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The anisotropic Ginzburg-Landau equation, originally proposed by Ginzburg and later derived from the
microscopic theory by several workers, is unable to explain the anisotropy of B,2 observed in single crystals
of type-II superconductors with cubic structure. The anisotropy is shown to arise from the first nonlocal
corrections to the Ginzburg-Landau-Abrikosov-Gor'kov theory. Both the angular variation and the tem-
perature dependence of the anisotropy as calculated here agree with that found recently in niobium. The
temperature dependence of B,&(/) is derived for a polycrystalline but otherwise pure sample, and it is shown
that Fermi-surface anisotropy increases the value of H,z(0)/[ —I1,&'(1)] over that predicted for a spherical
Fermi surface.

I. INTRODUCTION

'HE Ginzburg-Landau-Abri':osov-Gor'kov (GLAG)
theory' 4 of superconductors in a magnetic field

has been proved by numerous experiments in recent
years to give an excellent qualitative account of type-II
superconductivity, and a good quantitative account
in a limited regime of temperatures near the zero-field
critical temperature (1—f«1). An extension of the
GLAG theory to all temperatures has been accomplished

by Maki' and by de Gennes et a/. ,' in the very short
mean-free-path limit, again with considerable success.
Also, the restriction to short mean free path has been
removed for the calculation of the upper critical field
II,2 by Helfand and Werthamer, 7 who took exact
account of the intrinsic nonlocality.

One assumption common to all the work mentioned
above is that of a spherical normal metal Fermi sur-
face. This assumption implies that II,2 is isotropic, i.e.,
independent of orientation of the crystal with respect
to the field. A generalization of the GLAG theory to
incorporate anisotropy of the normal metal Fermi
surface, and hence of II,2, was already proposed
phenomenologically in 1952 by Ginzburg. The form
he postulated was confirmed by a detailed derivation
from the microscopic theory by Caroli, de Gennes, and
Matricon' and by Gor'kov and Melik-Barkhudarov, "
and then incorporated into the Maki-de Gennes''

~ V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).

'A. A. Abrikosov, Zh. Kksperim. i Teor. Fiz. 32, 1442 (1957)
[English transl. : Soviet Phys. —JETP 5, 1174 (1957)g.

'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
LKnglish transl. : Soviet Phys. —JETP 9 1364 (1959)j.

4L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 37, 1407 {1959)
[English transl. : Soviet Phys. —JETP 10, 998 (1960)$.

5 K. Maki, Physics 1, 21 (1964};Phys. Rev. 148, 362 (1966).' P. G. de Gennes, Physik Kondensierten Materie 3, 79 (1964);
C. Caroli, M. Cyrot, and P. G. de Gennes, Solid State Commun.
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analysis by Tilley. " Anisotropy of B,2 has been ob-
served"" in single crystals of several type-II super-
conductors, in particular pure niobium, and interpreted
in Ref. 12 as substantiating the anisotropic GLAG
theory. ' "

However, we note that since Nb is a cubic material,
the work of Refs. 9—11 in fact implies eo anisotropy of
II,2. In this paper, we interpret the observed orienta-
tion dependence of II,2 as arising from nonlocal cor-
rections' to the GLAG' ' ' " and dirty limit' ' "
asymptotic expansions of the Gor'kov equations. We
calculate the leading nonlocal correction and derive a
formula predicting the angular dependence of B,-„and
the variation of anisotropy with temperature and im-

purity concentration in the region of small nonlocality.
The predicted formulas agree well with recent experi-
ments. ""Moreover, we derive a general expression
for the anisotropy for arbitrary nonlocality, assuming
that the anisotropy itself is small. We use this expression
to derive a lower limit of II.2 for a polycrystalline sample.

II. CALCULATION OF ANISOTROPY: THE
NEARLY LOCAL LIMIT

The determination of H, 2 for a spherical Fermi
surface has previously been shown7 to reduce to the
solution of the linear, homogeneous integral equation

a(r) = VT g dsr'K„(r, r')A(r'),

where 6 is the pair wave function, ad= (2v+1)7rT with
v an integer, and V is the interaction constant of the
BCS model. The kernel K satisfies the integral equation

E.(r,r') = d'r"G„(r,r")0 „(r,r")

X{8s(r",r')+as
~
u~ 'E (r",r')), (2)

» D. R. Tilley, Proc. Phys. Soc. (London) 86, 289 (1965); 86,
678 (1965)."D. R. Tilley, G. J. van Gurp, and C. W. Berghout, Phys.
Letters 12, 305 {1964).

"W. A. Reed, K. Fawcett, P. P. M. Meincke, P. C. Hohenberg,
and N. R, Werthamer, in Proceedings of the Tenth International
Conference on Low Temperature Physics, Moscow, 1966 (to be
published).
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just involves the scalar (II') and mo anisotropy in H, &

is obtained in this order.
For cubic symmetry, the anisotropy of H, 2 thus

arises from the II4 term, which is the first nonlocal
correction~ "to the dirty limit and GLAG expressions.
We shall evaluate the quantity ((v II)') by assuming
that the nonlocality is small, i.e., we shall use
first-order perturbation theory. This means that we

may evaluate the expectation value implied by the
angular bracket by using the lowest eigenfunction of
the unperturbed term II'. This is just the Gaussian
harmonic-oscillator function used in Ref. 7, which gives

((v II)4)= (2eH/c)'-,'v, 4 (13)

where v& is the part of v perpendicular to H. Taking
H as having direction cosines n, P, y with respect to the
cubic crystal axes, we arrive at

small, its effect on determining H(a, P,y) will be small.
Thus if we define Hp to be the field satisfying the local
relation' —~

~C 00

ln—=Ii(HD)—=2v-T Q
T p 00

X
2[~1

1 2eHp v'
2l~l+- (20)

then H(n, P,y) Ho w—ill be small, and in the approxima-
tion to which we are working we find

-BF(Hv) ' ~ 2eHv v2

H(n, P,y)=Hv+ 27rT g
PHD =— c 21co

1

1 2eHp v'
X 21~1+- — . (21)

where we define

E~ djlv(g),

v2= dg[AT—(j)/Efv'( j)

A slightly more convenient way to write Eq. (21)
which focuses more directly on the orientation depend-
ence of H(a, P,y) is to subtract its average H over the
directions (n,P,y), which is the value of H.2 measured
in a polycrystalline sample. This leads to

H(n, P,y) HH(n, —P,p) H-
Hp

djfcV (ct)/Ev4 jv,4(ct)

2eH pv'—(9/4) 4 (~2P2+P2~2+~2o2 L)

dqfE(g)/Ev' j
X 1

-,'v'+-,'(v' —5v.') (n'P'+P'y'+y'n' —-')j. (17)

Our assumption of small nonlocality is expressed
more precisely by the condition

e—= (2eH/c) (8/2~) '&&1.

Substituting Eq. (14) into Eq. (5) and expanding in
terms of this small quantity, and also introducing a
convergence factor for the v sum in the usual way, we
obtain

Tc ~ 1 — 1 2eH 8'
ln—=2vT g ——

21m&1 y—

(2eH v2 '
q ,' 12eI—I——8'

2
1
~ I+- (»)

c 21~1 21cv
1

3 c 21~1

This is an implicit equation for H as a function of T
and of orientation. Again, since the nonlocality is

'~The expansion of S„ to this order for an isotropic material
has also been obtained by L. Tewordt, Phys. Rev. 137, Aj.745
(1965).

1 2eHpv2

2 L2 l~ I?' 2
I
~I+- (1/21~1)

3 G

X (22)
1 2eIIpv2

Z (21~1) ' 21~1+- (1/21~1)
3 G

where

Ar(j) -v4(j) —5v.4(j)
dj

v4

is a parameter characterizing the anisotropy of the
Fermi surface (which vanishes for a spherical surface).

Equation (22) may be rewritten in the form

H(n, P,y) —H —(9/4)Q (~2P2+P2~2+~2~2 x)
H

XG(h, t) (23)

in terms of the reduced temperature t= T/T, and the
impurity-concentration parameter X=—(27rT, r) '. The
function 0 depends only on X and t, as can be seen by
suitable transformation of variables on Eqs. (22) and
(20). The expression for G is rather complicated and
must be evaluated numerically in general. However,
several important predictions may be made before
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As we stated earlier, we have made the simplifying
assumption that the gap function depends only on the
difference coordinate r. As was shown in Ref. I0 in the
Ginzburg-Landau regime, the generalization to a non-
local h=h(r, q) leads to an intrinsic gap-anisotropy
function q'(j) which multiplies the density of states
E(g). Since Eq. (1) for 6 is linear, we anticipate that
the same will hold true in general; in any event the
function y' is a scalar function, so that we expect our
arguments based on spatial symmetry to remain valid,
with only minor modifications in the coefficients A
and GP.,i).

0
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FIG. i. The function G of Eq. (23) is plotted versus the reduced
temperature t for various values of the impurity-concentration
parameter X. Dashed lines are drawn representing constant values
of the expansion parameter e LEq. (18)j.

discussing the numerical expressions. The first is that
in the weakly nonlocal regime in which we are working,
the angular dependence of H should be describable by
the simple form a'P'+P'y'+7'cr' —s. The second is
that near the transition temperature (1—t«1), where
Hs(t) ~ (1—i), the relative anisotropy (H H)/H is also—
proportional to 1—t and hence vanishes at the transi-
tion. This is because the anisotropy in a cubic material
comes from the first nonlocal correction to H and hence
is higher order in (1—t). In a noncubic material, the
relapse anisotropy is expected" to be temperature-
independent. Finally, in the dirty limit (X»1), one
may show that

(H H)/II H, (i)/X—&.

Since Ho is itself proportional to X we find that
(H H)/H~X '. Th—is conclusion again rejects the
known fact'' that nonlocal corrections become un-
important in the dirty limit.

More generally, we expect Eq. (23) to be valid when-
ever nonlocal corrections are sufficiently small, namely,
whenever Eq. (18) is satisfied, e—=L2eHo(i) v'/c(2v 2'.)'j
X(&+X) '«1. This condition extends the domain of
validity beyond the strict Ginzburg-Landau (1—i«1)
and dirty (X»1) limits. We have therefore calculated
the function G(h, i) numerically and plotted the results
in Fig. 1, using for Hs(t) the exact result of Ref. 7 for
a spherical Fermi surface. Since this value of Ho differs
significantly from the Hs given by (20) only when e& 1
and is in fact less than the latter, we expect our com-
puted G(P.,t) to be a good representation in the region
of small ~. We have indicated lines of constant ~ on the
figure, showing the range of validity of our expression.
At low temperatures and for pure samples (e&1) we
expect higher powers to come into the expansion in (8),
which will lead to a different angular dependence, as
well as a different function of X and t.

Finally the integration over angles of p& may be
evaluated, with the result

S = dw' exp( —w') dqlV(q)
e

2eH vi, (j)w '
X 1+ . (26)

c 2G0

lt is worth noting that if the Fermi surface were
spherical, the remaining j integration could be carried
out to yield

xS — 2eB
5„=- I

ia I c 2/ref

where we define the function

(27)

eo

I(x)=—J(x) —=

S 0

dw' exp( —w')(xw) ' tan —'xw. (28)

III. THE LIMIT OF SMALL ANISOTROPY

The analysis thus far has been based on the assump-
tion of small departures from locality. However, we
are also able to make limited progress when the amount
of variation of H, 2 with orientation is only a small frac-
tion of its mean value, irrespective of the degree of
nonlocality. This means that we will again regard
(H(n, P,y) —H)/H as «1, and hence we can once more
compute to sufIicient accuracy the ground-state expecta-
tion value (expiR 11) appearing in Eq. (6) by using the
ground-state eigenfunctions of II', which are appro-
priate for the (unperturbed) isotropic case. Thus

(expiR II)—expL —x4(2cH/c)Rtsj. (24)

Substituting this back into Eq. (6), but not expanding
in powers of R as before, the R integration may be
performed, followed in this case by the e(j) integration.
This gives

d'p 8w sc t' px'c
S„= b(p„) exp~—

(2 )' 2ss k 2eH)

zg sgnco
X dyer(y) . (23)

in~--,'v(j) p
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This is just the result of Ref. 7. For a nonspherical
Fermi surface we must again invoke the assumption of
small angular variation of H (no relative variation
larger than 10%has yet been observed). We thus regard
as small the di6erence between S„and S, where S
is defined as S„averaged over all field orientations,
such as is appropriate for a polycrystalline sample:

vrN N(q) (2eH~ 'I' v(q)8„= dq I
E c & 2[~[-

(29)

N(q) (/2eH "' v(q) )
(30)

N 4k c 2/o) f)

N(q)
dtv' exp( —tv') dq

2eH v~(q)tv ')
X i1+

2M

)(2eH ')' v(q) q

1 iv(ij)(2eH)"' rM)
X P dq

~ 2/o) f

1 ( 2eH ')' v(q) )
2 E c

(31)

Equation (31) gives the orientation dependence of H
for a single-crystal sample, but the dependence is seen
to be a very complicated one in general and we have
not been able to extract any useful conclusions from
it. On the other hand, an interesting prediction con-
cerning the temperature dependence of H, appropriate
for a polycrystalline sample, can be drawn from Eq.
(30). Both the T &0 and T-+ T, limits —of Eq. (30)

We next substitute S as given by Eq. (26) into Eq. (5),
and expand to 6rst order in 5 —S„and II—H, as
before. The resulting expressions are too unwieldy to
be useful except in the clean limit, ~

—'= 0:

T. oo

ln—=2v.T P

can be taken using the methods of Eqs. (31)—(35) of
Ref. 7, so that

2eH(t) vs 12
(1—t), 1—t«1

c (2' T,) s 7f (3)

e' —
N(q) v'(q)=—exp — dj ln

4y E 8'

t=0 (3.2)
Thus

H(o) —
N(q) "(q)=0.7273 exp — dq ln, (33)—H'(1) N v'

We wish to thank E. Fawcett, P. Meincke, and W.
Reed for bringing this problem to our attention.
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'7This is a consequence of a theorem analogous to Peierls's
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where the numerical coefficient 0.7273 is just that al-
ready deduced ' for a spherical Fermi surface.

However, the remaining factor on the right-hand
side of Eq. (33) can be shown" always to be & 1 for an
arbitrary Fermi surface. Hence the 1=0 value of
H, 2 for a pure material, relative to its value near t=1,
will always be larger for a sample with a nonspherical
Fermi surface than would be expected on the basis of a
calculation' with a spherical Fermi surface. Although we
are unable to make a quantitative estimate of the en-
hancement factor in Eq. (33), the direction of the effect
is in qualitative agreement with that observed experi-
mentally" in pure niobium. Thus Fermi-surface
anisotropy seems to be a promising, although not con-
clusive, explanation for the observed deviation' of
H, (t)sfrom that predicted earlierr for a pure type-II
superconductor.
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