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The spin-wave energy in nickel is calculated along the principal axis directions from the center to the
surface of the Brillouin zone, the calculation being based upon the theoretical energy bands of nickel as
given by Hanus. The splitting of the up- and down-spin d bands is treated as a parameter, adjusted to give
the experimentally observed long-wavelength spin-wave energy. The temperature dependence of the mag-
netization is calculated on the basis of the spin-wave energies. It is found that the temperature analogous
to the Debye temperature of lattice vibrations is of the order of 103 °K, rather than 10 °K, as simple models
yield, that the number of Fourier coefficients (in real space) required to fit the dispersion curve corresponds
to the six nearest atomic planes, that the energy gap for single-particle excitations is of the order of 1000°K
(although sensitive to the parameters assumed), and that no cutoff momentum is indicated for the strong
ferromagnetic assumptions made here. Furthermore, the coefficient of the ¢* term in the dispersion curve
and the corresponding coefficient of 7%/2 in the magnetization law is about a factor of 5-10 larger than that
of a nearest-neighbor Heisenberg ferromagnet. The range of validity of 7%2and 7%/2terms in the magnetiza-
tion-temperature law is restricted to temperatures less than 80°K.

I. INTRODUCTION

HE dispersion relation for collective magnetic ex-
citations-spin waves-in the ferromagnetic metals
depends in a complicated manner upon the one-electron
energies of the magnetic carriers, the splitting between
the majority and minority spin bands, and the direct,
positive exchange interaction between fluctuating spins
on neighboring atomic sites.! This dispersion relation
is obtained as the solution of an integral equation for
the case in which the magnetic carriers are contained
in a single energy band, or as the solution of a set of
coupled integral equations for multiple bands. These
equations have been solved analytically for different
approximate models,® but none of these models approxi-
mates even closely the electronic structure of the ferro-
magnetic transition metals.*=® It is our purpose here to
present a numerical calculation of the dispersion rela-
tion for nickel, based upon its energy band structure as
calculated by Hanus.”

Two important questions provoked this study: First,
is it possible to “explain” the spin-wave mass at long
wavelengths in terms of the energy band structure
alone without invoking interatomic exchange? Second,
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is the large spin-wave mass variation with momentum?9
explicable without requiring long-range interatomic ex-
change? The answer found here to both of these ques-
tions is yes, but this answer does not negate interatomic
exchange, either short- or long-range, from a possible
contributing role to the spin-wave spectrum.

Section IT of this paper outlines the calculational
details and includes the density-of-states function as a
side result. Since the integral equation requires the
one-electron energies as a function of & vector, Hanus’s
calculated nickel bands’ are interpolated using the
Slater-Koster scheme,! details of which are presented
in Appendix A, and the interpolated and calculated
bands are compared in this part.

Section III presents the numerical results as a func-
tion of disposable parameters still contained in the
calculation, namely, the chemical potential, the band
splitting, and the interatomic exchange. The dispersion
curve is given along the three principal axis directions
from the center to the edge of the Brillouin zone, and
analytical fitting using both power and Fourier series
is carried out. The effects of multiple carrier bands is
discussed.

Section IV calculates the temperature-dependent
magnetization expected from the calculated spin-wave
dispersion, neglecting other contributing thermal ex-
citations. Section V discusses the implications of the
calculations and summarizes the results.

II. THE CALCULATION
A. Integral Equation and Defining Parameters

For a ferromagnetic crystalline metal with magnetic
carriers contained in a single energy band, the energy
of a single-reversed spin state £(q) of pseudomomentum

8B. E. Argyle, S. H. Charap, and E. W. Pugh, Phys. Rev. 132,
2051 (1963).

9 R. Weber and P. E. Tannenwald, Phys. Rev. 140, A498 (1965).
10 7. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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q is given as the solution of the integral equation?
[AEs+T (9 —J (0) IV
X% [AEste(k+q)—e(k)—E(@T=1. (1)

In this equation, AE, is the splitting between up- and
down-spin bands, IV is the net number of magnetic
carriers, e(k) is the one-electron energy (nonmagnetic)
eigenvalue of the Bloch wave ¢, (r) with wave vector
k, and J(q) is the Fourier transform of the interatomic
exchange,

J(q)=§' exp(iq-R)g(R),

where

g(R)://drdr’W*(r)W*(r’— R)U(r,1")

XW ()W (r—R),
with
W(r—R)=N. 1 E ek Ry (1),
k

the Wannier transform of the Bloch wave, and U the
interaction potential between electrons. The sum in
Eq. (1) is restricted to those k vectors in which the
majority spin state of vector k is occupied and the
minority spin state of vector k-+q is unoccupied; i.e.,
e(k)<u and e(k+4q)>u—AE,, where p is the chemical
potential.

The parameters AE; and J(q) [or g(R)] appearing
in Eq. (1) are largely unknown," while the one-electron
energies e(k) have been calculated by Hanus’ and the
spin-wave energy E(q) is known for ga<1, where a is
the length of the cube edge.!? Accordingly, Eq. (1) is
solved as outlined in the following, treating AE; and
J(q) as parameters.

A cubical mesh is established in the Brillouin zone,
the distance!® between I' and X being divided into 16
equal segments, corresponding to 505 distinct stars of
the & vectors and 16 384 mesh points in the Brillouin
zone. €(k) is found on these mesh points by interpolating
on the nickel bands as calculated by Hanus” using the
Slater-Koster!® interpolation formula, a procedure de-
scribed in Sec. II B and in Appendix A. Two chemical
potentials are chosen such that the number of holes per
atom of one spin in the d band is 0.6 and 0.44, corre-
sponding respectively to the d band containing all the
magnetic carriers and containing 759, of the carriers,

1A summary of the various estimates for AE; has been pre-
sented by E. P. Wohlfarth, in Proceedings of the International
Conference on Magnetism, Nottingham, 1964 (Institute of Physics
and the Physical Society, London, 1965). Unfortunately, there
is no direct experimental observation of this quantity to date.
A. J. Freeman, R. K. Nesbet, and R. E. Watson, Phys. Rev.
125, 1978 (1962) have calculated the nearest-neighbor exchange
integral g(R) for a cobalt diatomic molecule, but relating these
calculational results to real metals is most uncertain.

12 H. Nosé, J. Phys. Soc. Japan 16, 2475 (1961).

13 The notation is that of L. P. Bouckaert, R. Smoluchowski,
and E. Wigner, Phys. Rev. 50, 58 (1936).
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the remaining spin density being accounted for by an
s-p band spin imbalance® in the latter case.

Equation (1) is then solved for sufficiently small q
such that the approximation

E(q)= (hZ/stw) |9I2 (2)

is found to be valid. In view of the original questions
as given in the Introduction, g(R) is assumed to be
zero for all R and (1/m,,,) is found as a function of the
band-splitting parameter AE;. Finding AE; such that
the spin-wave mass equals the experimental value? #4y
=9.8mo with m, the free-electron mass, Eq. (1) is
solved for all q on the mesh in the [100], [110], and
[111] directions. Having outlined in general the calcu-
lation, we can now proceed to the interpolation on the
energy bands and the resultant density of states.

B. Energy-Band Interpolation

Hanus’s nickel energy bands? were calculated by the
augmented-plane-wave (APW) technique with the k
vector restricted to selected symmetry points and
directions in the Brillouin zone. Such a calculational
technique admixes, in general, wave functions of s, p,
d, f, - -+, symmetry about an atomic site, and the con-
cept of s, p,d, ---, energy bands loses meaning in a
strict sense. But more importantly, the magnetic car-
riers (considered here as holes) are no longer contained
in a single energy band and there is no unique way of
labeling the bands. Equation (1) is explicit in requiring
carriers in one band only, and the extension of (1) to
multiple bands'? requires common interaction prop-
erties among carriers in a given band. This latter
property cannot be met because of the crossing of
bands in certain symmetry directions and noncrossing
in off-symmetry axes.

For nickel, the major difficulty lies in the crossing
and admixing among the 3d-like, 4s-like, and 4p-like
bands. In principle,* an approximate multiple-band
calculation based on the extension to Eq. (1) can be
done, but the added complexity and added number of
unknown parameters make such a calculation appear
unwarranted at the present time. Accordingly, we pro-
ceed with a simpler band model than Hanus’s, a model
calculated by Fletcher'® and used for chromium!® and
nickel,’ namely, a model of 3¢ bands overlapped by, but
not interacting with, 4s-4p-like bands.

Such noninteracting bands can be obtained by apply-
ing the Slater-Koster interpolation procedure® to
Hanus’s bands and by setting those Hamiltonian in-
terpolation parameters equal to zero which represent
interaction between these different bands. The details
of the interpolation procedure and the resultant pa-
rameters are given in Appendix A.

The resultant 3d bands, along with those calculated

4D, C. Mattis, Phys. Rev. 132, 2521 (1963).

18 G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
16 W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).
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F16. 1. The energy bands of nickel
along symmetry directions. The solid
lines are the band structure as calcu-
lated by Hanus (Ref. 7) and the
dashed lines are the interpolated band
structure. The light, constant energy
lines represent the two chemical po-
tentials used in the spin-wave dis-
persion calculation.
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by Hanus, are shown in Figs. 1 and 2.2 The over-all
bandwidth, X;—X;=0.386 Ry, and the splitting, Tis
—T'5'=0.087 Ry, have been interpolated to agree
exactly with Hanus’s corresponding quantities, and
relatively more attention has been given to fitting the
more important higher-lying energies in the d band. As
a general observation, for symmetries which do not
allow admixing between 3d and either 4s or 4p bands,
the interpolated values agree with the calculated values
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F16. 2. The energy bands of nickel along symmetry directions.
The solid lines are the band structure as calculated by Hanus
(Ref. 7) and the dashed lines are the interpolated band structure.
The light, constant energy lines represent the two chemical po-
tentials used in the spin-wave dispersion calculation.

17 A table of interpolated and Hanus’s calculated energies at
symmetry points is available from the author upon request.

3 r(000)

to within 0.02 Ry or around 59, of the bandwidth. On
the other hand, where admixing is allowed, the agree-
ment is worsened considerably—to as large as 0.14 Ry.
Excluded from these general observations are the sym-
metry states A;, 2; and Ay, in which the 4 band is
overlapped and admixed simultaneously with the 4s-4p
band, causing large splittings of the energy levels.

There are some exceptional states where the fitting
is relatively poor, namely, L, W3, K3 (or Us). These
states admix with the 4s band states in the first in-
stance while the latter states admix with 4p band states.
While the poor fits at W5 and K3 might be attributed
to such admixture, it is rather unlikely from numerical
considerations that the lack of fit at Z; could be entirely
due to admixture. Because of the positions of the
energies L;, W3, and K3 in the band, however, such a
poor fit should have a minor effect only on the calcu-
lated spin-wave spectrum.

Deviations from Hanus’ calculated energies about X
are observed for A; Z;, and S, the latter two devia-

Fic. 3. The con-
stant energy con-
tours of nickel on the
square face of the
Brillouin zone as cal-
culated by the ana-
lytic expansion about
X5 [Eq. (3)]. An ef-
fective-mass model
for nickel is quite
clearly unjustified.
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TasLE I. Curvature of the interpolated energy bands near X5
along different directions, the curvature being expressed in terms
of a reciprocal mass normalized to the reciprocal free-electron
mass.

Symmetry  Curvature

As —0.36
Zs —0.22
Sz —0.388
Zs —0.755
Ss —0.587

tions affecting only the calculated spin-wave mass from
the second band. These deviations most likely arise
from admixture with 4p band states of the same sym-
metry. No admixture is possible for Z; and S,, however,
and the deviations here indicate that Hamiltonian
parameters between d-atomic-like states on farther than
second-nearest neighbors are required.

The significant energies which concern the spin-wave
spectrum are those lying higher than the chemical po-
tential; these are shown as horizontal lines on Figs. 1
and 2. These states have wave vectors lying close to
X and the six equivalent square faces of the Brillouin
zone. The uppermost band is labeled by the symmetries
Xs, As, Zo, W1', and Sy, and the second uppermost band
is labeled by X5, As, Z3, and S3. Expanding the Hamil-
tonian matrix about X', the corresponding eigenvalues
are found to be given by the expression

E(kiku,8)—Xs=—0.324(ky/ko)?
— (ku/ko)2[0.43940.182(14-0.757 cosd0)2] Ry, (3)

where ko=2w/a, k. is the magnitude of the k vector
perpendicular to the square face as measured from X,
ki1 is the magnitude of the k vector in the square face,
and 6 is the angle between &;; and the line XW.

From this expression, the constant-energy contours
in the square face can be calculated, and are as shown
in Fig. 3. Particularly for the uppermost band, an
effective-mass approximation appears unjustified. Fig-
ure 4 shows the actual interpolated energies as well as
the energy as calculated from Eq. (3). Equatlon @3) is
a very good approximation for energies above the
chemical potential, except for Z,, where (3) is good for
only % of the distance X,

While an effective-mass approximation is not valid,
the energy-momentum curvature can be found along
different directions from X, and this curvature is re-
lated to a reciprocal mass in the usual manner. Results
of such curvature study are shown in Table I. The
curvature is observed to be an order of magnitude
larger than that quoted erroneously'® from specific-heat
results. We shall later compare these curvature results
with the effective spin-wave mass.

18Tt has been pointed out previously that the commonly
accepted mass of 28, for nickel based upon specific-heat results
is erroneous and too large from the purely geometrical considera-
tions of the multiple band extrema [E. D. Thompson, Bull. Am.
Phys. Soc. 9, 559 (1964)7]. The mass found here is even smaller
than these geometrlcal considerations indicated.
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Fic. 4. The energy bands of nickel near X5 as a function of
wave vector measured from Xj. The abscissa is a quadratic scale
in momentum. The small circles display the interpolated energies
and the solid straight lines display the energy as calculated by the
analytic expansion about X5 [Eq. (3)]. The relevant constancy
of the energy band curvature along a fixed direction is observed.
The light, constant energy lines represent the two chemical poten-
tials used in the spin-wave dispersion calculation.

C. Density of States

Using the interpolated energy eigenvalues, a density-
of-states histogram can be calculated by dividing the
energy scale into uniform segments AE, counting the
number of energy eigenvalues in each segment, and
multiplying by the appropriate scaling factor. The
resultant density-of-states histogram for two particular
energy widths, AE=0.00917 and 0.00306 Ry, is shown
in Fig. 5. The larger of these two energy widths is only
somewhat smaller than that shown by Burdick® for
the copper “d hump,” but we have here 8 times as
many eigenvalues due to a smaller & mesh.

A considerable amount of structure can be seen on
these histograms, some of which reflect real structure
in the density of states. The remaining structure re-
sults from the discreteness of numerical calculations.
To obtain some idea of the magnitude expected from
the latter, an energy eigenvalue occurring at general %
contributes 0.32 states/atom Ry for AE=0.00917 and
0.96 states/atom Ry for AE=0.00306; energy eigen-
values at symmetry & contribute less. Structure less
than two or three times this amount cannot be at-
tributed definitely to real structure in the density-of-
states function.

Comparing the density of states for nickel and
copper,’® the two are observed to be very similar, but
with the copper density of states narrower in energy
and larger in magnitude. This occurs even though the
copper calculation contains admixture of the d, s, and
p bands. General features of the nickel density of states
are two large peaks near the top of the band separated
by about 0.12 Ry, a somewhat smaller peak between,
and a relatively slow decrease of the density of states
at the bottom of the band compared to the rapid rise
at the top of the band. One feature that differs from

1 G. A. Burdick, Phys. Rev. 129, 138 (1963).
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F16. 5. The density-of-states histogram for nickel as calculated from the interpolated bands. The histogram bar width is 0.00917
Ry for the upper curve and 0.00306 Ry for the lower. The light, constant energy lines represent the two chemical potentials used in

the spin-wave dispersion calculation.

copper is that the larger of the two peaks occurs at the
higher energy for nickel, the lower energy for copper.

The calculated electronic specific-heat coefficient v in
the specific-heat expression C,=+T is shown in Table II
to be about 259, smaller than the experimental value?
of 17.4X10™* cal/mole deg?.

III. SPIN-WAVE DISPERSION

A. Spin-Wave Reciprocal Mass

In combining the interpolated energy bands and the
spin-wave dispersion relation Eq. (1), we shall consider

TasLE II. Electronic-specific-heat coefficient v in mcal/mole
deg? for nickel as calculated from the density-of-states function
(Fig. 5).

Chemical potential AE=0.00917 AE=0.00306

Ry) Ry) Ry)

0.5905 1.21 0.945

0.5857 1.21 1.324
Peak-of-density function 1.38 1.58

20 W, H. Keesom and C. W. Clark, Physica 2, 513 (1935).

the magnetic carriers as holes, the energy of which
must be the negative of the corresponding electronic
state. Furthermore, we order and label the energy
bands as follows. For a fixed k, the largest electronic
energy is in the first hole band, the next largest the
second hole band, etc. Deferring to Sec. IIID con-
sideration of multiple bands, we shall carry out the
solution of Eq. (1) using the hole energies from the
first hole band.

Setting the interatomic exchange integral equal to
zero in Eq. (1), the energy of a spin wave with wave
vector [ko/16,0,0] is calculated as a function of the
band splitting AE;. From preliminary calculations, it is
known that the effective-mass approximation of Eq. (3)
is valid for a wave vector of this magnitude and we
accordingly express these results, as shown in Fig. 6,
in terms of the spin-wave mass normalized to that of a
free electron. The band splitting has been normalized
to the chemical potential u’ as measured from the top
of the band, X;—u=yu'.

Three observations should be noted from the figure.
First, the reciprocal mass for infinite band splitting is
smaller than the reciprocal mass of the carriers at X5
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(Table I and Fig. 4). This fact might have been antici-
pated, because Fig. 4 shows the magnitude of the curva-
ture decreasing as & moves away from X towards W.
Second, the reciprocal mass can be analytically fitted
to the equations

(mo/Msw)=0.175[1—0.7064'/AE;] for u=0.5857,

(mo/mew)=0.192[1—0.6674'/AE,] for u=0.5905,
for W'/AE;<1. (4)

For comparison, the effective-mass energy-band model
yields the equation

(1/msw)=(1/mc)(1—0.84'/AE,)

with m, the carrier mass.

And third, the experimental mass' is obtained for
¥/AEq=0.593 and 0.702 for 4=0.5857 and 0.5905, re-
spectively. If direct interatomic exchange had been
included in the calculation, the splitting would neces-
sarily have been smaller in order to obtain the
experimental value of reciprocal spin-wave mass.

B. Spin-Wave Energy versus Wave Vector along
the Principal Axis

Using the band splitting AE; necessary in obtaining
the experimentally observed spin-wave mass, the dis-
persion relation (1) is solved along the principal axis
directions, [1007, [1107], and [111], from the center to
the surface of the first Brillouin zone. The solutions are
as shown in Figs. 7 and 8, Fig. 7 showing the continuum
band of excitation energies as well as the spin-wave
energies.

Important for the thermodynamics of ferromagnetism
is the large energy gap that exists between the maximum
spin-wave excitation energy and the continuum band
of energies, some 2800°K. The existence of such a gap
would indicate that the decrease of the saturation mag-
netization with increasing temperature arises almost
entirely from spin-wave excitations.

The energy gap for u=0.5905 Ry is 200°K (not
shown in a figure) ; for other band splitting values, the

RECIPROCAL SPIN WAVE MASS

o] 0.2 04 06

(u'/AE4) RECIPROCAL BAND
SPLITTING

Fi1c. 6. The dependence of the spin-wave mass on the band
splitting. The dashed line indicates the experimental value of the
mass for nickel and does not represent any functional dependence
on band splitting.
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Fic. 7. The momentum dependence of the excitation energy
for a single spin reversal in nickel along the three principal axis
directions. The lined regions indicate a continuum band of excita-
tion energies and the single line separated from the continuum
and going to zero energy at I' represents the spin-wave energy.
The figure is drawn for the chemical potential x=0.5857 Ry.

energy gap completely disappears. The magnitude of
the minimum continuum band and maximum spin-wave
excitation energies indicate, however, that, for the cases
investigated, decreasing magnetization with increasing
temperature arises from spin-wave excitations and that
there will be no thermally excited short-wavelength
spin waves even at the Curie point of nickel.

The spin-wave dispersion curve remains distinct from
the continuum band in both calculations. In contrast,
analytical models have the spin-wave dispersion curve
either just becoming degenerate with the bottom of the
continuum band or entering the continuum band. It is
not known at the present time whether the calculated
distinctness of the spin-wave dispersion curve is a
general result, arising from the Brillouin-zone boundary
effects (umklapp), or is a numerical accident.

The maximum energy of a spin wave, which can be
expressed as an equivalent temperature ¢, is an order
of magnitude lower than that usually associated with
spin waves. 6 values obtained are 1510 and 2100°K for
#=0.5857 and 0.5905 Ry, respectively, and the approxi-
mation 76 made in thermodynamic calculations is no
longer valid over the whole temperature range up to
the Curie point. Under such circumstances, the finite-
ness of the number of spin-wave modes must be taken
into account.

C. Analytical Fitting

The form of the spin-wave dispersion curves indicates
that any power series expansion about ¢=0 would be
a slowly converging series, not of practical utility.
Moreover, the reciprocal lattice translation properties
of E(q) suggest the Fourier series of the form

E(q)=§ E(R) exp(iq-R). ®)

In (5), the sum is over all real lattice vectors R of fcc
nickel and the rotational symmetry of E(q) requires
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F16. 8. The momentum dependence of the spin-wave energy in
nickel along the three principal axis directions. Curves (a) and
curves (b) show the calculational results for the chemical
potential x=0.5905 and 0.5857 Ry, respectively.

E(R)=E(R’) if R can be rotated into R’ by one of the
rotational symmetry elements of the space group.

The number of Fourier terms indicated by Fig. 8
and the limited data available along three spatial
directions preclude the evaluation of the three-dimen-
sional transform (5). Let us therefore evaluate a one-
dimensional transform independently along the [100]
and [111] directions, obtaining from these one-dimen-
sional transforms some idea of the range of E(R).

For q=[¢,0,0], the appropriate series is

E(g)=3" Encos(nga/2), (©)

n=0

where ¢ is the edge length of the unit cell. For q
=[q,9,91/V3, the appropriate series is

E()=3. Fa cos(nga/\3). ™

n=0

The relationship between the E, and F, of (6) and (7)
and the E(R) of (5) is

E"= [2"‘67,,0] Z E[}nai-l— (ﬂ-l-nz—%g)%aj
n1ng=—oo
+ (nat+ng)dak],

and
Fo=[2—b.0] > E[(ni—n2)bai+ (mtn)haj
—I—(n——m)%afc]. 8)

The Fourier coefficients E, and F, of (6) and (7)
are given in Table III for u=0.5857 Ry, and the re-
sultant fit to the numerically calculated spin-wave dis-
persion curve is displayed visually in Figs. 9 and 10.
The fit is poor for a two-term series, is qualitatively
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TasiE III. Fourier coefficients E, and F, of the #th harmonic of
the spin-wave energy along given directions (in Rydbergs).

n/Direction E,[100] Fo[111]
0 6.413, —03 5.144, —03
1 —4.097, —03 —3.625, —03
2 —1417, —03 —7.301, —04
3 —7.072, —04 —7.284, —04
4 —2.153, —04 —5.171, —05
5 3.691, —06 6.309, —06
6 9.134, —06 3283, —06
7 1.342, —05 —1.406, —05
8 —3.350, —06 3.944, —06

good for a four-term series, and is quantitatively good
for a six-term series. This corresponds, respectively, to
E(R) being zero when R is equal to or greater than
that of second-nearest neighbors, eighth-nearest neigh-
bors, and twenty-first-nearest neighbors.

A power series about ¢g=0 gives a poor representation
to the spin-wave dispersion curves, as shown in Fig. 8.
If we desire a representation which is valid for small g,
the appropriate power series is

E(q)=A4(q/ko)*—B(q/ko)*+-- -, 9)

with 4=0.0927 Ry and B=0.593 Ry for u=0.5857 Ry.
This representation is found to be valid for (g/k¢) <0.2.

The coefficients 4 and B in Eq. (9) are important
experimentally? in that the coefficients in the mag-
netization law,

MM o= (U )= M(T))/M(0)=CT¥ DT+,
(10)

are given by the relation
D/C=8.05[N**B/Ak]C*3, (11)

with NV being the number of one-directed spins per unit
of volume. We find the dimensionless square bracket
on the right side of (11) to be 0.290. This compares
favorably with the experimental value of 0.661.8
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F1c. 9. Fourier fitting of the spin-wave energy along the [100]
direction. The dashed curve is drawn for the two-term series, the
dot-dash curve for the four-term series, and the solid curve for
the six-term series and the calculated curve of Fig. 8, curves (b).

2t F, D. Thompson, Bull. Am. Phys. Soc. 10, 16 (1965).
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TasLE IV. Summary results.
Chemical potential (Ry) 0.5857 0.5905

Chemical potential u’ (Ry) 0.0397 0.0349
Carriers per atom, 1st band 0.501 0.366
Carriers per atom, 2nd band 0.096 0.077
Reciprocal spin-wave mass mo/Msw

1st band, infinite band splitting 0.175 0.192

2nd band, infinite band splitting 0.470 0.475

Experimental value 0.102 0.102
Required band splitting for experimental mass in 1st band (Ry) 0.067 0.0497
#’ /band splitting 0.593 0.702
2nd band normalized reciprocal spin-wave mass for the above splitting 0.262 0.224
Minimum excitation energy to continuum band (°K) 4300 2335
Maximum spin-wave excitation energy along symmetry directions [1007, [1107, [111] (°K) 1510 2100

D. Multiple Bands

The spin-wave dispersion curve for the case of mag-
netic carriers contained in more than one band is given
as the solution of coupled integral equations, a calcula-
tion beyond the initial dispersion calculation presented
here. Some idea of the effect of multiple bands upon the
dispersion curve can be obtained, however, by consider-
ing the long-wavelength limit of the dispersion curve in
the absence of interatomic exchange. Under these con-
ditions,? a spin-wave mass is defined, 4y, and it is
related to the spin-wave mass, 7,wi, calculated as if
the 7th band alone were responsible for the magnetic
carriers, by the equation

(msw)‘lr—z Ni(msm-)“/z N;. (12)

N, is the number of carriers contained in the ¢th band,
and the summations run over the bands containing
magnetic carriers.

Assuming arbitrarily equal splitting for the first and
second hole bands, the reciprocal spin-wave mass from
the second band is found to be (2.2—2.6) multiplied by
the corresponding quantity from the first band. Carry-
ing out Eq. (12), (mgw)! is found to equal 0.128 and
0.123 reciprocal electron masses for p=0.5857 and

010
/
& 5
&
w
m
2 ~
& oos|
s
2 e
-
1 1]
0 05 10

NORMALIZED MOMENTUM K/Kg,

F16. 10. Fourier fitting of the spin-wave energy along the [111]
direction. The dashed curve is drawn for the two-term series, the
dot-dash curve for the four-term series, and the solid curve for
the six-term series and the calculated curve of Fig. 8, curves (b).

0.5905 Ry, respectively, an increase of some 259 from
the experimental value.

IV. MAGNETIZATION TEMPERATURE
DEPENDENCE

The normalized magnetization deviation AM, is de-
fined by the relation

AM,=[M(0°K)—M(T)]/M(0°K), (13)

and is believed generally to result from spin-wave ex-
citations and excitations into the continuum band. To
further complicate matters, interaction effects make the
continuum and spin-wave bands temperature-dependent
in an as yet largely unknown manner. It is worthwhile,
however, to calculate AM, neglecting interaction ef-
fects and excitations into the continuum band, i.e., the
noninteracting spin-wave contribution to AM,. Such a
calculation represents a lower bound for AM,.

The neglect of excitations into the continuum band
is a good approximation in view of the large energy gap
(see Fig. 7 and Table IV) that has been found for such
excitations. For instance, using the smaller energy gap
of 2335°K, continuum-band excitations contribute 0.003
to AM, at S00°K, or less than 19, of the corresponding
contribution from spin-wave excitations. The neglect
of interaction effects is a good approximation at tem-
peratures not too close to the Curie temperature ; other-
wise, it is poor. The exact temperature at which the
approximation breaks down is unknown.

Using these approximations,?

AM=[2/N (2x)°] ] dalexp(E(@)/KT)— 1T, (14)

where the integral is carried out over the volume of the
Brillouin zone. We have found, as seen in Fig. 8, that
the anisotropy in the spin-wave energy is small; i.e.,
for fixed g, the difference between the maximum and
minimum spin-wave energy is small compared to the
mean energy. Accordingly, it is a reasonable approxima-
tion to define an average energy E(g) and to replace
the Brillouin zone of (14) by a sphere of equal volume.

2 E. D. Thompson, E. P. Wohlfarth, and A. C. Bryan, Proc.
Phys. Soc. (London) 83, 59 (1964).
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F16. 11. The normalized magnetization deviation as a function
of temperature. Experimental data are as follows: A—P. Weiss
and R. Forrer, Ann. Phys. (Paris) 5, 153 (1926); [J—R. L.
Streever and L. H. Bennett, Phys. Rev. 131, 2000 (1963); O—
from Ref. 8. (The higher temperature data are those of Budnick,
which are tabulated in Ref. 8.) The uppermost solid curve with
dashed high-temperature extension is calculated on the basis of
noninteracting spin waves only, the spin-wave spectrum being
given in Fig. 8, curves (b). The lower solid curve is the low-tem-
perature 737 law. The inset log-log plot, showing the difference
between the two solid curves as a function of temperature, indi-
cates that the 7?2 term in the magnetization law is good to
approximately 80°K and that the coefficient agrees with the
experimental value of Pugh and Argyle (Ref. 8). The high-tem-
perature results are shown dashed in the main figure, because
interaction effects may not be neglected in this region.

Defining E(g) somewhat arbitrarily by the average,
E(q)=0.4E(g,0,0)--0.6E(g/"3,9/v3,¢/"3), (15)

an average which has the particular property that the
fourth-order anisotropic-momentum term vanishes, the
approximate spherical integral to (14) is carried out for
the spin-wave band of Fig. 8, curves (b). The results are
shown in Fig. 11.

Several features of Fig. 11 worth pointing out are as
follows:

(i) Corrections to the low temperature 7% law equal
the 73/ term at 250°K ;

(ii) The T5”2 correction to the low temperature 7%/
law is valid only for temperatures less than 80°K;

(ili) The magnetization deviation calculated is larger
than the experimental value for temperatures less than,
say 550°K ;

(iv) Noninteracting spin waves yield a magnetization
deviation of 0.54 at the Curie point.

E. D. THOMPSON AND J. J.
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V. SUMMARY AND DISCUSSION

The spin-wave energy in nickel as a function of wave
vector along the three principal directions from the
center of the zone to the zone boundary has been calcu-
lated on the basis of the theoretical energy bands of
Hanus and the assumption of no interatomic exchange.
The results of this calculation are summarized in
Table IV.

The calculation seems to indicate that single-particle
spin-flip excitations will not be thermally excited at
temperatures well below the Curie point because of the
relatively large energy gap that has been found for
such excitations. However, the energy gap will decrease
if some interatomic exchange is assumed, and the calcu-
lation cannot be conclusive on this point. Moreover,
the rather cursory investigation of multiple band effects
indicates also a somewhat smaller gap than that con-
tained in Table IV. The energy gap for single-particle
excitations is very sensitive to the assumed parameters.

The calculation supports the previous suggestion?
that the large ¢* term in the spin-wave dispersion results
from the detailed shape of the one-electron spectrum
rather than from any long range interatomic exchange.
The 7°7? term in the magnetization law, predicated
upon the ¢* term, is only somewhat less than that
found experimentally.® This fact, coupled with the
large energy gap found for single-particle excitations,
favors a spin-wave interpretation of the magnetization
temperature dependence at low temperatures rather than
a combined spin-wave—single-particle interpretation.??

We have found that, on the basis of our calculated
dispersion relation, the calculated magnetization devia-
tion increases faster with temperature than does the
experimental result. This indicates that the energies
calculated for short-wavelength spin waves are too
small. Using this, the spin-wave spectrum of Fig. 8,
curves (a), based upon fewer holes in the d band, would
give a calculated magnetization deviation more in agree-
ment with experimental results than that of Fig. 8,
curves (b).

For the calculations performed as described in the
text, we have found no indication of a cutoff momentum
OF & ¢max. The spin-wave spectrum always remained
distinct from the continuum band of single-particle ex-
citations. In this connection, it should be pointed out
again that the conduction band is assumed explicitly
to be noninteracting with the d bands. Obviating this
assumption, it is felt that a cutoff momentum would be
found.

APPENDIX A: SLATER-KOSTER
INTERPOLATION

The Slater-Koster Interpolation!® is based upon the
tight-binding approximation to energy bands in which
Bloch waves ¢, (k) of wave vector k are constructed as
a linear combination of atomic waves ¢;(k), with

¢;(k)=N,""2 3 exp(ik- R)a;(R), (A1)
R
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where ¢;(R) is an atomic function of the jth type at
the Rth site. The atomic functions are assumed to form
an orthonormal set. The coefficients ¢,; of the linear
combination

Pa(l0 =5 0 (W);() (A2)

are determined by the variation principle, and the one-
electron energies ¢, (k) are obtained as solutions of the
determinantal equation

Det{(¢n|H|d;)—bmjen(K)} =0,

where H is the Hamiltonian operator. In view of (Al),
the Hamiltonian matrix elements of (A3) can be ex-
pressed as products of the matrix elements;

(m|H|j(R))= (an(0)| H|a;(R)),

and sines and cosines of argument k- R. The interpola-
tion scheme treats the matrix elements of (A4) as dis-
posable parameters, determined so that the solutions
of (A3) fit exactly the energies calculated by other tech-
niques at discrete points in k space for band index 7.

(A3)

(A4)

MAGNON ENERGY OF Ni
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TaBLE V. Atomic functions.

Label m Formula
1 xyRy (r)
2 YzR; (r)
3 22R1(r)
4 (#2—y)Ra(r)
5 3712322 —12) Ry (r)

This procedure is applied here, using matrix elements
(A4) between 3d atomic functions only. Thus, the
determinant of (A3) is of order 5X5, and the roots for
a given k are labeled in descending order: Band 1 is the
highest root; band 2 the second highest; etc. The 3d
functions appropriate to the cubic symmetry of nickel
are used and are labeled as given in Table V.

Disposable parameters among these five atomic func-
tions are restricted to the zeroth (R={(000)), first
(R=(110)) and second (R=(200)) neighboring sites.
Taking into account the cubic point-group symmetry
and the transformation properties of these atomic func-
tions, the number of disposable interpolation parameters
is 12. These 12 parameters are obtained by fitting

TaBLE VI. Hamiltonian parameters (Ry).

Element Value Element Value Element Value
(1|H|1(000)) 0.4988 2(1|H|1(002)) 0.0100 2(4|H |4(200)) —0.0088
4(1|H|1(110)) —0.1315 (4|H[4(000)) 0.4679 2(4| H|4(002)) —0.0099
4(11E|1(011)) 0.0360 4(4|H|4(110)) 0.1141 4(1|H|2(101)) 0.0182
2(1|H[1(200)) —0.0074 4(4|H|4(011)) —0.0165 4(2|H|5(011)) —0.0319

Hanus’s calculated energies” at the following 12 sym-
metry points®: Tyo, Tas’, X1, X2, X3, X5, W1, Wi/, Us,
U4, L3, and Ls.

With the exception of X, Wy, and U,, these sym-
metry points have the advantage that there is no ad-
mixture between the 4s-4p and 3d bands. Moreover,

the admixture and the resulting chianges in the e,(k)
at these points is small because of the large energy dif-
ference between the pure 4s-4p bands and the 3d bands.
Hence, the parameters obtained accurately describe the
pure 3d bands. The parameters used for the interpolated
energy bands are tabulated in Table VI.



