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The virtual modes are obtained for a free-electron-gas model of a metallic slab. These modes, excitations
of the crystal which couple to radiative fields outside the slab, correspond to a mixture of collective electron
motion and photons. It is shown that a knowledge of the virtual modes leads to a complete understanding
of those aspects of the optical properties related to the long-wavelength collective behavior of the electrons.
In particular, the existence of radiative surface modes is established. These modes markedly affect the low-
frequency optical properties. Manifestations of the virtual modes in experimental situations other than
optical investigations are discussed. The dispersion of the ordinary nonradiative surface plasmons at long
wavelengths is also calculated using the same general technique. The result is in accord with a previous

calculation.

I. INTRODUCTION

N two recent papers,’? we presented a method for
determining the frequencies of the long-wavelength
collective excitations of an ionic crystal slab oriented as
indicated in Fig. 1. These excitations, resulting from the
coupling of photon and phonon fields,? were shown to
be of various types.In the nonradiative region! (w<k.c)*
there occur modes localized roughly at the surfaces
(surface modes), and modes which have an oscillatory
spatial dependence in the slab; for both types the fields
have an exponential spatial decay outside the slab. In
the radiative range? (w>k.c), it was shown that the
excitations can be described by virtual modes, which
correspond to fields decaying exponentially in time.
This temporal decay is an explicit manifestation of the
fact that, in the radiative range, true normal modes do
not occur. The internal fields associated with the lattice
motion couple with external radiative fields which
extract energy from the mode, thus giving it a finite
lifetime. It has been demonstrated® that a knowledge of
the virtual modes leads to a detailed understanding of
those optical properties of the slab associated with the
lattice.

We are now going to apply the methods used to
determine the collective excitations for the ionic crystal
to determine the long-wavelength® collective excitations
for the electrons in a metallic slab. The excitations we

* Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1935.

! K. L. Kliewer and R. Fuchs, Phys. Rev. 144, 495 (1966).

2 K. L. Kliewer and R. Fuchs, Phys. Rev. 150, 573 (1966).

3 Of principal interest in the discussion of the ionic crystal were
the modes with transverse character such that a direct interaction
with photons was possible. There also exist, of course, longitudinal
excitations for which w=wro, the ordinary long-wavelength
longitudinal optical frequency. These modes are quantized in a
slab, occurring as standing waves with the slab being an integral
number of half-wavelengths thick. See Egs. (2.54)-(2.61) of Ref. 1.

4 w is the angular frequency, k. the wave vector in the x direction
(see Fig. 1), and ¢ the velocity of light. In the long-wavelength
region, no loss of generality results from taking k,=0.

S R. Fuchs, K. L. Kliewer, and W. J. Pardee, Phys. Rev. 150,
589 (1966).

6 The wavelength is to be long compared with the lattice
parameter.
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are concerned with involve the coupling between
plasma-like electron motion and a photon field. One
should not think of these excitations as a coupling
between ‘‘ordinary’” plasmons and photons since the
plasmon is a longitudinal excitation. Rather, these are
excitations associated with the modification of the
photon dispersion curve by the metallic medium.” The
“ordinary” plasmons, for which the frequency is the
plasma frequency, exist for a slab, but they occur only
for special wavelengths.®

The quantity of principal importance in determining
the character of the long-wavelength excitations is the
frequency-dependent dielectric constant. Thus in ex-
amining the collective excitations for a metallic slab,
the appropriate expression for the dielectric constant is

(@) =1—(@+iQ)™, 1)

where @=w/wp with wp the plasma frequency, and
v= (wpr)~!, 7 being the (possibly frequency-dependent)

D-=2Z

z

Fi1c. 1. A diagram giving the orientation of the slab, the thick-
ness parameters, and the definition of 9.

7 In an infinite crystal, the photon dispersion curve is w?=k2c? if
no interactions are included. Due to the presence of the minimum,
the dispersion curve becomes w?=k%?/e(2,0) where the dispersion
curve now describes an entity which is a mixture of electron
motion and photons. ¢(2,0) is the undamped, frequency-dependent
dielectric constant given in Eq. (1). The character of the excita-
tions when the crystal is not infinitely thick is what concerns us
here.

8 The properties of these purely longitudinal excitations are
described in Ref. 1 if one regards wz as the plasma frequency.
See footnote 3 and the equations quoted therein. Nothing more
will be said about these modes.
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relaxation time. Considering that our interests are in
excitations resulting from a coupling between electronic
motion and electromagnetic waves, our adoption of (1)
as the appropriate expression for e involves the fact
that the transverse and longitudinal dielectric constants
are equal at large wavelengths.® In addition, the use
of (1) indicates clearly that we are examining effects of
essentially a free-electron character, rather than band
effects.

A brief discussion of the long-wavelength dispersion
of the surface plasmons is given in Sec. II. The virtual
modes are presented and discussed in Sec. III. The
optical properties of the slab are discussed in Sec. IV
while Sec. V includes a general discussion of the
philosophy of the calculation and of the applicability of
the conclusions in analyzing various experimental
results.

II. SURFACE PLASMONS

The only nonradiative excitations which occur for
the metallic slab are the surface modes, since (2,0)<1
for all ©.1° The slab we are considering is shown in Fig. 1,

9W. Kohn, in Optical Properties and Electronic Structure of
Metals and Alloys, edited by F. Abeles (North-Holland Publishing
Company, Amsterdam, 1966), p. 1.

10 This is evident from Fig. 3 of Ref. 1, which is modified in the
following ways for a metal: (1) The horizontal line labeled e= —
moves to w/wr=0, causing the low-frequency regions Ry, Ly, and
N, to disappear; (2) the frequency w/wr=2.2 at which =0 is
now w/wr=1.0; (3) the region L," disappears because the lines
a=0 and ay=0 [see Egs. (3) and (4) below] no longer intersect.
We are left with only the nonradiative regions N (where no modes
exist) and L. (in which the surface modes exist), and the radiative
regions Ry’ and R.

free surfaces occurring at z=-a. Since a detailed
solution of the complete set of Maxwell’s equations has
been given in Ref. 1, we will just quote the results here
and then apply them to the case of a metal.

The dispersion curve for the high-frequency surface
mode is given by

e= — (a/ap) tanhaa, (2)
where

o= (B2—a/ A ®)
and

a= (k2—ew?/c?)'2, 4)

The polarization'? of the electron gas P(z) has com-
ponents
P.(3)=C sinhaz,

P,(z)=—iC(ky/c) coshaz,
where C is a normalization constant.

For the low-frequency surface mode, the dispersion
relation is

®)

e= — (a/ay) cothaa. 6)
The associated polarization components are

P,(z)=C coshaz,

P.(8) = —iC (ks/a) sinhas. O

Since the solutions of Egs. (2) and (6) of interest here
occur for « real, e is negative and, for large «a, the

1 1n Secs. IT and III € means ¢(Q,0).
12 The factor e*s"¢i¢¢ is to be understood in all polarization
expressions.
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polarization and the fields are localized at the surfaces.
Hence these modes are denoted surface modes. The
electromagnetic fields outside the slab go as e~ol2l,

The dispersion curves for these modes are given in
Fig.2 in terms of the dimensionless variables® Q' =w/wp,
X=k,c/wp. W is defined to be wpL/c where L is the
thickness of the slab. W=1.0 corresponds to a thickness
L=4.0X10"% cm for a typical plasma energy, Ep=35.0
eV or wp="7.6)X10" sec™!. For a thin crystal (W<Z1.0),
the interference of the fields at the two surfaces is
different for solutions of opposite parity, resulting in
different frequencies for the two types of surface modes.
For a thick crystal the solutions become degenerate.
If X>>1, all frequencies approach the asymptotic limit
Q'=1/v2, for which e=—1. This is the limit in which
the surface plasmons occur at a frequency wp/V2Z and
are identical to the longitudinal surface plasmons
(vXP=0) found when retardation is neglected. Note
that the surface plasmons have electric field components
in the x and z directions (Fig. 1) corresponding to
P-polarized excitations. There exist no nonradiative
surface excitations possessing .S character.

The dispersion relations (2) and (6) have been derived
previously from an alternative point of view.!4

III. VIRTUAL MODES

The condition that characterizes the virtual modes!®
is that they correspond to energy transport out of the
slab. Using this condition, together with a general
solution of Maxwell’s equations, the defining equations
for the virtual modes can be obtained. For P polariza-
tions the tangent equation is

—ieBo/B=tanBa, (8)
where
Bo= (/=D ©
and
B= (et/d—RD™. (10)

The tangent equation yields virtual modes with the
polarization components

P,(z)=C sinfz,

1
P.(2)= (4k.C/B) cospz. (1n
The cotangent equation for P polarization is
ieBo/B= cotBa (12)
with the associated polarization components being
P,(2)=C cospz
() Pz, (13)

P.(z)=— (ik.C/B) sinBz.

13 The dimensionless frequency is written as @ here to emphasize
the fact that o is real now in contrast to the situation below.

14 A figure is given on p. 103 of H. Raether, Springer Tracts in
Modern Physics (Springer-Verlag, Berlin, 1965), Vol. 38, based
upon the work of R. H. Ritchie and H. B. Eldridge, Phys. Rev.
126, 1935 (1962).

16 For details concerning this section, see Ref. 2.
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In the case of S polarization, the tangent equation is

—1ifB¢/B="tanBa (14)
with the polarization given by

Py(2) « cosBz, (15)
whereas the cotangent equation is

B0/B=cotBa, (16)
for which the electronic polarization is

P,(2) = sinfz. amn

The dependent variable in the virtual mode equations
is the complex frequency which we write as

Q=0+ =w/wp,

where @ gives the frequency of the mode and Q" is a
measure of the frequency spread. @/ must be negative
because of the requirement of temporal decay. The
choice of the independent variable depends upon the
particular physical situation of interest. In order for
the angle 6 (see Fig. 1) to be well defined for the virtual
modes, k, must be complex. In addition, ., must have
the same phase in the complex plane as o, i.e., since
X="kyc/wp=X"+1X", we must have X"//X'=0Q"/Q .
In this case X=Qsind and @ can be considered the
independent variable. The resultant modes, which we
call the constant-angle virtual modes, are the only ones
which will be discussed below since they are the modes
which are directly related to optical studies.!

We now consider the two polarization types
separately.

P Polarization

An idea as to the type of solution to be expected from
Egs. (8) and (12) can be obtained by examining the
quantity £,

£=eBo/B, (18)

which appears on the left-hand side of these equations.
Now ¢, 8, and By will be complex quantities since Q is
complex, but it is illuminating to examine £ considering
all quantities to be essentially real. For small 8, f~4/c.
Since € is between zero and one for 21, we would
expect, for small 6, the tangent equation to have
solutions for Ba~nw and the cotangent equation to
have solutions for Ba~(n-+3)r with % an integer. This
conclusion should be particularly valid for modes with
Q~1, where e~0.
When 65#0, we have

£=(1—Q72)/(1—(Q cosh)~2)L72, (19)

The essential reality of B¢ means that in the limit
6 — 90° @ must diverge in such a fashion that Q cosfS'1
with the result that £>1. Thus, for large angles, the

1; én alternative type of solution with %, real is discussed in
Ref. 2.
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solutions of the tangent equation should occur for
Ba~(n+3%)w, whereas the cotangent equation should
have solutions for Be~mnm. This approximation should
be best for the lowest frequency modes having @ cos~1,
since for these modes £3>>1.

We conclude, therefore, that in following a particular
solution of the tangent equation from =0 to §=90°,
Ba should go from approximately an integral multiple
of = to approximately an odd-integer multiple of 7 and
vice versa for a cotangent mode. The transition in Sa
should occur for £~1 or near the Brewster’s angle
(¢=1 corresponds to tanf=+/¢). In addition, modes of
a given symmetry should alternate in frequency with
modes of the opposite symmetry.

These arguments should be considered only as
indicative of trends since the fact that the variables are
complex complicates matters considerably. In particular
the Brewster’s-angle condition cannot rigorously occur
when @ is complex.

Consider W=10.0 (which is, on the scale of most of
the effects we are concerned with, a thick crystal). The
real and imaginary parts of the frequencies of the virtual
modes are given in Fig. 3 as a function of the angle 6.
Our comments above concerning the values of Ba for
the various modes are in accord with the detailed
calculations. The 07; mode, a solution of the tangent
equation [Eq. (8)], has both the real and imaginary
parts of Ba equal to zero at =0 with @’ equal to 1, the
plasma frequency, and @”=0. With increasing angle,
Re(Ba) for the 0T, mode increases monotonically to
0.961(37) las §—90°, whereas Im(Ba) reaches a
minimum of —0.696 at §=31° and then increases to
—0.299 as § — 90°. This mode is unique in that the real
part of the frequency is always below that corresponding
to the Brewster’s-angle frequency (calculated consider-
ing all quantities real), as indicated in Fig. 3.

The 1C1 mode, a solution of the cotangent equation
[Eq. (12)], has Re(Ba)=0.961(37) at =0, where
Im(Ba)=—0.299. As 06— 90°, Ba becomes 0.968r
—40.579. Minima occur for Q” at §=43° and for
Im(Ba) at §=238°, both relatively near the point where
Q' crosses the Brewster’s-angle curve.

As is perhaps clear by now, the mode index is a
measure of the §=0 value of Re(Ba); that is, a mode
labeled mC (mT) is a solution of the cotangent (tangent)
equation with Re(Ba)~3mx for §=0. In particular this
is true for the modes without a subscript in the label.
In some cases, the 07 and 1C modes, which have the
subscript 1, 2, or 3, are most peculiar and the index
often ceases to have any real significance, becoming
essentially a label. However, for any mode occurring at
6=0, the above rule is roughly obeyed.

Several times above comments were made about the
association of minima in Im(B8e) and Q" with the angle
for which @ crosses the Brewster’s angle. The region
near the Brewster’s angle is characterized by ¢ [Eq.
(18)] being of the order of 1, which means that the real
and imaginary parts of 8¢ are roughly comparable and
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F16. 3. The frequencies of the P-polarized virtual modes for
W=10.0. The Brewster’s-angle curve was calculated from the
expression tanf =+/¢ with e=1— (/)2

the ratio

r=|Q"| /o (20)

is maximized. The physical reason for such behavior is
as follows. The virtual modes represent an attempt by
the crystal to establish, via multiple reflection, a stand-
ing wave pattern for the fields within. This is indicated
by the values of Re(8a) for 6=0 and 90°. In the vicinity
of the Brewster’s angle, the ‘“transparency” of the
crystal precludes effective multiple scattering, resulting
in a deterioration of the field pattern. Thus the coupling
of the internal fields with the external radiative fields
is enhanced and the mode lifetime decreases. This
corresponds to an increase in I' and | Im(B8a)| and is also



502

reflected in a relatively rapid change in Re(8a) and,
hence, ©'. As 8 — 90°, |Q"”| increases without bound,
as does @'; but T is significantly less than it is near the
Brewster’s angle, indicating further that the definition
of the modes is poorest near the Brewster’s angle.

The largest changes in € and @ and, from the argu-
ments of the previous paragraph, those most closely
associated with the Brewster’s angle, occur for high-
frequency modes in thick crystals (W>>1) and for all
modes in thin crystals (W<<1). The reason for this is
clear. In passing through the Brewster’s angle Re(B¢)
must increase by approximately 3. Since Sa is given by

Ba=1(e—sin%)12WQ,

an increase in Sa can occur when © increases because of
the proportionality of 8a¢ to @ and also because of the
resultant increase in e. When e~0 (Q~1), clearly a
smaller change in @ is necessary to produce the same
change in Ba than when Q is large, because of the form
of €. It is also clear that when W is small the change in
Q necessary to change Ba by a given amount is larger
than when W is large.

We can illustrate some of the above points by com-
paring the values of T' for various modes when W=10.0
The 07'; mode has T' equal to 0 at §=0, a maximum of
0.0300 for #=238°, and 0.0166 as § — 90°. For the 1C;
mode, I' is 0.0166 at =0, 0.0978 at the minimum in
Q”, and 0.0518 as § — 90°. Contrast this with the 9C
mode for which T' is 0.112 at =0, 0.241 at the Q"
minimum (§=44°), and 0.108 as § — 90°. From these
values and the curves of Fig. 3 it is clear that the
definition of the modes decreases with increasing index,
and that the peaks in |Q”| and the rapid changes in @’
are closely associated with the Brewster’s angle for large
mode indices.

One additional interesting feature is indicated in the
numbers of the previous paragraph. We note that T for
a cotangent (tangent) mode at §=90° is equal to I' for
the next higher tangent (cotangent) mode at §=0. To
demonstrate that this is a rigorous conclusion we com-
pare the tangent equation for =0,

we
tan{—(1—9—2)1/2} =—i(1—-Q2)12,
2
with the cotangent equation for 6~90°,
i |
tan {—2—(9 cosf)(1— (2 cosh)2)1/2 ]

~—4(1— (Q cosh) )12,

These equations are of the same form, @ in the §=0
equation being replaced by @ cosf in the §~90° equa-
tion. Considering © as essentially real, we have shown
that the values of Ba for these two cases should be com-
parable. It is now clear that they should be identical,
and thus (Q €086) mode m at 90°= (V) mode (m+1) at 0°- The
equality of I' for the two cases follows immediately.

K. L. KLIEWER AND R. FUCHS

153

It was pointed out above that the most well-defined
mode is the 07'; mode. In addition it is an extremely
important entity, being the mode from which Ferrell
predicted “plasma radiation” should be emitted!” and
also the mode McAlister and Stern utilized in making
the first optical determination of the plasma frequency.!®
We now will examine analytically some of the properties
of this mode.

Since the 071 mode occurs for 8e~0 for low angles,
we write tanBa=ga, so that Eq. (8) becomes

(WQ/2)(e—sin%) = —ie cosf. (21)

For 6=0, it is immediately apparent that the solution
is e=0 or @'=1.0 and Q”=0. Thus this mode always
occurs at the plasma frequency for #=0 independent
of the thickness of the crystal.

Suppose now that §5<0. Then, writing the complex
frequency and dielectric constant in polar form as

Q=Q,e,

e=¢+ie' =™, @2

we get from (21) the pair of equations
1WQ,{ep cosn—sin®} =¢, cosd sin(n—¢), (23)
1WQ, sinp= —cosf cos(n—¢).  (24)

Since the 07; mode occurs for @'~1, @”/~0, let us
consider a thick crystal for which WQ,/2>>1 and
assume ¢~0. From (24),

tann= —2 cos/WQ,,

so n~0. Using (23) we see then that ¢, cosp=~sin? or
e;~sin?. Since |7]| is small, €~¢, and

€'~—2 sin% cosf/WQ,.

Thus,
Q'~(cosf)™* (25)
and, since
61/32911/ (Q/)g ,
Q" is given by
Q'~—sin%/ (W cosf). (26)

Note that Q" « WL
Consider now WQ,/2«<1. Then n~—m/2, ¢
~(WQ,/2)(sin%/cos), and ¢’'~—¢,. Thus,

Q'~—TW sin?9/4 cosd 27
and

Q'~1+3W? tan’.

Note that Q" <.

These conclusions concerning the 07'; mode are valid
for Ba small or for angles less than about 45°. For a
given angle in this range, 2" will be a maximum for
W~2, as is indicated by Egs. (26) and (27). Equations
(25) and (26) accurately represent the frequencies of
the 07'; mode in Fig. 3 for 6Z45°. The case of a thin
crystal will be illustrated below. It should be noted

17 R. A. Ferrell, Phys. Rev. 111, 1214 (1958).
18 A, J. McAlister and E. A. Stern, Phys. Rev. 132, 1599 (1963).

(28)
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that Ba being small for the 07; mode at low angles
means that the polarization is essentially uniform in
the z direction and zero in the x direction.

There are unique modes appearing in Fig. 3 which
have not yet been mentioned. These are the 075 and
1C2 modes, which exist only for #>45° and have Q'=0.
As will be shown below, these modes play an important
role in determining the low-frequency optical behavior
of a slab, and thus we will examine their properties in
detail.

Consider the tangent equation with @'=0,

wQ' 1 \12
tanhI: (cos%—l— ) :I
2 @)

cosf{1+1/(Q"")?
= { } . (29)
(cos?9+1/(Q'")2)1/2
As 6 — 90°, Eq. (29) becomes
tanh (3W)~—cosf/Q",
so that :
Q/'~—cosf/tanh (3 W). (30)

Similarly, the cotangent equation, with @'=0, becomes

wa' 1 \1/2
coth[ (cos%‘)—l— ) :I
2 (Qll)g

cosf{1-4+1/(Q")?%}
(cos?+1/(Q)2)12
which has a solution, in the limit § — 90°,
Q''~—cosf/coth 3 W). (32)

Equations (30) and (32) are valid for all W as long as
(@)%1.

With decreasing angle, [©@”| increases rapidly as
indicated in Fig. 3. When W |Q"| /2>>1, the solution of
Eqgs. (29) and (31) is

Q”:—cos@/(l—z cos?)1”2, (33)

from which it is clear that a solution exists only for
0>45° and that " — —w as §— 45°. The equality
of Egs. (30) and (32) for W>>1, together with Eq. (33),
demonstrate the fact that the 1C; and 07 modes are
degenerate in frequency for a thick crystal. In addition,
it should be noted, and this is an extremely important
point, that the 0T, and 1C; modes as given in Fig. 3 for
W=10.0 are thick-crystal solutions and, as such, are
unchanged for larger W, even W — o, This is not true
of the other modes of Fig. 3.

The polarization of the electron gas associated with
the 07, mode is

weQ' / 1 \12z
P.(z)x sinh[ cos?9+ ) ~J ,
2\ @) a

(34)

W /7
P,(z) <sind cosh,: .

Q 1 \!2z
(c0520+ ) —:l ,
Q"2 a
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F16. 4. The frequencies of the P-polarized
virtual modes for W =2.80.

identifying this mode clearly as a surface mode. Near

90°, where @ is small,
P,(2) x —sinh(W3z/2a), 35
P,(2) = sinf cosh(W3/2a). (35)

Similarly, the polarization components near 90° for the
1C: mode, also a surface mode, are
P,(2) « cosh(Wz/2a),

P,(z) « —sinf sinh(W3/2a).

In Fig. 4, the frequencies of the virtual modes are

given for a crystal with W=2.80. Q' for the 07y mode

is essentially the same as it was for W=10.0 [see
Eq. (25)], but |Q"”| has increased in accord with the

(36)
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Fi16. 5. The frequencies of the P-polarized virtual modes for
W =1.40. Q" for the 0T'; mode approaches — » as§—> 45°,

W-! dependence given by Eq. (26). The reduction in
thickness from W=10.0 results in the modes being
more widely spaced in @', as expected from the form of
B, and the transitions in €' and Re(Ba) are somewhat
more pronounced as anticipated from the arguments
above. The transitions in Q' are rather closely associated
with the Brewster’s angle as are the sharp dips in Q”.
At 6=0, Re(Ba) is 0.718(37) for the 1C; mode, 0.850w
for the 27" mode, and 2.74 (3) for the 3C mode, indicat-
ing that the mode index is a meaningful quantity.

I -ortant new features in Fig. 4 are the onset of
criti .. behavior in the 1C; mode and the separation of
the 0T. and 1C; modes. For §~46°, @’ for the 1Cy mode
drops abruptly to zero and then rapidly increases.
Near 90° the separation of the 072 and 1C; modes
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follows from the fact that 3 is now of the order of 1,
tanh(W/2)<coth(W/2), and thus |Q"”| for the 0T
mode is greater than for the 1C; mode [see Egs. (30) and
(32)]. In addition, the cotangent equation no longer
has a solution which diverges for § — 45°, the 1C, mode
joining the 1C; mode in the critical region. The 07
mode has @ given by Eq. (33) for W|Q"| cost>>1.
That there should be a critical thickness below which
the 1C; mode ceases to diverge as § — 45° is clear. We
saw above that @ diverges for W=10.0. For small ¥,
Eq. (32) indicates that |©"|<1 for all 6. Then Eq. (32)

1201 I I T T T T T

10 (— —
100 |~ —
90 1~ -

80 —~ ]
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=05 = Icp oy -

-500

-1000

F16. 6. The frequencies of the P-polarized
virtual modes for W=1.0.
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is a valid expression for @” for all § and there is no
divergent behavior. The critical thickness is W~3.

Decreasing W to 1.40 results in further complications
as indicated in Fig. 5. The modes with indices >2
behave in rather standard fashion, but the same cannot
be said for the 0T or 1C modes. The 07'; mode has the
usual frequencies for 6=0. However, for 6~70° Q' goes
to zero at the point where the 07, and 07'; modes join.
Q' increases abruptly for the 07; mode near §="77°,
where the 07y and 075 modes merge. 075 is the di-
vergent mode as 6 — 45° while 07, has Q" —0 as
6 — 90°, in accord with Eq. (30).

The 1C; mode at =0 has Re(8a)=0.209(x/2). This,
together with the fact that I'=2.41 at =0, indicates
this mode is now very ill-defined. Q" goes to zero for
6~16°, where the 1C; and 1C; modes connect. At
6~45°, Q' for the 1C; mode rises abruptly,’ whereas the
1C: mode continues with Q' equal to zero. € for the
1C; mode is given by Eq. (32) for §545°.

Figure 6 gives the virtual mode frequencies for
W=1.0. Since this is a reasonably thin crystal, Q' and
Q" for the 0Ty mode are relatively well represented by
Egs. (28) and (27) for 6<45°. Note that @' for moderate
angles remains near 1.0, being 1.05 for §=45°, and also
that ©' no longer diverges as § — 90°. The 1C; and 1C,
modes are once again distinct with @ for the 1C, mode
now given by (32) for all §. The 07, mode is well
described by Eq. (30) and there are now two 07" modes
with @/ — —e as §— 90°: 07y and 073.2 The 07
mode remains the divergent mode as § — 45°,

Considering, finally, a thin crystal, the mode fre-
quencies for W=0.20 are given in Fig. 7. @ for the
07 mode, given by Eq. (28), is essentially 1.0 if
6280°. @ and @' are accurately given by Egs. (27)
and (28) if §Z45°. Expressions for @ are given by
Eq. (32) for the 1C; mode for all values of § and by
Eq. (30) for the now very compressed 075 mode. Q"
diverges as § — 90° for the 07; and 07’3 modes and as
6 — 45° for the 07; mode.

S Polarization

For the case of S polarization, the virtual mode
equations are (14) and (16). There is no feature for .S
polarization analogous to the Brewster’s angle for P
polarization, as is indicated mathematically by the fact
that e does not appear on the left side of these equations,

19 This abrupt rise is directly associated with the Brewster’s
angle since, below the transition, |Q'| is large, e~1, and
0p=tan"14/ex45°,

2 Since we are concerned here with 07 modes having Q@'=0, it
is easy to show that the divergent values of Q" as § — 90° are
solutions of

@'~ — (W cosf) [ 14 (1—W2)1/2],

For W1, there are two solutions: Q"= —2/W cosd, the 0T
mode, and Q'=—W/2 cos, the 0T, mode. The above general
exPression for @ suggests that there are solutions with divergent
Q" and @'=0 as § — 90° only for W <1. In fact there are still two
such solutions for W=1.0 (Fig. 6) because Ba is not sufficiently
small that the expansion tanfa=a is accurate.
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F16. 7. The frequencies of the P-polarized virtual modes for
W=0.20. Q" for the 0T; mode diverges for § — 45° and for
6 — 90°.

as it does for P polarization. Thus we expect that Sa will
be roughly the same at §=0 as at 90°.2

There are, however, some distinct similarities in the
two polarization types. The tangent equation for P
polarization at 6=0 is tanBa= —1e2, which is just the
6=0 cotangent equation for S polarization. Thus, the
6=0 tangent frequencies for P polarization are the §=0
cotangent frequencies for .S polarization, and vice versa.
For 6—90° the S and P tangent frequencies are
identical as are the S and P cotangent frequencies. In
order to retain the meaning of the mode index as the
approximate value of Re(8a) for 6=0, we must now
associate even integers with the cotangent modes and
odd integers with the tangent modes.

In Fig. 8, the frequencies of the virtual modes are
given for W=1.4. Comparing Fig. 8 with Fig. 5, we see
that for §=0, the mode of index m for S polarization

2tiActua.lly, Ba is a constant, independent of angle, for a given
mode.
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Fic. 8. The frequencies of the S-polarized
virtual modes for W =1.40.

has the same frequencies as the mode of index m for P
polarization, whereas for § — 90°, the mode of index m
for .S polarization has the same frequencies as the mode
of index (m—1) for P polarization.

The modes for .S polarization are seen to be con-
siderably less exciting than for P polarization. In
particular, there are no modes for S polarization
analogous to the 07 mode and the 07'; mode at small
angles. The S-polarized mode 17" which corresponds to
1C; for small  becomes identical to the 07'; mode at
6—90°. For a thinner crystal (W<1), the Q'=0
S-polarized modes corresponding to P-polarized 1C;
and 1C; for small 6§ become identical to 073 and 07
when § — 90°.
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TasBLE I. Virtual modes for P polarization. W=10.
Mode 6 o' +in” o' +ip” I A
0T, 0° 1.0002—0z 1.0000—0.0100; 1.00 0

10°  1.0150—0.0030; 1.0150—0.0130; 1.00 0.36

45° 1.4583—0.0404; 1.4589—0.0501z 0.96 0.31

75°  4.0282—0.0562; 4.0287—0.0803; 0.93 0.16

1C, 0° 1.0433—0.0173; 1.0436—0.0266; 0.93 0.50
10°  1.0584—0.0237; 1.0588—0.0330; 0.93 0.41

30°  1.2143—0.0904; 1.2154—0.0998; 0.94 0.17

45°  1.5943—0.1490; 1.5963—0.1573; 0.83 0.10

75°  4.5000—0.2472; 4.5012—0.2547; 0.75 0.08

2T 0° 1.1664—0.0604; 1.1676—0.0679; 0.75 0.26
10°  1.1834—0.0675; 1.1846—0.0750; 0.75 0.18

30° 1.3434—0.1515; 1.3450—0.15917 0.76 0.09

45°  1.8222—0.2927; 1.8253—0.2990; 0.63 0.04

75°  5.2152—0.4589; 5.2168—0.4644; 0.56 0.02

0T, 50° 0—1.5426: 0—1.5526; 1.00 0.01
and 60° 0—0.7072¢ 0—-0.7173; 100 0.03
1C,  75° 0—0.2782; 0—0.2883; 1.02 0.07
85° 0—0.0878; 0—0.0984; 1.27 0.23

IV. OPTICAL PROPERTIES

The foregoing virtual modes were obtained with zero
intrinsic damping for the electron gas. Absorption? of
light by the metallic slab can occur only if the damping
parameter in the dielectric constant e(Q,y) of Eq. (1) is
different from zero. It has been shown, for constant 1,
that each virtual mode is associated with a peak in the
optical absorption.® If the frequency of a virtual mode
has been determined for both y=0 and y>0, the
position, width, and height of the absorption peak can
be calculated.

Suppose that P-polarized light of frequency Q is
incident on the slab. Then the absorption coefficient 4
can be written®

A=A1+4., @37
where
Li+L*—2
1=,
[ L:]2
(38)
Lot Loy*—2
2=—_——_,
| L2
with
Li=1—(3 tanBa,
1 (i8/Boe) tang (39)

Lo=1+ (iﬂ/ﬁoe) cotBa.

When the frequency is real, 4; and 4, each represent
the absorption due to the modes of a given parity. The
angle of incidence measured from the z axis is 8, defined
by k.c=w sing as in Sec. III. If the frequency is allowed
to become complex, the equations L;=0 and L;=0 are
the same as Eqs. (8) and (12) for the virtual modes.

22 By the terms “absorption” A, “reflection” R, and “trans-
mission” T in an optical experiment, we refer, respectively, to the
fraction of the incident power absorbed, reflected, and transmitted
by the entire slab. The terms “absorptance,” “reflectance,’”” and
“transmittance’” are more commonly used for these quantities.
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For S-polarized light, the factor e in Egs. (39) is
missing,.

The contribution to the absorption 4; made by an
individual virtual mode of type I (a tangent mode) is
a Lorentzian peak given by

277//AQ//
dy=——o
Q=0+ (")

where @ is the real frequency of the incident light,
7’+in” is the frequency of the virtual mode when
v=0, p’+1p” is the frequency when >0, and AQ”

(40)

TasLE II. Virtual modes for P polarization. W=1.0.

=p"'—7" is the change in the imaginary part of the
frequency when v is included. 7" and p” are negative
quantities and, normally, so is AQ”. An expression
similar to (40) holds for 4. Since the absorption peaks
due to virtual modes of the same parity are not additive,
Eq. (40) describes the absorption accurately only if
modes of the same parity are far enough apart that the
associated absorption peaks do not overlap significantly.
This requirement is a consequence of the approximation
used in deriving Eq. (40), namely, that in the neighbor-
hood of a virtual mode, L; can be represented by an
expression linear in Q. This linear approximation breaks
down if the virtual modes are close together or if the
imaginary part of the frequency of a virtual mode is
too large (|7”| 2 1).

We now show the effect on typical virtual modes

ode @ ! +in" "4ip"! " Amax .
M ntin p'tip / when v is changed from 0 to 0.02. Tables I, II, and IIT
0T, OZ 1.0000—0: . 1.0000—0.0100; 1.00 0 ;
%80 %88‘;3_8823% %8%3_88;2% igé 8%4 TasLE III. Virtual modes for P polarization. W=0.2.
%5“ 1.046%—0.1?%91? 1.045?—?.(1)80%’ 1.11 8(1)%
5°  0.3915—1.075¢ 0.3587—1.088: 1.33 X Mode 6 ! L’ ! ! A
80° 0—2.964; 0—2.993; 296 0.02 i o tie /
85° 0—6.872; 0—6.899: 2.67 0.01 0T, 0°  1.0000—0: 1.0000—0.0100; 1.00 0
10°  1.0000—0.0015; 1.0000—0.0115; 1.00 0.23
0T, 80° 0—0.44907 0—0.4465; —0.25 —0.01 45°  1.0017—0.0269; 1.0014—0.0369; 1.00 0.40
85° 0—0.19587 0—0.1968; 0.10 0.01 75°  0.9882—0.1813; 0.9863—0.1914; 1.01 0.10
89° 0—0.0378; 0—0.0405; 0.27 0.12
0T, 88° 0—0.4085: 0—0.4047; —0.39 —0.02
0C, 0° 0—0.62417 0—0.6504; 2.62 0.08 89° 0—0.18087 0—0.1802; —0.06 —0.07
10° 0—0.60642 0—0.6322; 257 0.08
30° 0—0.48967 0—0.5126; 2.30 0.09 1C, 0° 0—0.1007z 0—0.1208; 2.01 0.28
45° 0—0.3697 0—0.39042 2.09 0.10 10° 0—0.0991; 0—0.1192; 2.01 0.28
75° 0—0.1214; 0—0.14017 188 0.23 45° 0—0.0708: 0—0.0909; 2.00 0.34
85° 0—0.0403: 0—0.0589; 1.86 0.43 75° 0—0.0258; 0—0.0458; 2.00 0.49
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show the mode label, the angle 6, the frequency n'+1n"’
when y=0, the frequency p’+ip” when y=0.02, and a
factor f’ defined by AQ”=— (3v)f’ from which it can
be seen immediately how the addition of v changes the
imaginary part of the frequency. Setting Q@=p’ in
Eq. (40) gives an expression for the peak absorption at
the center of an absorption line,

Amax"_"yf, I 71,, I /(PH)2-

The values of 4 max in the last column thus show how
large a contribution to the absorption each virtual mode
makes. For the normal virtual modes the real part of
the frequency changes very little, while the change in
the imaginary part of the frequency is given by f’ on
the order of unity. It follows from Eq. (40) that the
position of the absorption peak associated with such a
virtual mode does not depend on v, but that the width
increases over the purely radiative width by about
1y.In a few cases f/<0; Egs. (40) or (41) would then
imply that the width of the absorption peak decreases
with increasing v and that the absorption itself is
negative. This surprising formal result does not imply
that the total absorption can become negative, which
would be impossible. For those modes with f’<0 either

(41)
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(1), the imaginary part of the frequency is so large and
negative (p”S—1) that Eq. (40) cannot be expected
to hold, or (2), for those cases when Eq. (40) should
apply (e.g., the 0T» mode for W=1.0 and W=0.2), the
negative absorption is more than canceled by the
positive absorption due to other modes.

Figures 9 and 10 show the result of an exact calcula-
tion of the absorption as a function of frequency with
v=0.02, using Egs. (37), (38), and (39). The two curves
in Fig. (9) are for the angles of incidence 6=10° and
6=85° and a slab thickness W=1.0. Each absorption
peak is labeled by the symbol for the associated virtual
mode and by a double bar showing the frequency p’ at
which the peak should be centered, and by-the widths
|29"| when v=0 and |2p"'| when v=0.02. If §=10°
there is a broad peak at =0 due to the 1C; mode and
a narrow peak at 2=1.003 due to the 07; mode. When
6=285° the 1C, peak at Q=0 has become higher and
narrower. At this angle the 07°; mode has evolved into
two zero-frequency modes, 07"y and 07';. These modes
contribute very little to the peak at =0, and therefore
are not included in the figure as labels for this peak.

Figure 10 shows the absorption as a function of fre-
quency for a slab thickness W=10.0 and a series of
five angles. When 6=0°, peaks due to the 1Cy, 27, 3C,
and 47 modes are visible; there is no 07; peak at
normal incidence. When 6=10°, the 07, peak has
appeared and the other peaks have moved to slightly
higher frequencies. As 6 continues to increase, these
peaks move to still higher frequencies and are off the
graph to the right when §=75°. The zero-frequency
modes 07’y and 1Cy come into existence when 6>45°,
and the associated peak at 2=0 becomes higher and
narrower as § increases to 90°.

A characteristic of the absorption in a thick slab
which appears in Fig. 10 and which is not a consequence
of any virtual mode yet discussed is the sharp drop in
absorption at low frequency, @S«. There is, in fact, an
infinite number of pathological virtual modes lying on
the negative © axis between 0 and —4y, which we would
like to relate to this drop at low frequency. To derive
the frequencies of these modes we let Q= —iQ;, in the
tangent virtual mode equation (8) and assume that
Y<K cosf. Then Ba= (W /2)[ (v/Q:)—1T172, and Eq. (8)
can be written

tanBa=[Qa(y— Q) T7; 42)

in a similar way, beginning with the cotangent equation,
we get ’
cotfa=—[Qa(y—Q2) 712 (43)

The right side of Egs. (42) and (43) is very large in
magnitude since v is small and ©, is assumed to be small.
Therefore Ba=~inmw, where #=2,4,6,---, for the
cotangent modes, and #=1, 3,5, -+ -, for the tangent
modes, or

Y

Qe ——————, 44
1+ (W /nm)? 9
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where # is defined above. Equation (44) applies to P
polarization; the result for S polarization is the same
except that #=1,3,5, -+ for cotangent modes and
n=2,4,0, - for tangent modes.

These modes are pathological in the sense that they
do not exist when y=0: In the limit y — O they all move
to the origin of the @ plane. Therefore Eq. (40) cannot
be used to find the contribution of these modes to the
absorption. The behavior of L; and L, along the real
Q axis, which is directly related to the absorption, is in
principle determined by the behavior along the imagi-
nary @ axis, where the zeros of L; and L, are located.
However, a linear expansion of L, and L, analogous to
that used for describing the behavior of these quantities
in the neighborhood of an ordinary virtual mode cannot
succeed, since many modes are involved and they are
far from the real Q axis in the sense that fa~%inr (n>1)
at the virtual mode frequencies, while 8¢=~0 when Q is
on the real axis near =0. We conclude that there is no
simple relation analogous to Eq. (40) relating these
modes to the absorption near 2=0.

Some information about the drop in absorption near
Q=0 can nevertheless be obtained by comparing the
exact value of the absorption at Q=0 with the value
predicted from the ordinary zero-frequency virtual
modes. It can be shown from the exact expressions for
the absorption, (37), (38), and (39), that when Q=0,
A1=0and

4W~ cosf

N (W cosf+2v)?

for P polarization. If W<, the frequency of the 1C,
mode is #'+in”"=0—i(W/2) cos®# when y=0 and
p'+ip" =0—i[ (W/2) cosh+~v] when v5%0. From Eq.
(41), the peak absorption at 2=0 due to the 1C; mode
is therefore

A=4, (45)

(A 2) max=4v/W cosf, (46)

which agrees with Eq. (45) if y<<W cosf. This agree-
ment shows that in a thin slab the absorption at 2=0
is entirely accounted for by the 1C, virtual mode,
implying that there cannot be a drop in absorption near
=02 For a thick slab, however, the =0 peak
occurring when §>45° is due to both the 1Cy and 07,
modes; the contribution to the absorption from these
modes is greater than the exact value at 2=0, so that
near Q=0 there must be a drop in absorption from the
value attributed to the 1C; and 07'; modes to the exact
value.

It can be shown similarly for S polarization that
when =0, 4,=0 and

AW cosf

1= .
(W 2y cosh)?

28 The numerical calculation shows that the exact absorption at
Q=0 agrees with the peak absorption due to the 1C; mode for
W1, not only for W<1 as the preceding discussion would imply.
The other zero-frequency mode 07 is unimportant for W1
since it exists only for 6 near 90°, and even when it exists it makes
only a small contribution to the absorption,

(47)
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Fic. 11. The low-frequency absorption for a thick crystal and
a range of v. The discrete points are the absorption associated with
the 0Ty and 1C; modes calculated using Eq. (40). Absorption
values obtained from (40) are seen to be below the exact values
for frequencies well above the frequency of the mode peak
(2| peax=0 for the 0T'» and 1C; modes). This is a result of higher-
frequency mode contributions appearing in the exact calculation.
The subtractive effect associated with those zero-frequency modes
which occur for |Q”| <7 is seen to extend to 2~2v. For W$10.0,
the transmission of the slab is essentially zero in this frequency
range, so the reflection is given by 1—4, indicating that thereis a
significant low-frequency reflection dip.

When W is large there are no zero-frequency virtual
modes when y=0 for S polarization. Therefore the
absorption near =0 is small, and there is no interesting
peak at or near 2=0 analogous to that which often
occurs for P polarization. When W=10.0, for example,
the absorption of S-polarized light near =0 at all
angles is similar to the absorption of P-polarized light
for small angles, as shown in Fig. 10; in particular, no
low-frequency peak appears for >45°.

If W>10, the absorption for 2<1 is essentially in-
dependent of W, except that the sharp drop near 2=0
changes so that 4=0 at Q=0 when W —w, as can be
seen from Eqs. (45) or (47). For 2> 1 the peaks which
are still distinct at W =10.0 move more closely together
for larger W and eventually merge into a single struc-
tureless absorption peak given for W —« by setting
tanBa= — cotBa~~1 in Eqs. (39).

The absorption spectrum in a thin slab (e.g., W=0.2)
can easily be adduced by referring to Fig. 7 and Table
III. It is evident that the absorption for P polarization
is determined by just two modes. The 07"y mode gives
apeak at2=1 and the 1C; mode, which is better-defined
than it is for larger W, gives a peak at Q@=0. The
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absorption spectrum for .S polarization is even simpler,
for only the zero-frequency peak is present.

To this point in the discussion of the optical absorp-
tion and its relation to the virtual modes we have taken
v=0.02. In view of the unique properties of the low-
frequency modes, we will briefly examine the low-
frequency absorption for a thick crystal when v is
changed. In Fig. 11 are given absorption curves for
W=10.0, 6=75° and P polarization. The most in-
teresting feature of these curves is the frequency for
which the absorption peaks. For yZ0.05, the peak
occurs for 2> (2| pear=0.045 for y=0.02), whereas for
¥50.05, the peak occurs for <y (2] pear=0.110 for
v=0.30). The curves of Fig. 11 are essentially un-
changed if W>10.0, all thickness effects in this range
occurring for 2Z0.05 [see Eq. (45)].

Reflection and Transmission

It has been pointed out® that in most cases, reflection
and transmission cannot be readily interpreted in terms
of virtual modes because of interference between the
modes of opposite parity. Characteristic reflection
minima and transmission maxima, only approximately
associated with virtual modes, occur for Q>1 at
frequencies such that fa=nm/2. For a thick slab, e.g.,
W=10.0, T=0 when 2<1 and R=~0 when 2>1; hence
R=~1—4 for <1 and T'=1—A4 for 2>1. The absorp-
tion peak occurring near Q=0 for 6>45° is therefore
accompanied by a dip in the reflection. As W decreases,
T increases from zero in the range 0<Q< 1. The transi-
tion from 7'=0 to T'=1 in this frequency range occurs
approximately when the real part of the frequency of
the 1C; mode 7’ moves from 7’21 to n'=0, i.e., when
W=14. Therefore if W1, R=0 and T=1 for most
frequencies with the exception of two peaks in R for P
polarization (accompanied by minima in T and peaks
in 4) at =0 and Q~1 which can be associated quanti-
tatively with the 1Cs and 07y modes, respectively.? The
sharp dip in T near 2=1 associated with the 07, mode
provides an accurate means for determining the plasma,
frequency optically.!®

V. DISCUSSION

The calculations of the previous section were made
considering ¥ to be independent of frequency, thereby
illustrating those aspects of the optical properties
dependent on the virtual mode properties per se. Since
all physical effects contributing to damping must
appear in v because of the form of the dielectric con-
stant used [Eq. (1)], it is clear that in practice vy will
depend on the frequency. Assuming y=(Q) 25 does not
complicate the formal determination of the virtual
modes. That is, a virtual mode calculated using

24 See Eq. (28) of Ref. 5.

25 In actual applications where determinations of v are made,
« is considered to be a function of the real frequency. To remain

consistent with such usage, we would consider y=+(Q) in the
virtual mode calculations.
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[Q,y(2)] can still be characterized by a solution
Q¢=p'+ip"”. However, the calculation will still be in
effect a constant-y calculation since the effective y will
be v(p’). This means that, for a mode essentially
isolated from other modes of the same parity, Eq. (41)
is still valid if we consider that 4 need not be A mgx but
instead becomes 4 |, i.e., the absorption at the virtual
mode frequency. Equation (40) remains valid, however,
only in a point-by-point sense. That is, the absorption
given by Eq. (40) for ¥ =14, say, will be a good approxi-
mation at only those frequencies for which v(Q)=+~;.
This means, clearly, that a pronounced frequency
dependence of v across a mode will distort severely the
Lorentzian line shape. Indeed, peaks can appear at
frequencies other than the virtual mode frequencies
if v has the appropriate frequency dependence.

Few general statements can be made concerning the
frequency dependence or magnitude of v for real
materials.?® However, several points of interest in
connection with the present discussion should be noted.
For energies below those at which interband transitions
occur, v increases significantly with increasing energy
for some materials, examples being silver?” and copper.28
Materials composed of atoms having similar electronic
configurations need not have comparable values of 7.
An example is the alkali metals, where the value of v at
the plasma frequency increases significantly with
increasing atomic weight, being 0.012 for Na and 0.39
for Cs.® The value for Cs indicates that large values
of v do occur. A further illustration of this last remark
is the fact that for Ge, in the frequency range where
its behavior can be described as free-electron-like,
there are indications that + is as high as 0.40.3

A convenient and useful means for including band-
structure effects in the dielectric constant for an actual
material is to write the dielectric constant, here de-
noted €, as

¢=¢(Q7)+8(Q), (48)
where €(Q,y) is given by Eq. (1) and () is the band
contribution. The presence of §(Q) gives rise to signifi-
cant effects, one being the displacement of the plasma
frequency from the free-electron value. This displace-
ment can be in either direction since band effects of
different types can give rise to both positive and
negative values of 6(?).% In general, for frequencies
greater than the plasma frequency, () will be positive
corresponding to a core polarization contribution to €.
So, with y=0, we have

¢=1—1/2+5(Q), 5(Q)>0, (49)

above the plasma frequency.

26 Recent reviews of work in this area are those of H. Raether,
Ref. 14, and J. C. Phillips, Solid State Phys. 18, 56 (1966).

27 H. Raether, Ref. 14, p. 128.

28 H. Raether, Ref. 14, p. 131.

2 F, Stern, Solid State Phys. 15, 299 (1963); see p. 345.

® N. Swanson, J. Opt. Soc. Am. 54, 1130 (1964).

31 H. Raether, Ref. 14, p. 93 fi.
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The divergence of @’ and |Q”| for §— 90° in the
virtual mode calculations of Sec. ITT was a consequence
of the fact that (2,0) — 1 as @ — . With a dielectric
constant like that of Eq. (49), €(2,0) can be greater than
one for finite frequencies. This results in a radical change
in the properties of the virtual modes for large angles ;
all the modes with Q' — in Sec. III now behave as
did the high-frequency virtual modes for an ionic
crystal? That is, the virtual modes (y=0) now have a
finite value of @' for §=90° with |Q"| passing through
a maximum (near the Brewster’s angle) and becoming
0 for §=90°. The values of &’ for 6=90° are readily ob-
tained, since the tangent equation becomes tanSa=0,
or fa=4nm, n an even integer, whereas the cotangent
equation becomes cotBa=0, or Ba=3inr, n an odd
integer. Thus the solutions are

O'=[{1+ (nr/W)?}/572.

A representative > 1 value for 6 is 0.2 ® for which the
lowest frequency solution of Eg. (50) is ©'=+v5, inde-
pendent of crystal thickness. Higher frequency solu-
tions of (50) depend upon the value of W.

The presence of such modes near 90° should be readily
detectable since, as § — 90°, |Q”| calculated with 7y
included will be Z3v. Thus, if the crystal is of a thick-
ness such that the modes are separated, an optical
experiment with 8 near 90° will yield a series of well-
defined absorption lines, permitting an accurate high-
frequency determination of §(Q) and v(Q).

Since the virtual modes are the collective states of
the electron gas which decay radiatively, we expect
these modes to appear in the description of radiation
which may accompany any mechanism for exciting the
system. The use of an electromagnetic wave as a probe
was considered in Sec. IV and the radiation spectrum
arising from this excitation could be expressed entirely
in terms of the virtual modes. In a similar way we can
discuss the transition radiation emitted when charged
particles pass through the slab.

It will be seen that charged particles constitute a
much Jless selective probe of the virtual modes than an
electromagnetic wave. When a wave of frequency w is
incident at an angle 6, the reflection, transmission, and
absorption are described in terms of virtual modes
characterized by the same angle 6; we can say alter-
natively that only the virtual modes for the angle 6,
with linewidths overlapping the applied frequency, are
excited. Furthermore, by suitable polarization of the
incident light, .S or P modes can be excited selectively.
The only selection which cannot be made is to excite
modes of a given parity.

In contrast, when charged particles with a given
velocity are incident on the slab at a certain angle, the
transition radiation is distributed over a continuous

(50)

2 E. T. Arakawa, R. N. Hamm, W. F. Hanson, and T. M.
Jelinek, in Optical Properties and Electronic Structure of Metals and
Alloys, edited by F. Abeles (North-Holland Publishing Company,
Amsterdam, 1966), p. 374.
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range of angles and frequencies. Thus there is no
selection of the virtual modes either by frequency or by
angle and, in general, S and P modes of both parities
are excited. This complete lack of selection in the excita-
tion process is compensated by the fact that the modes
can be selected to the same extent as in an optical
experiment by suitably analyzing the transition
radiation. In this way the angle and frequency can be
selected, and the radiation from S- and P-polarized
modes can be distinguished by the direction of polariza-
tion. Only the radiation from modes of even and odd
parity cannot be selected, just as in the case of an
optical experiment.

We shall now discuss briefly how the virtual modes
enter the mathematical description of transition
radiation. In the standard theory of transition radia-
tion® it is assumed that the charged particle is essen-
tially undeflected when passing through the slab. The
driving fields produced by the charge are taken to be
the solutions of the inhomogeneous wave equation both
inside and outside the slab, treating each medium as
if it were infinite, without any regard to the proper
matching of the fields at the surfaces. To these driving
fields are added secondary fields which are solutions
of the homogeneous wave equation with coefficients
determined by the requirements that the total fields sat-
isfy the correct boundary conditions at the surfaces and
that the secondary fields outside the slab be outgoing
waves. These outgoing waves constitute the transition
radiation.

It is found that the Fourier components of the second-
ary electric field outside the slab have the general form

E(kﬂ?:kmﬁ():w) = Flp/L1p+ F2P/L2p
+F¢/Le+F /Ly, (51)

where Ly? and Lo? are the same as Ly and Ly in Eq. (39)
for P polarization, and L,* and L.* are the corresponding
quantities for .S polarization. The vector functions F,?,
F.», Fy?, and F,* depend in a complicated way on the
particle velocity v, the slab thickness L, the wave-vector
components k., &y, Bo, the frequency w, and the dielectric
constant e(w,y). The frequency and the wave vector
must obey the restriction w?= (k,2+k,2+Be%)c2 The
secondary magnetic field can also be written in the form
given by Eq. (51). The Poynting vector is in the
direction of the wave vector and is of the form

S=Sr+4S, (52)

where

Sr=Gy?/| Ly |*4Gr?/ | Li*Lo*? |+ Go?/ | Ly?|?
and

St=Gr'/| Ly |*+ G’/ | L L™ |+ G/ | Ly |2,

# R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935
(1962). A review of the Russian literature on transition radiation
is given by F. G. Bass and V. M. Yakovenko, Usp. Fiz. Nauk 86,
189 (1965) [English transl.: Soviet Phys.—Uspeki 8, 420 (1965)].
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where the G functions are related to the F functions of
Eq. (51). The appearance of the L functions in the
denominators means that, just as for the optical
properties, there are, in general, peaks in the transition
radiation spectrum at frequencies corresponding to the
virtual mode frequencies. However, the interference
term containing |L:Ls*| has the consequence that
when modes of opposite parity overlap, one of them
may be associated with a minimum in the radiated
power, rather than a maximum. In this respect transi-
tion radiation is analogous to reflectance and trans-
mittance in an optical experiment, which also contain
interference terms between modes of opposite parity.
The quantities G in Eq. (52) are sufficiently complicated
functions of the frequency that they can introduce
additional structure into the power spectrum. In an
optical experiment, on the other hand, essentially all
structure can be attributed to the virtual modes.

For the special case of normally incident particles,
only P-polarized modes are excited, i.e., Fi*=Fy=0 in
Eq. (51) or $*=0in Eq. (52). This is evident physically
since the magnetic field associated with the incident
particle is parallel to the slab, as is the magnetic field
accompanying the P-polarized modes. For obliquely
incident particles, including an angle of 90°, both S-
and P-polarized modes are excited.

A brief discussion of the surface plasmons was given
in Sec. IT. Recent work in connection with the excitation
of such modes by electrons warrants a few additional
comments. If retardation is neglected, the surface mode
equations [ (2) and (6)] become

Q=3 (1£e L), (53)

Takimoto® has investigated the energy loss of a fast
electron moving parallel to the surface of a metallic slab
in a calculation in which retardation is neglected.
Assuming specular reflection of the electrons at the
surface, he finds that, for a thick slab (£,L>>1),%% energy

3 N. Takimoto, Phys. Rev. 146, 366 (1966).

3 k. and L in the present case correspond to ¢ and d in Ref. 34.
This corresponds physically to the requirement that the plasma

frequency times the time necessary for the electron to move a
distance equal to the crystal thickness be large compared to one.

K. L. KLIEWER AND R. FUCHS

153

extraction from the moving electron occurs at Q*=1,
which is the surface mode frequency of Eq. (53) in this
limit. For a thin slab (k,L<1) and specular reflection
he finds the energy extraction occurring at 92=1k.L,
which is the low-frequency solution of (53) when
k.LK1, again indicating that a surface mode is being
excited by the electrons. A puzzling feature of this
result is, if surface modes are indeed being excited, and
there is every indication they are, why does the high-
frequency surface mode not share in the excitation? In
fact it does, for if one evaluates the general expression
for the force on the electron given by Takimoto,3 the
energy delta-function has the form

o[ —} (e )],

which means that the excitation frequencies are just
those of Eq. (53). Thus the force expression given by
Takimoto for the case of a thin crystal is incomplete,
the correct conclusion being that the passage of the
electron does excite both surface modes. This is a most
interesting conclusion, particularly in view of the recent
studies of Boersch et al.37 suggesting that the surface
modes excited by electrons rather surprisingly radiate.8
It should be emphasized that the calculation of Taki-
moto does not include retardation effects, which will
have a marked effect on the conclusions for a thin
crystal.

Takimoto concludes further that, for the case of
diffuse surface electron scattering and an infinite
crystal, the surface plasmon peak is no longer sharp,
but is broadened about @=1/v2. This points up one
fact concerning the present work. The consequences of
including the anomalous skin effect in the calculations
of the present paper have not been explored. These
effects should be investigated.

3 This is given by the bottom equation in the left-hand column
of p. 370 of Ref. 34.

37 H. Boersch, P. Dobberstein, D. Fritzsche, and G. Sauerbrey,
Z. Physik 187, 97 (1965).

3 A reservation concerning the interpretation of the observed
radiation as being due to radiative decay of surface plasmons has
been expressed by L. S. Cram, E. T. Arakawa, and R. D. Birkhoff,
Bull. Am. Phys. Soc. 11, 364 (1966).



