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Formulas are derived for the constants K1 and K2 of superconducting alloys for arbitrary temperatures and
impurity concentrations. Beginning with Gorkov s equations in matrix form, we calculate the free-energy
density up to fourth order in ~A ~, using Abrikosov s assumption of a iiuxoid lattice. The impurities are
treated by the usual averaging technique, retaining only s and p scattering, and a special technique is de-
veloped to treat exactly the nonvanishing commutator of diBerent components of the gauge-invariant deriva-
tive. The results contain the already known limiting cases. Intermediate values are obtained by performing
machine calculations using the general formulas developed here. It is found that the values of K& and K2

drop relatively strongly even for small impurity concentration, and also depend unexpectedly strongly on
the ratio of s and p scattering. The recent result of Caroli, Cyrot, and de Gennes is con6rmed according
to which K2 is approximately equal to K1 in the dirty limit.

impurities); and by the author' (taking into account s-
and p-wave scattering of the impurities).

Formulas for the magnetization slope BM/r)8 at
I3os(T) or the corresponding parameter as(T) have been
derived by Maki and Tsuzuki" for the clean limit, by
Neumann and Tewordt near. T„and by Mala. ' and
Caroli, Cyrot, and de Gennes" in the dirty limit. As was
pointed out by Caroli, Cyrot, and de Gennes, "however,
Maki's" as(T) is incorrect, whereas in Ref. 12 the p
scattering of the impurities is omitted, leading to the
substitution of the transport lifetime 7-&, by the s
scattering lifetime r in the otherwise correct formula.

In the present paper, we give calculations of a~ and
I(:2 for all temperatures and impurity concentrations,
taking into account s- and p-wave scattering of the im-

purities, i.e., considering ~1 and a2 as functions of T, v,
and v&,. Our results contain the already known limiting
cases and give predictions for the intermediate regions
of impurity concentrations, thus connecting the "pure"
and "dirty" limits.

No new physical idea is involved in the calculations.
The achievement is purely mathematical and rests
mainly on two new methods: the exact treatment of the
nonvanishing commutator of different components of
the gauge-invariant derivative, and the introduction of a
special set of quasi-doubly-periodic functions by means
of which the space variation of the gap parameter and
its powers is easily described for every simple bravais
lattice of Quxoids.

The results are the following: Compared with all

simple periodic arrays of vortices, the triangular array
has the lowest free energy for all T, v, rt, at Bg~.
At a given T, ~& and ~& mainly depend on vt,„which de-

pendence is already contained in the Ginzburg-Landau

~(r~,). We consider then the ratios Kt/Ir and ss/s as
functions of T/T, (0(T/ (T1), $/it, = 1/27r T,rt,
(0($/l&, (~), and of l~,/l=rt, /r (1(l~,/l(2). Both
at/a and ss/Ir are always greater than 1, and Ir, )lr,

I. INTRODUCTION

HE magnetic behavior of type-II superconductors
was 6rst explained theoretica/ly in Abrikosov's

fundamental paper' using the Ginzburg-Landau equa-
tions. These were later shown by Gorkov' to follow from
the BCS theory of superconductivity for temperatures
near T,. Subsequently, a considerable amount of work
has been done either to derive generalized equations of
the Ginzburg-Landau type' and, using these, to re-do
some of Abrikosov's calculations, "thus extending the
theoretical description to temperatures somewhat lower
than T„or to proceed more directly from the Gorkov
equations for the gap parameter 6 to obtain various
results in several limiting cases. ' "

Formulas have been obtained for the upper critical
Geld Bcs(T) or the corresponding parameter at(T) by
Gorkov' for the "pure" limit; by Shapoval, ' by Maki, '
and by de Gennes' for the "dirty" limit; by Tewordt4 for
T near T„by Helfand and %erthamer for the general
case (taking into account only s-wave scattering of the
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means that ~f(r) ~

' is doubly periodic in the x-y plane
with unit-cell area 7rc/eB, and is independent of z (z
axis parallel to B,). It is no surprise, then, that we

always 6nd the triangular lattice to have the lowest g
as is the case for calculations with the Ginzburg-
Landau equation. ""

Given a certain lattice according to the conditions
stated above, P(r) is completely determined by (2.4)
with E=Ep(B,T). We get then, instead of (2.5) (with

obvious abbreviations),

g=nPEp(T, B)+n'f K4, T,B}
—n4f Bp', T,B}+(8,—8;)'/8z+0(nP) .

Fl OITl

Bg Bg—=0, =0
Bn 88

follows

Ep(T,B)
Q +0(n4),

2 fK4, T,B} fBp', T—,B}

1 Ep'(T,B) 1
+—(B.-B) +0(-),

4 fK4, T,B} {Bp',T,B—} 8pr

1 1 Ep(T,B)BEp(T,B)/8B
M = (B—B.)=— — +0(n')

4z- 2 fK4,T,B} fBpP, T,B}—

[8 Ep( T, B, p) /8 B]'(B.—B.p)
+0(n'),

2 {K'4,T,B,p}—fBpP, T,B,p}—2m- LB Ep( T, B. )p/8 B]'

1 BcV) ' {K4,T,B.p}—{Bp'-,T,B.p} —1+0(n').
2~E~E,(T,B.p)/» j'

(2.6)

In Abrikosov's theory' the formula corresponding to (2.6) is

—1/X = (2~'—1)Ip+0(n'); Ip=
~ P(r)

~

'd'r/V

In our more general case, it turns out in Secs. 6 and 7 that we can write

{K4,T,B,p} = 2zpPI p+4Ip+ &4I4+
2z.)BEp(T,B.p)/BB7'

fBp', T,B,p}
+1 vIp+t pI2+f4I'4+ ' ' '

y

2~L~Ep(T B p)/~K'

where Ip, Ip, etc. are integrals similar to Ip containing higher eigenfunctions of Eq. (2.4). The parameters X„, t „,
however, are small compared with 2K2' and g, respectively, the total corrections to the 6rst term not exceeding

1%.They may thus be neglected for any practical purpose. The deviation of g from 1 is also negligible for most
cases, but if 2':2 is near 1 it may be of inhuence for small T and small impurity concentration, where it reaches 1.12.

Formulas for z2 and q are derived in Secs. {jand 7' and plotted in Sec. 8.

To determine the kernels E2 and E4 we use the notation and some of the formulas developed in Ref. 9. It is not
convenient here, however, to use formula (1.6) of Ref. 9, which is appropriate only if one wants g in powers of the
derlvatlves of A.

Instead, since the functional derivative of g with respect to A*(r) and A(r) yields

d (r)/X iF(O,r,r) and—A*(r)/A+i F+(O,r,r),
'4%'. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133, A1227 (j.964).
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respectively, we can use for the free-energy term in g:

1 !h(r)!' 1 + dPk
d'r —+ Q-TrPA(r)(Gi(&oi, r,k)+-,'Gp(poi, r,k)+. )]

V P &=—~ (2ir)P
(3 1)

where Gi, Gp, etc. are the contributions of 1st, 3rd, etc. power of !4! to G(~i,r,k), which is connected to the Green's-
function matrix averaged over all impurity positions:

(G(co,r,k,k')); p
= (27r)'P(k —k')G(~o, r,k) .

G(&o,r,k,k') is defined by the equation

0
!G((o,r,k,k')—

ipo+I—+zppkB„f
-V(k—q) G(~o, r,q,k')

(2m)'
=E(2g)P8'(k —k')+ L(r)G(po, r,q,k'), (3.2)

(
0 —

A(r)) (1 Oi

To solve (3.2) we define the following operators, which are supposed to work on functions h(r), h*(r):

LB+t +p 'vrk 8„'
Gppop(ar r,kk)= (2~)PV(1 —k'),

2M+I +—zp pk8~

Go'&(,r,k,k')=Gpp'p( r k k')+G "( r k k ')V(k '—k )Gpo"(,r,ki, k')

+Gpp'&((o)r, k,ki') V(ki' ki)Gpp—'&((o,r,ki, kp') V(k, '—kp)Gpp'&(~o, r,kp, k')+. (3.3)

G &(io r k k') =G '&((o r k k')+G 'p((o r k k )L(r)G '&(co r ki k')
+Gp'p(~, r,k,ki) A(r)Gp'p(po, r,ki, k,)A(r) Gp' (ar,r,kp, k')+, (3.4)

where (3.3) and (3.4) are meant to include integration 1' dk/( 2)iroPver repeated k variables.
Obviously, the application of G'& on Z solves (3.2), i.e.,

G(co,r,k,k') =G'p(po, r,k,k')Z.

Using these representations, the trace in (3.1) can now be evaluated up to fourth power of !6!. We get in the pure
case:

+~ d'k —1. 1
E,(T,LA;(r)],2, 1)= P(1—2) + Z --„X

P i=—~ (2') t(0+1+pprk Bi —zpi+I ~
(3.5)

E4(T,LA, (r)],4,3,2, 1)= P(1—2)8P(1—3)8'(1—4)

+~ d'k j. 1 1 Ix- p
p i= ~ (27I) 2 zco[+I iprkBp 'Lpo[+I +tppk(Bi+ Bp) iio[+I +pprkBi —pedi+I

(3.6)

Since Eqs. (3.5) and (3.6) are finally to be integrated
over the r variables, we made use of the fact that dif-
ferentiation with respect to x may be shifted by partial
integration with respect to x.

In the impure case, we have to average over the posi-
tions of the impurities in the scattering potentials V in

(3.3). Doing this by the standard technique" requires
pairwise "contraction" of factors V without "crossing"
of impurity lines in the corresponding graphs.

"A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of QNantum FieM Theory je Statistical Physics (Prentice-
Hall, Inc. , Englewood CliGs, New Jersey, 1963).
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The totality of those contractions, where both factors
t/' are contained in the same G„'&, yields the replacement
of all co by ~+1/2r. In the following we therefore shall
use or& always in the meaning

~,= (~/P)(21+1)y1/2r.
Contractions connecting factors t/' in different opera-
tors Gp'& give rise to vertex corrections, which are
treated in the next section.

IV. THE QUADRATIC TERM AND ITS
VERTEX CORRECTIONS

The term quadratic in
l
A

l
has already been treated

very briefly in Ref. 9. We give a more extended treat-
ment here to explain the method of handling the
noncommuting components of the operator I„,which is
used throughout the following.

The operator 8,/i, when working on 6, has the
components

~ ~ ~

8 e 8 8 )+2y-B,
iax c

'
ivy' ias)

'

taking the magnetic held in the s direction. Since A(r)
is assumed not to depend on s, we have in polar
coordinates

iepk 8„=vr(e—B/c)'I'
X (cos8)(e'~F++e—'rF )= er(eB/c)"'kF„,

with

If we carry out the q part of the integration over all
directions k in this expression, the result contains P+
and F only as powers of F+F; i.e., the functions $0(r)
with F $0(r) =0 and the functions F+Qo(r)/(e!)'~' are
the eigenfunctions of the kernel E2. It is not dificult to
see that this is also true after insertion of vertex cor-
rections for the impure case. In the pure case it is also
possible to show that the eigenvalues increase with in-
creasing n; in the impure case this is likely, but it is
dificult to prove since the vertex corrections become
complicated for high e. The vertex correction to Eq.
(4.2) consists of an operator 0 which has to be inserted
into the integrand between the two factors which are
the remainders of two Gp'I'. Here 0 has to account for
all possible configurations of impurity lines connecting
the two Gp after the averaging process, and therefore
obeys the integral equation

+" di d'kj 1 3kkg
0(kF„)=1+ — —+

„2x 4m v

1
X „0(kP„),(4.3)

iÃ+ f —kyFi 2(v+ f—

which contains s and p scattering of the impurities.
Since the kernel in Eq. (4.3) is linear in k the operator 0
must be so and Eq. (4.3) therefore is solved with the
ansatz

1 8 8 e
F+ —— — +2y Bl;—-

2(eB/c)'I' i'm By c )
0(kF„)=(1+2(2(o) (2(o+ikF,))/D(2(a) . (4.4)

8 8 8
F = + +2y B—-

2(eB/c)'I' i'm By c

d'k 1 3kkg) 1-+
4s. r rg )2(a+ikgF„

When working on A*(r), we have instead

+isa i},=ep(eB/c)' '(cos8)
X(e '"F+*+e'"F *)=or (eB/c)'~'kF, *

which is not completely trivial, because the two com-
ponents of F=e'&F++e '&F do not commute. We may
write, however,

—1 (8 8 e
F+*=

l +—2yB;-
2(eB/c) '~' ki8x By c

(4.2)—1 8 cj e——2y-B l.
2(eB/c)'~' i'm By c )

%e have

dp exp[' —2~p —sp' cos'P5
2(id+

SAFER

0

(4.1) Inserting (4.4) in (4.3), the i' integration can be done
immediately. The only problem left is the proper
evaluation of the integral

LF F+5= L~ *F-+*5=1. - Xexp L
—ip(cos8) e'~F+5 exp [ ip(cos8)e "F 5—,

It is convenient in the following to measure all energies,
i.e., f, 1/P, 1/r, in units ri~(eB/c) '~'. The right-hand side
of Eq. (3.5) becomes then (with E being the density of
states at the Fermi surface):

having used
eA+B gAeBg —[A,B]l2

(1 1 +~
V(1—2)l —— P ~X

pt
+ie

X
2%

Now F can be equated to zero, since we want to
apply the operator only on functions $0 with F $0 0. ——
The idea of considering operator identities which are
valid only if applied to functions fo is the basic trick
that makes the derivations of this paper possible. It
is always applied in the following without explicit

4s. Ne~+ f kF~ us+ f)— m—ention.
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where

3
A (2(o) =— (1-2o)f(2(p)),

2Tg

D(2o)) =1——f(2o))+l 2o)—lA(2o)),
ri

(4.5)

m/2

The )fo integration in Eq. (4.3) can now be done and we

get the result

Kith

Qo 1
xg

I o-(2l+1)'(2l+1+ 1/2n. T,r1„)

t'SmN )"'T T-
B,=2 T,

l

E7t.(3)i T,

Directly below T, we get from Eq. (4.7)

(T—T. (e/c)op'
Ep(T,B)=Nl +B

T, 3~'T, '

dpe

The function f(x), its properties, and related functions
are treated in the Appendix.

Similarly, the integration in K2 can be done, resulting
in an identity

(fp(cos11) expl Ipo cosop] (4 6) CTorkov's' result follows:

31rT, (7f'(3))1~'
&(«.)=

8(e/c)op'& IrN i
1 —1

xi& (4g)
Ez=o (2j+1)o(21+1+1/2zrT, r1,)i

Eo(T,LA;(r)],2,1)= ()'(1—2)E,(T,B),

valid only if applied to a function Pp, i.e., Ep is the
eigenvalue of Ko belonging to Pp. We get

T zc 1—2(dzf(2o)l))
Ep(T,B)=N ln—+Q

l
. (4.7)

T, I=p (i+—)D(2o)I)i

In Eq. (4.7), or& is still measured in units or(eB/c)11'.
Equated to zero, the right-hand side thus gives an im-
plicit equation for 8&2. The result coincides with the
results of Gorkove for the pure limit, of Maki" for the
dirty limit, and of Helfand and Werthamer for 1/rz= 0

rI (SI 0) rII (SII yII) (5.1)

which are restricted by the Qux-quantization condition

2s/xzyzz = (2%)B

V. THE PERIODIC EIGENFUNCTIONS OF
K2 WITH EIGENVALUE Ep

Next, we consider the periodic eigenfunctions of E2,
which shall be used in the following sections. Because
we assume independence of s, all variables will be re-
stricted to the x-y-plane in this section.

We assume the primitive lattice vectors

t'2yzz& "' +
l/lp(r

l 0)=
l l P exp

xz i pz zzzz xzyzz

(y+Py»)' t' P'+
p*-l *+-*-)

2 2
(5.2)

(2yzz 'I'
)r pry' q

n. 1
exl l

— l~o —(x+iy) —(xzz+iyzz) l

& Xz xzyzz i Sz xz

and

( 2m
|tp(rlrp)=expl ypx leap(r+rpl0),

zSIyII i

0-(rl «) = E+Vo(r lro).
(11l) If2

in the notation of Whittaker-Watson. "Also let

(5 4)
P„(z+zzlz, )=e p(2 z—lP„(zlz,),

yIIi

(5 5) g„(r+rzz l rp) =if„(r
l
rp) (5.6)

(b) The functions are doubly periodic in the fol-
lowing sense:

The set of functions f„(rl rp) has the following impor-
tant properties:

(a) F Pp(rlrp) =0, i.e., the/„(rlrp) are eigenfunctions
of the Schrodinger equation for a particle with charge
2e in the magnetic field 8 and are thus eigenfunctions
of E2.

"E.T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, New York, 1952).

( xo xzzyo x xzz )
xexpl —2~i— +—+

xz xzyzz xz 2xzi

(c) The set of functions f„(rl rp) [11=0, 1, 2, . ; rp

contained in lattice cell] forms a complete, orthogonal
system of functions in the x-y-plane with

f„*(rlro)P (rlro')(ior=xzyzz& ~'(ro —ro') (5.7)
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0' (rI«)=( 1)V~( rI ro)-

(f) It follows from Eqs. (5.8) and (5.6) that

r11
P„~ —+—0 =0, for even 22

'12 2
and

(5.8)

ri
P (0~0)=P —0 =P —0 =0, for odd 22

2 2

(d) There is no other set of functions with the proper-
ties a, b, c. This follows with Eq. (5.3) from the unique-
ness theorem on doubly periodic analytic functions.

(e) The functions have inversion symmetry

It is obvious, that

2F, (p(r, r') =0, 2F, (p(r, r') =0,

where 2F is dined like Ii but with 2B instead of B.
Hence ob(r, r') can be expressed in terms of the functions

2&o(r~ro) which are defined like iso(r~ro), but with a
lattice cell spanned by the vectors rr/2 and r11, cor-

responding to a doubled magnetic field. Using the

periodicity, symmetry, uniqueness, and normalization
of the functions involved, we get the important result
which will be used in the following:

Because l4(r
~
ro) differs from go(r

~
0) only by a shift of

coordinates and a corresponding gauge factor, we may ~ (r ~0)~ (r ~0)
~ 0 0

r1—r2
0 r1 0 r2 ~2 0 2 0

assume in the following that 2

~(r) =~,(r
~
0).

In the fourth-order terms we have to deal with
products

rl+r2 rl r2
=No(r1~0)ko(r Io)

2
'

2 with fa/2= )bf2=-'.

VI. CALCULATION OF THE MAGNETIC FIELD TERM

The expression for [b/bA, (r)]IC2 follows in the pure case by differentiating Eq. (3.5) with respect to A, (r). We
get [1/p, ob& always in units oz(eB/c)'~2]:

1 1 1 +~ d'k e„) 1 1 1—rotBo(r) = lim — Q —2-k
~

&& &( p*(2)p(1) (6 1)
4m 1=2=v (eB/c)'" p 1=—~ (2~)' c b'i(ob+{.—kF1 ice&+f —2obb+f kFp—

In the impure case we have to introduce similar corrections as in Sec. 4. The corrected expression can be repre-
sented by the graph of Fig. 1.

The integration of Eq. (6.1) will be demonstrated only for the pure case. It is done in the same way for the im-

pure case except that more terms have to be put together. In Eq. (6.1) the {part of the k integration can easily be
done, leaving the expression

d2k1 32m' ~ 1 1
rotB (r)= P lim„—„~4*(2)4(1).

(eB/c)'" Bp b=o 42r 1=2=. k(F1—F2*) 2(o1+ikF2* 2ob1+ikF1)
(6.2)

The integral in this expression, we call it U, can be written

U= lim
1=2=r

vr /2

cos8d8
p 4Z p

dp exp( —2(obp ——',p' cps){exp[ ip(cos8)—e '~(F21.* F1 )]—
exp[ ip—(cosP)e—'o(F1+ F2 *)]}— , A*(2)A(1) (6 3)

(cos8){e' (F1+—F2 *)+e ' (F1=F2+*)}

The operators F1+ F2 * and F1 F—2+ commute wit—h each other; if we imagine/*(2)p(1) being decomposed into
its Fourier components, they act in the limit 1=2 as pure c numbers for the single component. Suppose that
~F1 —F2(.*~ acting on a certain component gives a c number larger than ~F1+—F2 *~ does (the final result being
independent of which one is larger), then the last operator in Eq. (6.3) can be written as

A

ke'&

COSQ v=p

(F1+—F2-*)"
i& 2v

(F F 8) v+1



FOR TYPE —I I SUPERCON DUCTORS WITH I M PURI TIES 591

Fio. 1. The open circles with the curly lines
around them stand for O(&F1) and O(kF2*), re-
spectively; the closed circle stands for the factor
2(e/c)k.

K

The p integration in U,—i U„can now be done, yielding

vr/2

U,—iU„= lim cos6d8
1=2=r p

(p cos8)'"
dp exp( —2~~p ——',p'cos'8) P (Fx+—Fp—*)"(Fi——Fp+)" '0'p*(2)fp(1)

0 v=1 (2v) !

This expression has a common factor F1+—P2 *, which becomes

1 c! 8)+i-
(eB/c)'" c!y c!x/

in the limit 1=2=r. On the left-hand side of Eq. (6.2), however, the sum of the x component and (—i) times
the y component amounts to

1 8 8
+i Bp—(r) . —

(eB/c)'" By Bx

Omitting the common operator on both sides thus integrates Eq. (6.2).
Including the vertex corrections, we get the general expression

16m'N w f„(2(oi)
Bp(r)= P [—,'f~(2a&~)+(1 —2a&;f(2'~))A(2&p~)](leap(r)l' —1)+ lim P

BP &=p D'(2coi) i=p=r v=p (2v) !

X((F1+ F2—) (Fl— F2+ )) 'pp*(2)fp(1), (6.4)

where
7r/2

f.(x) = dp e *!' v (cosy)2v+le —
happ cosp p

The functions f„(x) are related to f(x) and discussed in the Appendix. The 1 beside lP(r) l
in Eq. (6.4) is the

integration constant chosen such as to satisfy Eq. (2.3).
The main contribution to Eq. (6.4) comes from the 6rst term; this term reduces to the result of Maki and

Tsuzuki" (formula 22) for the pure limit and to the result of Maki" (formula 17) for the dirty limit. The evalua-
tion of

1 1
(Bp' T B)=— d'r—SpP(r)

V Sx

is done by means of the identity (5.9). After some transformations one arrives at the result

1
d'r lim [(F~—F4 *)(F, —F~~)jv

V 1 =2 =1'
3=4=r

p! fv/pl (p)X[(F, —F, *)(F, —F„)]P,*(4)&o(3)&o*(2)&o(1)=—Z I

2v p=p &2qi
where p= v+p and

Ip= p(l p&p(OIO) I'+
I pl'p(OI xrr/2) l')

For odd q we have I,=O because of the symmetry properties of the P, .
We get finally

(6.6)

with

287' 2pF2
(Bp,T B)= (gP (Ip—1)+gigpIp+ (gigp+ pgP) (Ip+Ip)+ ~ ~ ),

(2 cT)7r
(6.7)

(2~ ' f, (2pp))
g~=l —

I Z 4'fi(2~i)+(1 —2~&f(2~)))~(2~&)}; g~=l —2, v=2, 3, ~ ~ ~ (6.8)
kP) ~~D'(2~, )

'
k P t~ (2v)!D'(2co))
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where 1/P, ~g are still in units of vs (eB/c)"s M. oreover, it is easily checked from Eqs. (4.7) and (6.8) that

8 2e/vp
Eo(T,B)= gs.

BB c(2srT)s
Thus we get for the quantities (2.8)

(gs 1(gs) ) f gs it gs)~=1+—+l —+-I —
I

I+" &s=l —+-I —
I

I+"
gs (g, 2 &gs) i ( gs 2 &ggi i

The machine calculations of these quantities shor& that the neglected quantities are very small.

(6.9)

(6.10)

Prom Eq. (3.6) we have in the pure case

{Ks,T,B}=
2m' d'k +"di'

dsr Hm
el s(e/c)BP &-o V 4m „2sr ss ss =', io-os+{ kFs*—

j.
X . — . e"(4)A(3)O:(2)ao(1).—i(o(+f —k(Fs—Fs*) ioo(+i kFs— hog+—{

In the presence of impurities, vre have again to introduce vertex corrections, vrhich gives rise to three terms cor-
responding to the graphs of Fig. 2. These graphs correspond to those used by Qorkov, the difference lying in the
fact that we are dealing with the noncommuting components of F.

The evaluation of these expressions is straightforward (although extremely cumbersome) using the method. s de-
scribed in the previous sections. The result is

2E 2m '~ 1
{E's,T,B}= — Q — {Ss+Ss+Ss+Ss+Ss+Ss}

(2s.T)' P ~=o D'(2cog)

arith the six contributions

Ss=—Io+ 2Io+
I

—Is+ sIs I+ (20Io+4Is)+.
2! 4! 6! k2 ) 8!

fs'Io t' fs' (fs' s ) Is+Is fs' fs'fs')Io+3Is'
Ss=—(f')'Io+2f' +I 2f' +I ——

I + 2f' +2
I

——+
3!2 & 5! &3! i 2 I! 3!5!i 4/3

fi 'Io f~fs(Is+Is) ( fifo fs s) Io+3Is
S =- —-+2 +I 2 + — I- +"~

2! 2 2!4!2 ( 2!6! 4! ) 4/3

7'!4/3

So=As{(3f+A)D+f(i—(1/r) f)}Io,

fs'Io fs'(Is+Is) fs'(Io+3Is)
Ss———2A.

I
D+1—fI f'Io+ -+ +

3!2 S!2
~ ~ ~

7

fA fs(Is+Is) fs(Io+3Is)
So——-2A' + +

2!2 4!2 6!4/3
~ ~ ~

The functions A, D, and f„are the functions considered
in the previous sections; they depend on the argument
2'~. In each of the sums, the terms are ordered accord-
ing to the powders of the "derivatives" F involved in the
calculation, the higher orders thus coming from higher
"nonlocality" of the kernel E4.

As the machine calculations have shorn, the main
contributions come from the 6rst two terms in each of
the S„which cancel partially. A smaller contribution
comes from the terms I (11/2)f / s!+6f20/ s!]8I f
the sum Ss,' they contribute some 10% of the total ex-

pression for small T and small impurity concentration.
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FrG. 2. The open
circles with index v &*)

stand for 0(kF„*);
the dashed lines rep-
resent a single im-
purity line.

4 4

i.e., either in the dirty limit or for T= T„the asymptotic
formulas given in the Appendix may be used. We then get

2iV er'eB/c
{Ip.4 T B)= Ip g 21+1+ r

~

. (7.2)
(2prT) i=p 3xT j

For 1/2 Tprrp, ))1 this coincides with the recent result of
Caroli, Cyrot, and de Gennes, "except that they got 1/r
instead of 1/rp, =1/r 1/ri. I—t contains contributions
from the first two terms in each of the sums S„.If we
would take only the first term of each 5„ into account,
we would arrive at Maki's result" (formula 5).

For T=T„on the other hand, (7.2) reduces to
srf(3)(jt//2m'T—,')Ip, corresponding to the coefficient of
the nonlinear term in Gorkov's derivation of the
Ginzburg-Landau equation'; so we get

(E4,T„o)
(7.3)=K 7tp

4pr((ci/BB) Ep(T„O))'

with the same s'(rp, ) as in (4.7).

This corresponds to the fact that S& is the only sum that
survives in the clean limit; it contains most of the non-
locality of the kernel E4. All the other terms contribute
less than 1% and may thus be discarded; in particular,
the integral I2, whose dependence on the lattice struc-
ture differs slightly from that of Io, has no practical im-
portance. The whole effect of the lattice structure is thus
contained in the value of Io which is known to have its
lowest value, 1.16, for a triangular lattice. "'4

S~ is also responsible for the logarithmic divergence of
sp for small T and 1/r since the f„"(x)are proportional
to 1/x for small x, as is shown in the Appendix (whereas
D is finite). When

1 /
2ppi=

~
2prT(21+1)+— / er (eB/c)'l')&1

/

I I I I I I I I

FxG. 4. K2/K as a
function of t/lp, at
T=0. The upper
curve is for /~, /1=1,
the lower curve is
for l~,/l=2, and the
curve in between is
for lt, /l =1.5. The
asymptotic behavior
in the pure limit is
like (Inlt, ,/&) '".
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VIII. RESULTS OF THE MACHINE
CALCULATIONS

Using the results of the preceding sections, we did
machine calculations of g, Kj, and K2 as functions of three
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the pure limit. In
the dirty limit K is
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24 2.0

:2.2- (intr= 005
I.S-

f/[tq = 0.25

2.0

I.8

I.S

l.4

FIG. 8. K~/K as a function
of the reduced temperature
T/T, for (/l», =0.05. The
upper curve is for l», /l=1.
The lower curve is for
l»,/l=2. The curve in be-
tween is for l», /l = 1.5.
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FIG. 12. Kg/K as a function
of the reduced temperature
T/T, for g/l»,

——0.25. The
upper curve is for l»,/i=1.
The lower curve is for
l»,/l=2. The curve in be-
tween is for l»,/1=1.5.
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FIG. 9. Kg/K and g as
functions of the reduced
temperature T/T, for
(/l», ——0.05. The upper
curve is for l», /l = 1.
The lower curve is for
l»,/l =2.The curve in be-
tween is for l», /l =1.5.
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FIG. 13. Ki/K and g
as functions of the re-
duced temperature T/T,
for (/l», ——0.25. The up-
per curve is for l»,/l=1.
The lower curve is for
l», /l=2. The curve in
between is for l»,/l =1.5.
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FIG. 14. K~/K as a func-
tion of the reduced tem-
perature T/T, for g//t, ,=0.5.
The upper curve is for
l»,/l =1. The lower curve is
for l»,/l=2. The curve in
between is for l», /l =1.5.
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Fzo. 16. K2/K as a function
of the reduced tempera-
ture T/T, for $/l», = 1.0.
The upper curve is for
l», /l =1. The lower curve is
for l», /l =2. The curve in be-
tween is for l»,/l =1.5.
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variables. Figure 3 shows the value of ir/«, „„atT, as a
function of $/lt, according to Eq. (4.8). Figure 4 and 5
show «r/ir and «s/Ir, respectively, at T=O as functions of
$/l&, We calculated these quantities for f&,/f= 1 (upper
curve), li,/l=1. 5 (middle curve), and lr,,/1=2 (lower
curve). Any reasonable scattering potential should
give ratios lt,,/l within this range, the most reasonable
ratio being about 1.5.
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Fzo. 20. K2/K as a
function of the reduced
temperature T/T, for
$/l», =4.0. The upper
curve is for l», /l = 1.
The lower curve is for
l», /l =2. The curve in be-
tween is for l»,/l=1. 5.
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FIG. 17. Ki/K and q as
functions of the reduced
temperature T/T, for g/l»,
=1.0. The upper curve is
for l», /l = 1. The lower
curve is for l»,/l=2. The
curve in between is for
l»,/l = 1.5.
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(/l», ——2.0. The upper
curve is for l», /l = 1.
The lower curve is for
l»,/l=2. The curve in
between is for l», /l = 1.5.
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The comparatively large inQuence of even little scat-
tering is obvious for P/lt, =1/20 (depending on lt,,/l),
where»t/» is already lowered by some percent and
»&/» has not yet reached its asymptotic behavior which
is proprtional to Lln(lt, /$)]' '. Also the minimum of
»t/» at about $/lt, ,=1 and its dependence on lt,/l is
clearly exhibited by Fig. 5. Figures 6 to 29 show»s/»,

l.25
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I.IO

105

Fro. 26. Kg/K as a
function of the reduced
temperature T/T, for
$/lf, ,=20. The upper
curve is for lt, /l = 1.
The lower curve is for
lt, /l =2. The curve in be-
tween is for l~,/l =1.5.
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Fzo. 23. K~/K as a
function of the reduced
temperature T/T, for
g/lt, =6.0. The upper
curve is for /~, /l = 1.
The lower curve is for
lt,/l =2.The curve in be-
tween is for lt, /l = 1.5.
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Fro. 27. »q/» as a
function of the reduced
temperature T/T, for
g/lq, 20 T——he . upper
curve is for l~,/l = 1.
The lower curve is for
lq, /1 =2. The curve in be-
tween is for lt, /l =2.5.
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Fzo. 24. K~/K as a
function of the reduced
temperature T/T, for
f/la, = 10.

& il The +upper
curve is] )for lt,/l =1.
The&lower curve is for
lt, /l =2. The,'curve in be-
tween is for"lt, /1 = 1.5.
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Fzo. 28. »&/» as a
function of the reduced
temperature T/T, for
g/l~, =50. The upper
curve is for l~,/l =1.
The lower curve is for
l~,/l =2.The curve in be-
tween is for /f,,/l =1.5.
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FIG. 25. »i/» as a
function of the reduced
temperature T/T, for
g/lt, ,= 10. The upper
curve is for lt,,/l = 2.
The lower curve is for
l~,/l =2.The curve in be-
tween is for lt,/l=1.5.
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Fn. 29. K1/K as a
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1&,/l =2 The curve in be-.
tween is for l~,/l = 1.5.
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lrt/lr, and 2) as functions of T for various values of $/l„.
Again, in each diagram the upper curve corresponds to
l&,//=I, the middle curve to l~,/1=1.5, and the lower
curve to l&,/l=2. The curves ti(T) are given only if
ti(0) exceeds 1.02. They are for f„/1=1.5, the devia-
tions from this for other values of l2,/l being very small.

It should be noticed that the scales are not the same
in all the diagrams for s2/s. Although equal scales would
have simplified comparison, their adoption seemed not
practical because of the high values of K2/K for low
impurity concentrations. %e compared our results also
with the values of (r)/BT)(st/s) and (8/BT)(s2/s) at T„
given by Tewordt4 and Neumann and Tewordt, s

respectively. Since we calculated zt/s and s2/lr at in-
tervals AT/T, =0.05 on the abscissa, only an approxi-
mate comparison was possible. The agreement was best
for the curves with lt,/l=1, our values at T/T, =0.95
always lying slightly lower than those calculated by the
linear approximation with the slopes given in Refs. 4
and 5.
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APPENDIX: THE FUNCTION f(x) AND
RELATED FUNCTIONS

IQ 2,0 5.0 4.0 5,0 6.0 7.0
X

Fto. 30. The functions f(x) and f'(x); —the latter
diverges logarithmically at x=0.

which may serve to prove the identity of (A1), (A2), and

(A3), and which we used extensively to express the
higher derivatives of f by f and f' during the machine
calculations.

For small x the function f is calculated most easily

by using the expansion

lnx+ 2 (C—ln2 —a„)
f(x)=l —

~
+Z *'"+' (A5)

~2) -2 (2v+1)2"v!

v 1+Z-,
2v+1 s-t 22

7r/2

d8 (costi) exp( —-'p' cosstI) (A1)dp e 1'*

The central function for all numerical aPPlications of with the Euler constant C—P 5992 and
the formulas given in the previous sections was

It has the two further integral representations:
and for large x by using the asymptotic expansion

f(x)=
p

dp e—'&' arctan-
S

(A2)

( 2)"v!
f(x) = Q x-&2"+'&..=o 2v+1

(A6)

»L(p+ 1)/(p —1)j
dp

(p2 1)1/2
f(*)=

(22r)»2
m/2

dt's (costI)f„(x)= dpe *~

(in this form it appears in the paper of He]fand and In Fig. 30 we have plotted f(x) and f'(x) whic-
have been used to calculate the related functions f, '"'(x)
discussed below. These functions, defined by

x -x'—f(x) =1
dS

(A4)

—x2

Xexp~
~

. (A3)
&2(p' —1)i

It satisfies the inhomogeneous differential equation

X (p cos'tI)" exp( —22p' cos'8) (A7)

and their derivatives, can be reduced 6rstly to sums of
derivatives of f(x) using integration by parts in (A7)
and secondly to expressions containing only the func-
tions f(x) and f'(x) and polynomials of x using (A4).



3l2

o o
(2j

1 0

x) 8/s

2 O

8 2j

1 x)'"
o

384 2j

0 1 — ln—+C

1/ x'
l \ —

i

I —+1.)6( 2

1 g2

2 1 —ln—+C +—
30 2 20

x' 11
3 1 —ln—+C +
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TAiirz L The first few functions (—1)&f„'t&&/(2v+v)!.

All x

—(f(x)+xf'(x))
2f

1—(3f(x)+ (5+x')xf'(x)+x)
4l

f
(15f—(x)+(33+13x'+x4)xf'(x)+11x+x'}

6f

1
(105f(x—)+(279+163x'+25x'+x') xf'(x) +121+23x'+x'}

8f

—f'(x)

——((2+x'}f'(x)+1}

1——((8+8x'+x') f'(x)+6+g2)
Sf

1
((48+'72x—'+—18x'+x') f'(x)+44+16x'+x')

x large

2 8 48 384+- + ~ ~ ~ ~

x 3x' Sx' 7'x~ 9xo

2 16 144 512
+ + 0 ~ ~

3x' Sx' 7x~ 9xo

8 48 256
+ ~ ~ ~

15x'5 7x7 3x9

16 512
+ 0 ~ ~

35x~ 9xo

128

31Sx!'

48
+ I ~ ~

x'

48
+ ~ ~ ~

xs

48
+ 4 0 ~

35x'

~ ~ 0

35xg

0 2

840x

—xf'(x)+-

1 2
(4+x')xl'(x)+x+-

4l x

(24+12x'+x4) xf'(x)+x'+ 10x+
6l x)
1

(192+144x'+24x'+x')xf'(x)+x'+22x'+104x+
g

1 4 24
+

x' x' xv

15x7

192
+ 0 ~ ~

x'

96
+ 0 ~

x9

64
+ 0 ~ ~

5x'

Table I gives the functions (—1)vf„&»/(2v+1i)! represented as the first. term of their power series, as linear com-
bination of the functions f(x) and f (x), and as the 6rst few terms of their asymptotic series, which is given by

(—1)"f.'"' - (—1)"(2(v+p)+~)!(p+v)!2"=Z g—[2 (u+&)+p+&]

(2v+1i)! v=o (2(P+v)+1)!!(2v+1i)!P!

The second and last columns of the table show hoer these quantities, @which make up the terms of the S„
become smaller with increasing order v.


