0(3)%*(2)%(1)—“" 5> (zq)““ (6.5)

where p=v+pu and -
I,=3(| %4(0]0) [*+ | 244(0] r11/2) |2). (6.6)

For odd ¢ we have I,=0 because of the symmetry properties of the ¢,.
We get finally
_ 8w N2p?
{B#,T,B} =T(2—-1:)—4(g12 (To—D)+gigel ot (g1g5+382") Lo+12)+- - -, (6.7)
A(2r

with

27)3 f v (20) =23, -+ (6.8

2\ % «» 1
£1=(—> > {3 f1(201)+ (1 — 20 f (261)) A (201)} ; g,=(—— i
B8/ 1= D?(2w;) ) & ) i)
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where 1/8, w; are still in units of vr(e3/c)/2. Moreover, it is easily checked from Eqs. (4.7) and (6.8) that
d _ ZGNWF
—Eo(T,B)= 71 (6.9)
9B ¢(nT)?
Thus we get for the quantities (2.8)
2\2 83 1 82 2
e (S Yo, s (B ) 5 6o
g1 &1 2\g1

The machine calculations of these quantities show that the neglected quantities are very small.

VII. CALCULATION OF {X,,T,B}

From Eq. (3.6) we have in the pure case

_ ah e i 1
(KoT,B)= f / /
vr*(e/c) BB l~0 14 zw;+s°—/'eF4

1 1
X ¥ 4 3 % 2 '// 1).
—iw - ¢—EF—Fo*) o +-¢—EFy —iwrf-i'v/D (AW a(30pa™ 2ol

In the presence of impurities, we have again to introduce vertex corrections, which gives rise to three terms cor-
responding to the graphs of Fig. 2. These graphs correspond to those used by Gorkov,? the difference lying in the
fact that we are dealing with the noncommuting components of F.

The evaluation of these expressions is straightforward (although extremely cumbersome) using the methods de-

scribed in the previous sections. The result is

2N

~ 2 o 1
{K4T,B}= (1> 2= {S1+S2+S5+S4+S5+Se}
2xT)°\ B/ 1=0 D}(2w;)

with the six contributions

f/l f "

/7 11 7
=“2“Io+—210+f (—Io+—%12) s

3!

f1 fellot1 2) f1f3

3 2
e
T1U\2l/ 2

21412 2'6'

(7.1)

’-(201 ot4ls)+- -

Sp=——1(/)Lo +2f'——+ 2 —H() )
2 (5 (’”)Z)’“ ( ;

" f2'\NI o+ 31
flfz)o 2+”'},

2 70 3151/ 4/3

@)t

fl'Io FTo+10) fa'(fo+312)

1
Sy= -—-2A(D+1-—f) {f’ o

Ss=A3f+4)D+ fA—(1/7) )} o,

312 512

Se=~2A2{

212 412 614/3

The functions 4, D, and f, are the functions considered
in the previous sections; they depend on the argument
2w;. In each of the sums, the terms are ordered accord-
ing to the powers of the “derivatives” F involved in the
calculation, the higher orders thus coming from higher
“nonlocality” of the kernel K.

Jfilo l SfoLo+15) 1 fs(o+-315) |

-

VR }

As the machine calculations have shown, the main
contributions come from the first fwo terms in each of
the S,, which cancel partially. A smaller contribution
comes from the terms [(11/2)f.//6!420f5"/8 111, of
the sum Sy; they contribute some 109, of the total ex-
pression for small T and small impurity concentration.
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F16. 2. The open
circles with index »®
stand for O(F,*); 3
the dashed lines rep-
resent a single im-
purity line.

This corresponds to the fact that Sy is the only sum that
survives in the clean limit; it contains most of the non-
locality of the kernel K. All the other terms contribute
less than 19, and may thus be discarded; in particular,
the integral I, whose dependence on the lattice struc-
ture differs slightly from that of 7, has no practical im-
portance. The whole effect of the lattice structure is thus
contained in the value of 7, which is known to have its
lowest value, 1.16, for a triangular lattice.13:14

S is also responsible for the logarithmic divergence of
x2 for small T and 1/7 since the f,”’(x) are proportional
to 1/« for small «, as is shown in the Appendix (whereas
D is finite). When

1 -
20;= <27.-T(21+ 1)-[-—) //vp(eB/c)1/2>>1 ,
T

i.e., either in the dirty limit or for '~ T',, the asymptotic
formulas given in the Appendix may be used. We then get

_ 2N wpleB/c \73
{K4,T7B} =IO Z(2l+1+ Ttr) . (72)
( 3rT

T =0
For 1/2xT7u:>>1 this coincides with the recent result of
Caroli, Cyrot, and de Gennes,'? except that they got 1/7
instead of 1/74=1/7—1/71. It contains contributions
from the first two terms in each of the sums S,. If we
would take only the first term of each S, into account,
we would arrive at Maki’s result!! (formula 5).

For T=T,, on the other hand, (7.2) reduces to
#HB)YWV/2m2T 2)I,, corresponding to the coefficient of
the nonlinear term in Gorkov’s derivation of the
Ginzburg-Landau equation?; so we get

{K4:Tc:°'}
4r((3/8B)Eo(T.0))*

with the same «2(7;) as in (4.7).

K2(T4r) (7.3)

VIII. RESULTS OF THE MACHINE
CALCULATIONS

Using the results of the preceding sections, we did
machine calculations of 7, «1, and k. as functions of three

Fic. 3. k/xo as a
function of &/l ko
is the value of « in
the pure limit. In
the dirty limit « is
proportional to £/l,.

TYPE-11I SUPERCONDUCTORS WITH

F16. 4. ko/k as a
function of &/l at
T=0. The upper
curve is for l/l=1,
the lower curve is
for ly/l=2, and the
curve in between is
for Iy/l=1.5. The
asymptotic behavior
in the pure limit is
like (Infy,/£)12.
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F16. 8. k2/k as a function
of the reduced temperature
T/T, for £/l;;=0.05. The
upper curve is for li/I=1.
The lower curve is for
li/l=2. The curve in be-
tween is for l;/l=1.5.

F16. 9. x1/k and 7 as
functions of the reduced
temperature T/7. for
£/li;=0.05. The upper
curve is for Ily/l=1.
The lower curve is for
lix/l=2. The curve in be-
tween is for ly/l=1.5.

Fic. 10. k2/k as a function
of the reduced temperature
T/T. for #/li:=0.1. The
upper curve is for ly/l=1.
The lower curve is for
ly/l=2. The curve in be-
tween is for ly;/l=1.5.

Frc. 11. x1/k and % as
functions of the reduced
temperature 7'/T. for &/l
=0.1. The upper curve is
for li,/l=1. The lower curve
is for li;/1=2. The curve in
between is for l/l=1.5.
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F16. 12. ko /k as a function
of the reduced temperature
T/T, for £/l,=0.25. The
upper curve is for l,/l=1.
The lower curve is for
liz/l=2. The curve in be-
tween is for /. /l=1.5.

Fic. 13. xi/k and g
as functions of the re-
duced temperature /T
for £/li,=0.25. The up-
per curve is for ly/l=1.
The lower curve is for
li:/l=2. The curve in
between is for I;,/I=1.5.

F16. 14. «k2/k as a func-
tion of the reduced tem-
perature T'/T for £/l =0.5.
The upper curve is for
ly:/l=1. The lower curve is
for Ii;/l=2. The curve in
between is for l,/l=1.5.

F1c. 15. ki/k and 7 as
functions of the reduced
temperature T'/T. for £/l
=0.5. The upper curve is
for li;/l=1. The lower curve
is for l/l=2. The curve in
between is for li,/l=1.5.
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FiG. 16. k2 /k as a function
of the reduced tempera-
ture T/T. for &/li,=1.0.
The upper curve is for
l/l=1. The lower curve is
for l;;/l=2. The curve in be-
tween is for J;;/l=1.5.

Fic. 17. xi/k and 7 as
functions of the reduced
temperature 7/7T, for &/l
=1.0. The upper curve is
for Iy/l=1. The lower
curve is for Iy /l=2. The
curve in between is for

L /l=1.5.

Fic. 18. ko/k as a
function of the reduced
temperature 7/7, for
£/l,=2.0. The upper
curve is for Ily/l=1.
The lower curve is for
le/l=2. The curve in
between is for li/I=1.5.

F16. 19. «1/k and 4 as
functions of the reduced
temperature 7°/T. for
£/l.=2.0. The upper
curve is for Ily/l=1.
The lower curve is for
lix/!=2. The curve in be-
tween is for ly/l=1.5.
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variables. Figure 3 shows the value of k/kpure at T, as a
function of £/l according to Eq. (4.8). Figure 4 and 5
show k1/k and s/, respectively, at T=0 as functions of
£/l:. We calculated these quantities for /i,/I=1 (upper
curve), ly/l=1.5 (middle curve), and I./I=2 (lower
curve). Any reasonable scattering potential should
give ratios //! within this range, the most reasonable

ratio being about 1.5.

Fic. 20. ke/k as a
function of the reduced
temperature 7'/7T, for
£/lx=4.0. The upper
curve is for Il/l=1.
The lower curve is for
lir/l=2. The curvein be-
tween is for I, /l=1.5.

Fic. 21. ki/k and 9
as functions of the re-
duced temperature 7'/7T
for £/l;=4.0. The upper
curve is for lu/l=1.
The lower curve is for
lix/l=2. The curve in be-
tween is for l,/l=1.5.

Fic. 22. ko/k as a func-
tion of the reduced tempera-
ture T/T. for &/l;:=06.0.
The upper curve is for
l;:/l=1. The lower curve is
for li;/l=2. The curve in be-
tween is for Jy,/l=1.5.
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The comparatively large influence of even little scat-
tering is obvious for £/l;;=1/20 (depending on l/1),
where ki/k is already lowered by some percent and
k2/x has not yet reached its asymptotic behavior which
is proprtional to [In(l/£)]Y/2 Also the minimum of
ki/k at about £/l=~1 and its dependence on l/! is
clearly exhibited by Fig. 5. Figures 6 to 29 show «xs/k,

oE,
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&/ly= 10
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S
u
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[¢]

&/ =10

T

Fic. 23. xi/k as a
function of the reduced
temperature T/T. for
£/l;=6.0. The upper
curve is for Iy/l=1.
The lower curve is for
lir/l=2. The curve in be-
tween is for li,/l=1.5.

Fic. 24. k/xk as a
function of the reduced
temperature T'/T, for
£/l:=10. § The Jupper
curve isgfor l,/l=1.
The,'lower curve is for
by, /1=2. Thelcurve in be-
tween is forlli,/l=1.5.

Fie. 25. xi/x as a
function of the reduced
temperature 7/T, for
£/l=10. The upper
curve is for Il,/I=1.
The lower curve is for
li:/l=2. The curve in be-
tween is for li,/l=1.5.
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Fic. 26. ko/k as a
function of the reduced
temperature 7/T. for
£/l:=20. The upper
curve is for I, /l=1.
The lower curve is for
lie/!=2. The curve in be-
tween is for i, /l=1.5.

F1c. 27. xi/k as a
function of the reduced
temperature 7T/T. for
£/lx=20. The upper
curve is for I/l=1.
The lower curve is for
J:/l=2. The curve in be-
tween is for ,/l=1.5.

Fic. 28. k/x as a
function of the reduced
temperature T/T. for
£/lu=50. The upper
curve is for Ily/l=1.
The lower curve is for
lir/l=2. The curve in be-
tween is for l,;/l=1.5.

F16. 29. xi/x as a
function of the reduced
temperature T/T. for
£/ly=50. The wupper
curve is for Il /l=1.
The lower curve is for
lix/l=2. The curve in be-
tween is for /i, /l=1.5.
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k1/x, and 7 as functions of T for various values of &/l.
Again, in each diagram the upper curve corresponds to
liz/1=1, the middle curve to k,/I=1.5, and the lower
curve to ly/l=2. The curves 9(T) are given only if
7(0) exceeds 1.02. They are for /,/I=1.5, the devia-
tions from this for other values of /./! being very small.

It should be noticed that the scales are not the same
in all the diagrams for ks/k. Although equal scales would
have simplified comparison, their adoption seemed not
practical because of the high values of ko/x for low
impurity concentrations. We compared our results also
with the values of (8/9T)(ki/x) and (8/0T) (ke/x) at T,
given by Tewordt* and Neumann and Tewordt,’
respectively. Since we calculated «;/x and xy/k at in-
tervals AT/T.=0.05 on the abscissa, only an approxi-
mate comparison was possible. The agreement was best
for the curves with l,/I=1, our values at T/T.=0.95
always lying slightly lower than those calculated by the
linear approximation with the slopes given in Refs. 4
and 5.
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APPENDIX: THE FUNCTION f(x) AND
RELATED FUNCTIONS

The central function for all numerical applications of
the formulas given in the previous sections was

© /2
flx)= / dp e / d? (cos?) exp(—31p2 cos?d). (Al)

It has the two further integral representations:

® P
flx)= / dp ¥ arctan— (A2)
0 x

(in this form it appears in the paper of Helfand and
Werthamer8) and
1 /“’ In[(p+1)/(p—1)]
dp
1

(2= 1)1 2
—X
><exp(2(p2~ 1)) . (A3)

It satisfies the inhomogeneous differential equation

(Yo

dx? dx.

(A4)
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Fic. 30. The functions f(x) and — f’(x); the latter
diverges logarithmically at =0.

which may serve to prove the identity of (A1), (A2), and
(A3), and which we used extensively to express the
higher derivatives of f by f and f’ during the machine
calculations.

For small # the function f is calculated most easily
by using the expansion

m™\? » Inx43(C—In2—a,)
f(x)=(—> w2+ (AS)
2 =0 (2v4+1)2%!

with the Euler constant C=0.5992 and
2 v 1

a,= +2
+1 2=12

)

and for large « by using the asymptotic expansion

w (—2)v!
f(x)—E) 2+1

In Fig. 30 we have plotted f(x) and — f’(x) which
have been used to calculate the related functions f,®(x)
discussed below. These functions, defined by

x_ (2v+1) .

(A6)

o= “dp e / ™ 19 (cost)

X (o cos®¥)” exp(—3p? cos?) (A7)

and their derivatives, can be reduced firstly to sums of
derivatives of f(x) using integration by parts in (A7)
and secondly to expressions containing only the func-
tions f(x) and f'(x) and polynomials of x using (A4).
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TasLE I. The first few functions (—1)#£,® /(2v+p)!.

v u x—0 All % x large
T\ 32 1 2 8 48 384
0 0 (— fx) - ! }
2 x  3x3 S5x5  TxT Ox°
Lo 17r>3’2 1 2 16 144 512
- - — +af I TIPP
2(2 T 38 55 Ta7 9w
1/7\32 1 8 48 256
2 0 —(— — )+ 5+ f () +) ——p
8\2 4! 15215 7x7 30
1 /x\3/2 1 16 512
3 0 —(— —(15 /() + 33+ 13x2+a)x f' () + 11x+2%) ———t
48\ 2 6! 3527 9x®
1 /7\3/2 1 128
4 0 —(— —(105f(x)+ (2794-163x2+4-25x4+28)x /' (x) +121+23x3+ x5) —
384\2 8! 31540
1/ «2 1 2 8 48
0 1 —(ln——l—C —f'(x) —_——— = =
2\ 2 22 ozt b 28
1/ a? 1 2 16 48
11 ~<]n—+C ——((2+2?) f'(x)+1) ———
6\ 2 3! 3xt 3af x8
1/ a? 1 1 8 48
2 1 —(ln~+C +— ——((8+8x%+x*) f'(x) +6-+x2) e
30\ 2 20 5! 15246 3548
1 x? 11 1 16
3 1 ~<ln—+C +—  ——((48+ 72224 18x*+x5) f' (x) +44+ 1622+ 2%) —
210 2 1260 7! 3548
1 1 1 1 4 24 192
0 2 — —(xf’(x)+—) e e
2% 2! X x% x5 A7 «9
1 2 2 8 96
12 — —((4+x2)xf’(x)+x+—> Z
12x 4! X x5 &7 x9
1 1 8 8 64
2.2 —_ —<(24+12x2+x4)xf’(x)+x3+10x+— _ =t
90x 6! X 1547 59
1 48 16
3 2 — —((192+144x2+24x4+x5)xf’(x)+x5+22x3+104x—!—»—) —_———e
840x 8! x 3549

Table I gives the functions (—1)#f,®/(2v+nu)! represented as the first term of their power series, as linear com-
bination of the functions f(x) and f'(x), and as the first few terms of their asymptotic series, which is given by

(=1L o (=1)7Q0+p)+u)(p+0) 12

@l = Qi)+ !

The second and last columns of the table show how these quantities, which make up the terms of the S,
become smaller with increasing order ».

- [2(oh)+pt1] |




