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Anisotropic Energy Gap in Suyerconducting White Tin:
Semiemyirical Approach

ALAN J. BENNETT*t

Cavendish Laboratory, Cambridge University, Cambridge, England

(Received 10 June 1966)

The anisotropic energy gap in superconducting tin is found in terms of an expansion in tetragonal har-
monics. The anisotropy coefBcients are determined from a selection of Zavaritskii s single-crystal tunneling
data by means of some results of a previous calculation of the anisotropic gap in lead. In particular, general-
ization of the latter work makes possible the separation of the contributions of different sheets of the Fermi
surface to the tunneling current. The calculated gap variation is compared with that found in tunneling,
acoustic attenuation, and infrared absorption experiments.

I. INTRODUCTION

'HE anisotropic character of the energy gap in
superconducting tin has been a frequent subject

of experimental investigation. The gap variation has
been determined by measuring acoustic attenuation, ' '
electromagnetic absorption, ' surface impedance, 4 and
tunneling characteristics. ' Efforts have been made' ' to
associate diferent observed gap values with various
parts of the Fermi surface. No systematic theoretical
treatment has, however, been attempted.

In a recent paperr (I), a calculation of the aniso-
tropic energy gap in lead was presented. The present
paper consists of a semiempirical determination of the
gap in tin based on some of the results and the experi-
ence gained in the previous full calculation. This ap-
proach is somewhat analogous to the recent develop-
ment of the "pseudopotential theory" in calculating the
properties of normal metals. A considerable eGort has
been expended on theoretical (first principles) calcu-
lations. ' Such studies provide a justidcation for the
equally useful semiempirical determination' of the
pseudopotential from experimental data.

In the following section, we emphasize the salient
features of the theory and summarize the relevant
properties of the Fermi surface of tin; we also describe
the requirements on an expansion of the gap in spherical
harmonics imposed by the lattice symmetry. Section III
consists of a determination of the expansion coefficients
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and a description of the gap variation over the diGerent
pieces of the Fermi surface together with a discussion of
the accuracy of the procedure. The calculated gap is
then compared with the results of various experiments
(Sec. IV).

6(8,y) =Q 6;K;(8,y) .
i=0

Here the E; are Kubic harmonics and the angular
variables refer to points on the Fermi surface displayed
in the extended zone scheme. Although 6(8,9) is also a
function of the quasiparticle energy, for the threshold
phenomena of importance in most anisotropy experi-
ments, the energy dependence can be ignored.
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Fzo. 1. The Brillouin zone of
white tin.
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II. THEORY

In I, it was shown that the principal contribution to
the gap anisotropy is due to the anisotropy of the
phonon spectrum of the metal. That anisotropy was
introduced, via a perturbation technique, into the
Nambu-Gorkovl" equations (a generalization of the
BCS" equation suitable for strong-coupling super-
conductors) in order to obtain the anisotropic energy
gap. This lead gap was found in terms of an expansion
in symmetrized spherical harmonics" (combinations of
harmonics invariant under the symmetry operations of
the lattice) of the form
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The effects of the electronic-band-structure anisot-
ropy are important only near the Bri] louin-zone bound-
aries where the mixing of various orthogonalized plane
waves (OPW's) by the crystal potential becomes
considerable. If an actual electronic state

l n& is given by

0.5

0.4

0.3
V

l~&=Z ~.p. lp/~&, (II.2) 0.2

where lp/e) indicates an OPW of wave vector p and
spin e, then the corresponding energy gap is given
approximately by the weighted average
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(II 3) Fro. 3. A i001l cross section through I' of the various pieces oi
the tin Fermi surface as calculated by Weisz (Ref. 14). The super-
conducting energy gap is given in units of kT, /2.

This mixing mechanism ensures that sections of the
Fermi surface in different angular sections of the ex-
tended zone scheme which coincide in the reduced zone
scheme have the same energy gap.

We now describe the tin lattice symmetry, Brillouin
zone, and Fermi surface characteristics which are
important in the gap determination. The white-tin
structure is a body-centered tetragonal lattice with two
atoms per unit cell. The Brijlouin zone is given in Fig.
1. The tetragonal harmonics T; in terms of which the
gap anisotropy is expanded are combinations of spheri-
cal harmonics invariant under the operations of the
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FIG. 2. A (110) cross section through I' of the various pieces of
the tin Fermi surface as calculated by Weisz (Ref. 14).The super-
conducting energy gap is given in units of kT, /2.

tetragonal group. The first four normalized harmonics
are given by

where

&o= &.oo,
Tt ——1.12(3Z'—1)
Ts——0.375 (35Z4—30Z'+3)
Ts——2.24(Z4 —2Z'+1) cos4 y,

Z= cose.

(II.4)

A recent pseudopotential calculation by Weisz" has
indicated significant differences between the actual
Fermi surface and the predictions of the free-electron
model. There are sections of the surface in the third,
fourth, fifth, and sixth zones. The third zone is a hole
surface of cylinders centered on the lines XP of Fig.
1; the fourth zon" a doughnut like hole surface
centered on the tetragonal axis; the fifth zon" a net-
work of alternating pear-like surfaces centered on II
with connecting pieces; the sixth zone —a small electron
pocket centered on O'. Cross sections of the Fermi
surface in the main symmetry planes through F are
given in Figs. 2-4.

III. DETERMINATION OF THE ANISOTROPIC
ENERGY GAP

We assume that

6(8&y) =Dp+DtTt(8, (p)+DsTs(8, rp)+DsTs(8, p), (III.1)

where the minimum number of terms that allow for y
variation have been included. We now determine the
coefficients of this phonon-induced anisotropy from
experiment, in particular, from the single-crystal
tunneling work of Zavaritskii. 5

As discussed in I, for any given crystallographic
orientation of the surface, the only electrons which con-
tribute significantly to the single-crystal tunneling
characteristics are those whose velocities are within
about 5' of the surface normal, i.e., those coming from

'4 G. Weisz, Phys. Rev. 149, 504 (1966).
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FIG. 4. A {100)cross section through I' of the various pieces of
the tin Fermi surface as calculated by Weisz (Ref. 14).The super-
conducting energy gap is given in units of kT, /2.

a place on the Fermi surface where the normal is within
about 5' of that direction. For any given tunneling
direction, more than one piece of the Fermi surface
may have electrons which satisfy that condition. Figure
5 is a reproduction of Zavaritskii's results expressed in
the frequently used units of kT,/2, where ts is the
Boltzmann constant and T, is the pure bulk tin tran-
sition temperature. This is a rather inconvenient con-
vention since the true transition temperature, also
symbolized by T„depends on the number of impurities,
etc.

In I, the constant term ho of the expansion of A(8, q),
which is also the average value, was set equal to the
value in a dirty sample. For tin, this would correspond
to 3.5 kT,/2. From Zavaritskii's data, we see, however,
that: (i) the average of the extremal gap values ob-
served is approximately 3.7; (ii) the values 3.7—3.8 are
the most prevalent ones. We therefore choose

Ap= 3.75.

In order to determine Ag, h2, and 63, we note that
Zavaritskii observed the absolute maximum gap of

4.35 in the [001]direction. He saw two gaps in the
[100] direction, the absolute minimum gap of 3.05
and a gap of about 3.75. It is clear from Eq. (II.2)
that the absolute maximum and minimum of the energy
gap will occur at points on the Fermi surface where
either (i) the crystal potential mixing is very small, or

(ii) the OPW's which contribute to a given electronic
state have wave vectors in directions which are equiv-
alent by lattice symmetry. We con6ne our attention
to sections of the Fermi surface whose normals are in
the [100] or [001] directions. The use of a Harrison
construction" reveals that (i) is fulfilled at the top h
(Fig. 4) of the fifth-zone pear piece where the normal
is in the [001]direction and at the point b (Fig. 4) on the
fourth-zone surface where the normal is in a [100]
direction. Condition (ii) is satisfied at the point a (Fig.
4) on the fourth-zone surface where the normal is also
in a [100] direction. These are the only places on the
Fermi surface where the mixing is either negligible or
is among equivalent points, and the electron velocities
are in the relevant symmetry directions. It is clear that
the maximum value of the gap is associated with the
top of the fifth-zone pear. If we can associate the gap
value of 3.G5 with one of the above-mentioned fourth-
zone points and the gap value of 3.75 with the other,
then the three anisotropy coefficients of Eq. (III.1) can
be readily found.

In order to make that identification, we note that
results of I have indicated that the commonly made
assumption that the gap is constant on a given piece of
the Fermi surface is questionable. For those pieces
of the surface that subtend small angular arcs in the
extended zone scheme, however, the assumption is quite
good. Zavaritskii Ands that the small cross-sectional
area of the 6=3.55 surface in the (001) plane agrees
remarkably well with the observed area of the third-zone
piece of the Fermi surface. We may now distinguish
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"C. Kittel, Quantum Theory of SoMs Uohn Wi1ey 8t Sons, Inc. ,
New York, 1963), p. 258.

Fxo. 5. A reproduction of Zavaritskii s single-crystal tunneling
data plotted on a conical equiangular projection of the sphere:
a, orientation of the samples used; b, regions corresponding to
principal gap values of ~4.3; c, regions corresponding to principal
gap values of 3.I; d, regions corresponding to principal gap
values of 3.4; e, regions corresponding to principal gap values
of 3.55; f, regions corresponding to principal gap values of
~3.7—3.8; the dashed lines indicate the boundaries of the regions
which showed no gap va1ne of 3.7—3.8 (from Ref. 3l.
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and

63=+0.16,
A2= —0.02,
hg= 10.30,

~),——3.50.

(III.3)

If, however, the 3.05 gap is associated with point b, then

4.35 =3.75+2.24hg+3. 00hg,
3.05=3.75—1.12',g+1.126,+2.24hg (III.4)
3.75 =3.75—1.12Ag+ 1.122 2

—2.18hg

and thus
h3= —0.16,
62 ———0.02,
Ag ——+0.29, (III.S)

z=3 30

We conclude that the proper anisotropy coeScients
are given by (III.3).

Equations (III.1) and (II.3) may now be used to
obtain values of the energy gap over the entire Fermi
surface. Since it is known from I that the effects of the
crystal potential are important only in very small
regions close to the Brillouin-zone boundaries, we con-
fine our use of Eq. (II.3) to the actual lines of inter-
section of the Fermi surface with those boundaries.
Furthermore, in regions where very many OPW's are
mixed together, in particular at W (Fig. 2), the gap is
very close to its average value. There is thus very little
if any need to deal with the large number of OPW's
involved in such a region. Figures 2, 3, and 4 contain, in
a graphical form, values of the energy gap at various
points on the Fermi surface.

We estimate the probable error involved in the use
of Eqs. (III.1) and (II.3) to be considerably less than
the 30% of the anisotropy probable error quoted. for
the full calculation of I. Our failure to use Eq. (II.3) for
for all points on the Fermi surface introduces further

between the two possible identifications of the minimum
gap value with one of the points a or 5 of the fourth-zone
surface. The choice which results in anisotropy coeK-
cients which yield a gap value A~, closest to 3.55 for
the trace of the third-zone surface in the (001) plane is
the correct one. Before proceeding, it is important to
emphasize again that we must distinguish between a
given doublet (8, &p) of Eq. (III.1), de6ned in the ex-
tended zone scheme, and any other angular coordinates
associated with a corresponding piece of the Fermi
surface constructed in the reduced zone scheme. If it is
now first assumed that the 3.05 gap is associated with
point a, then

4.35 =3.75+2.24Ag+3. 0062,
3 05 =3.75—1.126&+1.1262—2.182 3 (III.2)
3 75 =3.'lS —1.12hg+1.1262+2.242, 3

and thus

TAszK I. The relative minima of the tin energy gap causing
threshold structure in absorption characteristics for light propa-
gation in each of the three main symmetry directions.

Propagation
direction

L110)
LOO|j

t iooj

3.35
3.05
3.05

Gap minima (kT,/2)

3.50 3.75
3.50 3.58
3.75 3.82

3.98
3.75

error, in particular, in the determination of the bound-
aries of the regions where the mixing is very large. In
addition, Zavaritskii gives his experimental data, which
we use to fix the anisotropy coeKcients, in a histogram-
like form with an error of perhaps +10%of the anisot-
ropy. The total error, from all the above sources, in
our determination of the anisotropic energy gap is
about +0.2 (kT./2).

B. Infrared Absorption

We now compare our results with Richard's work on
electromagnetic absorption. We confine our attention
to the minimum energy of the radiation required to
split an electron pair. It was shown in I that if

(IV.1)

the relevant-energy minimum is 2A . Here 6 is the
minimum value of the gap on a piece of the Fermi sur-

IV. COMPARISON WITH EXPERIMENT

A. Tunneling

We first consider Zavaritskii s single-crystal tunneling
data. Figure 6 is a comparison of the predicted gaps
and those observed for tunneling in various directions
in the (001), (100), and (110) planes. In order to pre-
dict the observed gap values, the following quantities
must be known as functions of position on the Fermi
surface: (1) the energy gap, (2) the direction of the
electron velocity, (3) the value of the tunneling matrix
element. The electron-velocity direction was taken from
Weisz's calculation. Fermi-surface calculations may,
however, contain small errors that radically change the
the direction of the velocity vector. It was further
assumed that all electrons whose velocities are within
5' of the tunneling direction contribute with equal
weight, i.e., have equal tunneling matrix elements, and
all other electrons make no contribution. In Zavaritskii's
experiment, however, when, for a given surface direc-
tion, multiple gaps were observed with different in-
tensities, only those causing the deepest extrema in the
tunneling characteristics were tabulated. It is thus
understandable that theory predicts certain gap values
to be seen over larger angular regions than those indi-
cated by Zavaritskii. The over-all agreement is reason-
able, although one must remember that it is in part
guaranteed. by the methocl. used to determine the anisot-
ropy coeKcients.
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Pro. 6. A comparison of the energy-gap values (kT,/s) observed
by Zavaritskii (E) with those predicted by the present work (T)
for tunneling directions in the three main symmetry planes: a, (110)
plane; b, (001) plane; c, (IOO) plane.

face, where the electron velocity v is perpendicular to
the photon momentum q, and d~ is the eBective
magnitude of the anisotropic part of the energy gap, i.e.,

ik= As+A~(8) y). (IV.2)

We note that any of the various relative gap minima
cause a threshold structure in the absorption curves.
Condition (IV.1) is well met in tin, and thus, for a fixed
direction of g, we sea,rch along the curves v. q=o for
relative minima, of the gap. Table I gives the values of

the threshold energy predicted by our model for radi-
ation incident in each of the three symmetry directions.
Figure 7 is a reproduction of Richard's data showing
broad thresholds which are probably due to a super-
position of the various minima. We note that the gap
for the radiation incident in a $110]direction is signifi-
cantly higher than those observed for radiation in the
other two symmetry directions. Although the broad
thresholds make a more quantitative comparison diK-
cult, the data are in general accord with the results of
Table I. When more complete data become available,
the discussion of the absorption line shape in I wiD

allow a, detailed comparison of the present calculation
with experiment.

C. Acoustic Attenuation

The ratio of the attenuation in the superconducting
state to that in the normal state, n, /n„, obtained in
ultrasonic attentution experiments is usually 6tted to
a BCS curve of the form

(IV.3)

3 4 5
Tc

Flo. 7. Richard's acoustic-attenuation data showing the fre-
quency dependence of the fractional difference between the power
reaching the bolometer in the superconducting and normal states.
The curves have been normalized for display purposes and the
horizontal bar indicates the approximate band width of the lowest
frequency point (from Ref. 3).

n,/n ~exp( —6 /kT). (IV.4)

Here 6 is the quantity de6ned above in connection
with the infrared absorption experiments. The actual
behavior of n./n„ is certainly more complicated than the

's V. L. Pokrovskii, Zh. Eksperim. i Teor. Fiz. 40, 898 (1961)
LEnglish transl. : Soviet Phys. —JETP 18, 628 (1961)j.

This has the same low-temperature behavior as Pokrov-
skii's expression'6
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TA&LE II. The tin energy gap from acoustic-attenuation data. a

Propagation direction
8

Energy gap (kT,/2)
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90'
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3.1+0.1
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4.0+0.2
4.3&0.2
4.0&0.2
3.8&0.1

& Reference 6, p. 170.

above expression and should, in fact, be proportional
to a weighted average of contributions corresponding to
various 4 's from diGerent pieces of the Fermi surface.
It is reasonable to assume, however, that the lowest
gap value listed in Table I, for a given propagation
direction, is the dominant one due to the exponential
character of (IV.4). Table II gives some results of
acoustic attenuation experiments in which the experi-
mental curves have been htted into a single exponential

term. It is interesting to note that experiment indicates
that the gap observed for propagation in the basal
plane takes a maximum value of 4.3 for the y=1.8
direction. ' The trace of the third-zone surface in the
(100) plane through I' is largely determined by the
lattice symmetry and the nearly-free-electron character
of the surface. The normals to that piece are such that
it only contributes for sound. -propagation directions
between y=18' and y=45'. It is almost certain that
the discontinuity at +=18' accounts for the observed
extremum. It is quite likely that the addition of terms
in (III.1) with a qr variation more rapid than cos4y
wou1d improve the numerical agreement, in particular,
for propagation directions off the symmetry axes.
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This paper gives details of research carried out on the low-temperature properties of Mo—Re alloys in the
superconducting state. Measurements were made on a 52—48% alloy of Mo-Re both unannealed and an-
nealed, the alloy being in the form of fine wires. Micrograph studies were made to determine the percentage
of the various phases present in each specimen. The low-temperature measurements covered observations
of the magnetization as a function of applied magnetic field at various temperatures using two different
techniques. The measurements yielded the critical magnetic fields H, & and H, 2 as a function of temperature
and of the state of anneal, as well as of the transition temperature T,.Estimates were made of B,(T) and the
Ginzburg-Landau-Abrikosov-Gor'kov and Maki parameters K K](T)) and K3(T). Comparisons of the results
are made with results obtained previously by us from resistivity measurements on the same alloy and by
other authors on similar superconducting alloys; the comparisons show consistency in the data. Our evalua-
tions of K1(T)/KI(T, ) and of K3(T)/K3(T, ) are consistent with the theory of Maki.

I. INTRODUCTION

HE work reported in this paper is an extension of
an investigation of the general properties of

Mo—Re alloys, which has been partly reported by two
of us earlier. ' This alloy, which has the general properties
of a "high-field" superconductor, was chosen because its
superconductivity can be quenched in readily available

*Present address: Physical Research Department, National
Cash Register Company, Dayton, Ohio.

)Present address: Physics Department, Stevens Institute of
Technology, Hoboken, New Jersey.' E. Lerner and J. G. Daunt, Phys. Rev. 142, 251 (1966).

fields of less than about 40 ko, and because it was
desired to study the properties of the normal state also.
One of the primary motivations of the work was to make
a wide variety of different measurements (resistivity,
thermal conductivity, magnetic moment, etc.) on
actually the same sample of each alloy in various states
of anneal. Such a study was anticipated to yield a
pattern of behavior showing some inner consistency.

This paper covers the measurements of the magnetic
properties of Mo—Re alloys in the form of ine wires,
both annealed and unannealed. The wire was from the
same spool as that used previously in the electrical and


