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Dyson equations are derived for the interacting electrons and phonons of a perfect crystal. A separation
of the electron and phonon fields which is exact within either the Hartree or the Migdal approximation is
effected. All umklapp processes and local-field corrections are included, but the hybridization of electronic
bands and of phonon modes is given only implicitly. Our equations reduce to previously obtained forms in
the jellium approximation and to lowest order in r, . The Nambu-Gor kov formalism is used to derive equa-
tions for the superconducting energy gap. Since the Migdal approximation is not applicable to the treatment
of the Coulomb interaction, we develop other approximations which yield either three-dimensional integral
equations for an anistropic energy gap 4 (k,ko) or one-dimensional integral equations for an isotropic energy
gap A(ko). An easy method for the calculation of the anisotropy of the energy gap 4(k,ko) in the simple
metals is presented. The validity of these approximations is discussed and our equations are compared with
those of previous authors. The strongly nonlinear homogeneous integral equation for A(ko) is transformed
into a quasilinear, inhomogeneous integral equation. This transformation immediately displays several
interesting properties of the solution 6 (ko) and yields a method for the rapid numerical calculation of 6 (ko).

I. INTRODUCTION

A LTHOUGH the Bardeen-Cooper-Schrieffer theory
of superconductivity' (hereafter referred to as

the BCS theory) has been found to be amazingly suc-
cessful in explaining and predicting the properties of
the superconducting state, in investigating supercon-
ductivity, most authors have used apparently over-
simplified models in which all band-structure effects
are neglected. In particular, most theoretical work in
superconductivity has been so strongly focused upon
the proper treatment of the attractive electron-electron
interaction V,h arising from the exchange of virtual
phonons, that the screened Coulomb interaction V,
has been treated only within greatly oversimplified
models. ' ' Our primary purpose in this series of papers is

(1) to treat some of those superconducting properties of
materials which are dependent in any important way
upon the band structure of the materials and which
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thus are not susceptible to calculations based on pre-
vious, simpler models, ' ' and (2) to explain why the
previous, apparently oversimplified models have been
adequate for most purposes. In this paper, we confine
ourselves primarily to the task of finding an easily
solvable integral equation for the superconducting
energy gap of any material, while including umklapp
effects and local-Geld corrections and retaining the fre-
quency and wave-number dependence of both Vpi, and
V,. Also, a new method is presented for the solution of
one-dimensional nonlinear integral equations such as
usually occur in the theory of superconductivity.

In Sec. II we present a Hamiltonian for the inter-
acting electrons and phonons of a perfect crystal
and the resulting Dyson equations. Only two approxi-
mations are embodied in our Hamiltonian: (1) the
harmonic approximation for lattice vibrations which
allows us to neglect phonon-phonon interactions, and
(2) the approximation of the bare" ionic pseudopoten-

'Examples of such properties are (1) the isotope effect, (2)
the pressure dependence of the transition temperature T„(3)the
properties of superconducting degenerate semiconductors and
semimetals (Ref. g), (4) the properties of such metals as lanthanum
and uranium which have very narrow bands near the Fermi
surface (Ref. 9), (5) the anomalous superconducting properties of
many alloys, (6) the effects of anisotropy, and (7) the anomalous
superconducting properties possibly to be expected in clean
transition metals. Even the dependence of T, upon band structure
could be listed as such a property.

' M. L. Cohen, Rev. Mod. Phys. 36, 240 (1964); Phys. Rev.
134, A511 (1964);J. F. Schooley, W. R. HosIer, and M. L. Cohen,
Phys. Rev. Letters 12, 474 (1964); R. A. Hein, J. W. Gibson, R.
Mazelsky, R. C. Miller, and J. K. Hulm, ibid. 12, 320 (1964);
L. Finegold, ibid. 13, 233 (1964).

9 The superconductivity of lanthanum and uranium has been
discussed from one point of view by Kuper, Jensen, and Hamil-
ton. See, e.g., D. C. Hamilton and M. A. Jensen, Phys. Rev.
Letters 11, 205 (1963); C. G. Kuper, M. A. Jensen, and D. C.
Hamilton, Phys. Rev. 134, 15 (1964).

"By "bare" we mean unscreened by the conduction electrons
or, more precisely, screened only by those electronic states over
which we do not sum in evaluating the Hamiltonian (1).
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tial e'(k, q+g) by a local operator rt'(tl+g). ""In
particular, umklapp processes and local-field correc-
tions are treated exactly in all calculations. The
resultant Dyson equations follow exactly from our
Hamiltonian and constitute simply a proper tensor
generalization of the usual scalar equations obtained
previously within the jellium" approximation. The
electron- and phonon-fields are separated exactly within
the Migdal approximation.

In Sec. III, we develop a new approximation tech-
nique for the derivation of an integral equation for the
superconducting energy gap A(k). '4 Even within the
jellium model, some approximation technique is neces-
sary in order to reduce the dimensionality of the four-
dimensional Dyson equations, which represent coupled
equations for the unrenormalized energy gap P(k) and
the renormalization functions Z(k) and g(k). Previous
authors' ' have employed the Migdal approximation"
to simplify the equations for the contribution to super-
conductivity of the phonon-induced interaction V~h
and have treated the Coulomb contribution only within
a very rough approximation. However, this technique
is inadequate here, as is shown in Sec. III, because it
essentially corresponds to the n-gleet of all band-
structure effects; i.e., to the neglect of that which we
wish to calculate.

In Sec. IV we consider those cases in which our in-
tegral equations for ck(k) can be reduced to one-
dimensional form, and compare our results in these
cases with those of previous authors ' ' ""We find
that in the neglect of Coulomb-induced lifetime effects,
our equations for A(&ks, ks) are identical in form to the
quasiparticle equation for A(&kp) except for a factor of
Z '(&ks, ks). We consider both the case of supercon-
ductors which are "dirty"" in the Anderson" sense

"By a "local operator" we mean an operator Q whose matrix
elements (k'~f) ~k) depend only upon 9=k' —k."For a discussion of the ionic pseudopotential see the following
references: M. H. Cohen and V. Heine, Advances in Physics
(Taylor & Francis, Ltd. , London, 1958), Vol. 7, p. 395; Phys.
Rev. 122, 1821 (1961); W. A. Harrison, ibid. 118, 1190 (1960);
in The Fermi Surface, edited by W. A. Harrison and M. B. Webb
(John Wiley 8z Sons, Inc. , New York, 1960); V. Heine and I.
Abarenkov, Phil. Mag. 9, 451 (1964);I. Abarenkov and V. Heine,
s7rfd 11, 379 (19.65); and A. Animalu and V. Heine (to be
published). Further references are given in a review article by
V. Heine, in Proceedings of the Ninth International Conference on
Iom' TemPerature Physics, edited by J. G. Daunt, D. V. Edwards,
F. J. Milford, and M. Yaqub (Plenum Press, Inc. , New York,
1965).

"By"jellium" we refer to the model in which the ion lattice of
a crystal is replaced by a uniform, positively charged jelly as
described by Ziman. J. Ziman, E/ectrons and Phonons (Oxford
University Press, New York, 1960), p. 163.

I4 We write k and q for four-momenta, k and q for the corres pond-
ing wave vectors, and k and ) for the unit vectors k/~k, and
«/I91."A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
/English transl. : Soviet Phys. —JETP 7, 996 (1958)]."J.W. Garland, Phys. Rev. Letters 11, 114 (1963).

'r J. W. Garland (unpubhshed).' We define "clean" or "dirty" in this paper in accordance with
the Anderson theory of dirty superconductors (Ref. 19); see Sec.
IVA."P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

and that of superconductors which are "clean" but
nearly isotropic, and present an easy method for cal-
culating the anisotropy of the energy gap in the simple
metals.

In Sec. V a method is presented for reducing to quasi-
linear form any one-dimensional, nonlinear integral
equation for a single scalar function, provided that
the nonlinearity is important only in the neighborhood
of some fixed point. The application of this method to
numerical calculations is outlined; it is also used to
analyze the qualitative form of the solution A(ks) and
its dependence upon the kernel Q of the integral
equation.

II. HAMILTONIAN AND RESULTANT
DYSON EQUATIONS

We employ Green's-function techniques here both
in order to simplify the comparison of our approxima-
tions with those of previous authors' ' and to simplify
any desired extension of our results to include exchange
or other higher order terms. In this section we present
and discuss briefly both a Hamiltonian for a crystal
with interacting electrons and phonons and the result-
ing set of Dyson equations. The results presented in
this section are not essentially new; they are merely
generalizations of results derived formerly only within
the jellium" approximation. However, we believe our
derivation of the hydridization of different phonon
branches and polarizations and the general matrix
or tensor form of all our results to be new. We express
the total electron-electron interaction tensor as the
sum of a screened Coulomb interaction V, and a
phonon-induced interaction V~h and explicitly derive
the screening of both. All approximations except those
which appear in our Hamiltonian occur in the deter-
mination of a dielectric tensor x(q) and a vertex function
I"(k,g); given sc and I', our Dyson equations follow
exactly from our Hamiltonian. As an illustrative ex-
ercise, we derive the random-phase-approximation
(RPA) microscopic, longitudinal dielectric tensor
from our electronic Dyson equations. If our results are
to be applicable to all superconductors not containing
magnetic impurities (simple metals, transition metals,
semiconductors, and semimetals), we must not choose
a simplified model such as the jellium model. In par-
ticular, all un&lapp effects must be included correctly.
However, while allowing for the existence of core-
polarization effects, we do neglect phonon-phonon
interactions and approximate the bare ionic pseudo-
potential"" seen by the conduction electrons by a
local operator. '0 Furthermore, for simplicity we neglect
all spin-orbit, spin-spin, and magnetic interactions.
Although spin-orbit and spin-spin interactions are im-
portant in determining such electromagnetic properties

"This approximation of the bare ionic pseudopotential by a
local operator is our most important approximation, and is
essential to our analysis.
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as the Knight shift2' and nuclear-spin relaxation rate'
in superconductors, these interactions are unimportant
in the determination of such basic thermodynamic
quantities as the superconducting transition tempera-
ture T, and consequently are omitted. " Also, even
though the magnetic interaction between conduction
electrons due to their orbital motion leads to the
Meissner effect and is thus very important, in the
absence of external fields, the small magnetic forces
between electrons are almost completely quenched by
crystal fields and therefore lead to weak. effects. Finally,
upon setting A= 1, assuming crystalline inversion sym-
metry and neglecting multiphonon processes, we And
the Hamiltonian

H=H, +H,g+H, ,+H, pg

=Q cd e(k) cg+P a,t e'(q) a

+-,' g P P g cg~,'cg,'V.(q.+g; k,k'): cg cj,
q kk~ g

+Q Q Q Leg+," Mr(q+g k) c~j
k g

&&l: (q+g) e,j. (1)

Here the wave vectors k, k', and q are restricted to the
first Brillouin zone, and the g's are any reciprocal
lattice vectors (including the zero vector). All sums over
k and k' (but not sums over q) implicitly include sums
over the suppressed spin indices o and o'. The cqt(c~)
and a~t(a~) are row (column) vectors whose components
are creation (destruction) operators for electrons in
Bloch states l/; k, o) and for phonons of wave vector q
and branch-plus-polarization index m. The matrices
e(k) and cs'(q) are diagonal; thus, the terms H, and
Bph contain simply sums over the band indices l and
over the phonon indices ts, respectively.

We can assume all sums over electronic states to be
taken only over valence or conduction states and not
sum over core states; were we to sum over all core
states as well, the bare pseudopotential 0.' would reduce
in form to a simple Coulomb interaction. The diagonal
elements e~(k) of e(k) are the eigenvalues for the Bloch
states l/; k,o) of a crystal Hamiltonian containing only
the electronic kinetic energy and the unscreened
pseudopotentials of the bare ion core. The frequencies
co o(q) which form the diagonal elements of ~'(q) are
"bare"" phonon frequencies, not the observed fre-
quencies of the interacting system of phonons and
electrons. The tensor V.(q+g; k,k'), which gives the

"W. D. Knight, in Solid State Physics, edited by F. Seitz and
D. Turnbull {Academic Press Inc. , New York, 1966), Vol. 2.
See Ref. 6 for a discussion of the Knight shift in the superconduct-
ing state and for further references.

22 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 {1959).
For further references and a brief discussion see Ref. 6.

"Spin-orbit interactions are unimportant here because, with
the time-reversal pairing characteristic of superconductivity,
there is no exchange interaction between paired states. They are
important in studying magnetism, where they reduce the exchange
interaction.

unscreened Coulomb interaction between electrons in
Bloch states, can be written as a direct product

V.(q+g; k,k') =o(q+g) M(q+g; k)
QxM( —q—g; k') . (2)

Here, the element v(q+g) of the column vector v(q) is
the matrix element of the "bare" Coulomb interaction
between plane-wave states

l
k,o.) and

l k+q+g, o).
Without loss of generality we can choose wave func-
tions l/; k,o) so that the matrices M(q+g;k), which
have elements

~«'(q+g' k)—= (k+q i' ol exp(i(q+g)'r) lk ~ o) (3)

will satisfy the equations

M(q+g; k) = M*(q+g; k) = Mr( —q —g; k+q), (4)

where 3E* is the complex conjugate of M, M is the
transpose of M* and vectors of the form k+q or k&&k2
are defined to lie in the first Brillouin zone.

The row and column vectors n'(q+g) and Q~ have
elements which correspond to different values of the
phonon index e. The elements n„'(q+g) are given by
the equation

u '(q+g)=(q+g) e„(q)V„'(q+g) P exp(ig R ),
where e„(q) is a phonon-polarization vector, V„'(q+g)
is a bare ionic pseudopotential, and where the R give
the positions of different atoms within a unit cell;
the P„, are ion displacement operators given by the
formula

0-..= (2~-,~~.'(q) j '"E&..~'j (~)

Here, 3f„,~ is equal to the isotropic average M of the
ionic masses for any element, but is some weighted aver-

age mass depending on both e and q for alloys and
co111pounds.

We have made only one major -approximation: the
assumption that the unscreened pseudopotential is a
local operator. We must show that this approximation
is well justified. First, for a given momentum transfer,
changes of the order of the Debye energy k&O+& in
electronic energies produce only slight changes in the
corresponding electronic momenta, hence only slight
changes in the unscreened pseudopotential for scatter-
ing near the Fermi surface, provided that the Debye en-

ergy is much less than the Fermi energy E&. Second, the
electron-phonon interaction is important only for elec-
trons not much farther than ksOn from the Fermi level.
Thus, for a material having a spherical Fermi surface
or for a material sufficiently "dirty"" that we must
average over all anisotropies, this approximation is well

justified. Furthermore, the nonlocality of a pseudo-
potential should introduce only a relatively small
error in treating the effects of small anisotropies in the
Fermi surface of a metal.

From the Hamiltonian (1) we are now able to gen-
erate, without further approximations, a set of Dyson
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Both the Green's function and the electronic self-energy

&(k)=iZ Z Z s(q+g)
ti a a

dip
M(tl+g; k)~sG(k+q)

2K

X~sI'(k, q;g')Ks s(q) exp(iqo0+) (7)

can be expressed as a sum of direct products of the
matrices

and 4'4=

in Nambu spin space with matrices whose row and
column indices l and l' denote different electronic bands.
The infinitesimal time 0+ is 0+ for the 1, 1 and 1, 2
elements of any matrix in r space and is 0 for the 2, 1
and 2, 2 elements. The noninteracting single-particle
Green's function

equations. In 1961, Baym '4derived equations for the
phonon and electron thermodynamic Green's functions
and the electron-electron interaction propagator for a
monatomic nonsuperconducting metal described by
an infinite Bravais lattice. However, Baym wrote these
equations in a space-time representation and did not
use the property of invariance under translation through
a lattice vector to simplify his equation for the electron-
electron interaction propagator (except to derive the
Lindhard dielectric function for a simple jellium model).
For the convenience of the reader, we therefore use the
simple variational-derivative technique developed by
Schwinger" (and used by Bayms4) to derive sero-
temPeraiure Dyson equations directly from the Hamil-
tonian (1).In Appendix A we generalize an unpublished
calculation by A. Suna of the zero-temperature Dyson
equations for a nonsuperconductor. We allow umklapp
processes and introduce the Nambu-Gor'kov26'~ for-
malism in order to derive Dyson equations applicable
to the superconducting state as well as to the normal
state.

With no further approximations we find a Dyson
equation of the usual form for the generalized (in the
Nambu-Gor'kov sense) single-particle electronic Green's
function"

(6)

The equation for the total electron-electron inter-
action propagator also assumes the usual form

K(q) = [I—P.(q)- P.s(q)] '

upon defining the polarizabilities

" d&p
Tr(M(q+g; k)[P.(q)7* = —'(a+g) Z

k ~ 2Ã

XG"(k+q) F"(k q'g') G"(k) }exp(iko0+)

—=LI—~(q)]ss,
and

Poh(q)=1 —Ao '(q),

where the tensor Ao(q) has matrix elements

(10)

[Ao(q) ]ss
~.'(a+g)~.'(a+g')

=~..+Z . (»)
s(tl+, g') [qo' (~.—'(q))'+io+]

Here the symbol "Tr" denotes "the trace of" and the
superscripts 1, 1 denote matrix elements in r space. The
vertex function F is defined in the appendix; it reduces
to the simple form

r, (k,q; g) =~,M'(q+g; k) (13)

K,(q) = so '(q)

in the Hartree approximation. Note that the term P,
does not represent a completely electronic contribution
to the total polarizability, since Eq. (10) for P, contains
the vertex function F which in turn contains both
Coulomb and phonon-induced corrections. However,
ionic response is taken into account in P, only insofar
as it contributes to the response of the average electronic
density (po) to the effective field U present in a crystal.
Since the phonon contribution to F vanishes exactly
in the Hartree approximation and is of order On/E~
or smaller to all orders of perturbation theory, the
polarization P, may be regarded as purely electronic in
origin for the case of metals or, within the Hartree
approximation, even for the case of semiconductors and
semimetals.

In order to discuss the physical nature of the inter-
action propagator K(q) and to compare our Dyson
equations (6)—(12) with those of other authors, '—' we
write K(q) as the sum

K(q) = K,(q)+ Kg, (q)

of an electronic contribution

Go(k) = ([ko(1+i0+)71~4—s(k) ~s)-'

is diagonal in both 7- space and l space.

(g)
and a phonon induced contribution

Koh(q)=x (q)[Ao(q) —1][l—P (q)Ao(q)7 . (16)
'4 G. Baym, Ann. Phys. (N. Y.) 14, 1 (1961).
25 J. Schwinger, Proc. Natl. Acad. Sci. (U. S.) 37, 452 (1951)."Y. Nambu, Phys. Rev. 117, 648 (1960) ."L. P. Gor'kov, Zh. Kksperim. i Teor. Fiz. 34, 735 (1958)

fEnglish transl. : Soviet Phys. —JETP 7, 505 (19581j. [P (q)Ao(q)]ss'=fs(q)f's'(q) (17)

Since the tensor P,(q)Ao(q) is separable in the sense
that its matrix elements can be expressed in the form
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Fq. (16) for Kph can be rewritten in the form

K,h(q) =x '(q)LAo(q)-I]

P.(q)LAo(q)-1]
X 1+

1—»[P.(q)Ao(q)]

=Z @"(q)W",oLqp' —""'(q)]l ',

where the interaction matrix 5„(q) has elements

(18)

a set of Dyson equations for the interacting electrons
and phonons of a crystal which is exact within the
harmonic approximation for our crystal lattice and
within the approximation of a local pseudopotential.
However, our Dyson equations contain two unknowns
other than the electronic Green's functions G(k): (1)
the dielectric tensor x(q) and (2) the vertex function
I'(k, q; g). In order to determine G(k) one must adopt
some approximation scheme for the evaluation of x
and F. Considering first the vertex function F, one finds

LL(q)] = .(q+g) .(q+g')/ (q+g') (»)
Here the n„(q+g) are screened pseudopotentials of the
form

Z L~ '(q)]- ~.'(q+g'),

where the phonon indices v refer to the hybridized
modes of the properly renormalized phonons; the
&o„(q) are renormalized, experimentally observable
phonon frequencies.

Note that neither the poles of the diagonal elements
of the phonon Green's function D(q) found in the ap-
pendix nor the zeroes of the diagonal elements of D '(q)
give the proper renormalized phonon frequencies
or.(q). Just as the electron-electron interaction in-
troduces nonzero off-diagonal matrix elements into the
electronic self-energy g(k) and thus causes hybridiza-
tion between electronic bands, the electron-phonon
interaction introduces nonzero oG-diagonal elements
into the phonon self-energy matrix ~(q), and thus
causes hydridization between different phonon modes.
This hydridization has two principal effects: (1) it
splits the phonon frequencies apart, in simple crystals
increasing the longitudinal frequencies and decreasing
the transverse frequencies, and (2), in general, it de-
creases the value of the pseudopotential n„(q+g) for
longitudinal phonons and increases its value for trans-
verse phonons in such a way that the sum

Z L~.'(q+g)]'=2 L~-'(q+g)]'

»Lp. (q,".(q))Ap(q, ".(q))]=1, (20)

which determines the poles of K,z(q) in Eq. (18),
but may also be found by calculating the eigenvalues
of D(q) from the Appendix. ""The pseudopotentials
n„(q+g) can be obtained either from Eq (18) or f.rom
Eqs. (A43)—(A48) for D(q), but only with difhculty.

So far we have made no a.pproximations other than
those embodied in our Hamiltonian (1); we have found

"Note that the frequencies co„(q) are essentially the same in the
superconducting state as in the normal state, as was erst pointed
out t-within the context of the Frohlich model (Ref. 29)] by
Eliashberg (Ref. 2)."H. Frohlich, Proc. Phys. Soc. (London) A63, 778 (1950).

is invariant. The renormalized phonon frequencies
&o„(q) are most easily found from the equation

r(k, q; g) = —~,(3/3U(q+ g; q,))G-r(l+ q,k; k,)
=Mr(q+g h)

+'s(8/8U(q+g; qp))X(k+q, k; kp), (21)

where U(q+g'qp) and G(k k;kp) are the Fourier
transform of U(q+g, f) and G(k', k; f,0) with sources
present, and where the self-energy X is an integral
over dkp' of products of the form GE I'. It is then obvious
that the term ZF(8G/3U) provides the only contribu-
tion of order less than e4 to

3Z/3U KI'(8G/8U)+GI'(3E/3U)+GK(8I'/3U). (22)

" dkp
exp(ikp0+)xss. (q) I+ip(q+g) P

2x'

yTrL™(q+g;h)G (kyq)

XM'(q+g'k)G"(k)]. (23)

Approximating G"(k) and G"(k+q) by the non-
interacting Green's functions Gp"(k) and Gp"(k+q)
in Eq. (23) and performing a contour integration
around the upper half-plane, we find the RPA or self-
consistent-field (SCF) result

xp(q, qp) =xp*(q, —qp) = I+X(q,qp) .

The susceptibility tensor P is equal to the SCF sus-
ceptibility T given by Wiser" for energies qp(0 and

80 N. iser, Phys. Rev. 129) 62 (1963).

Thus, it is not difficult to find an approximate expres-
sion for F which is simple in form, is valid up to order
e4, and includes exchange effects. However, one can
determine the Green's function G(k) easily only by
neglecting all vertex corrections or by including them
phenomenologically. Moreover, the expansion of F as
a power series in e' or r, can be formally justified only
in a high-density electron gas, and not in most real
metals.

Were one actually to expand F as a power series in
e' (or r,) as discussed above, one could then also expa, nd
the dielectric tensor x(q) as a power series. However,
here we use simply the Hartree approximation Fp to
F and derive as a simple example .the random-phase-
approximation (RPA) formula, for xp=x. The substitu-
tion of Eq. (13) into Eq. (10) yields the expression



is equal to T~ for positive energies; its components are

&s'(c)= —n(q+C) Z Z Z ~II (q+g;k)

~~«(q+&' k)[f( (k+q)) —f( (k))j/

[cI (k+q) —s((k) —qs(1+i0+)], (25)

where f(s) is the Fermi function. Thus, our approxima-
tion (24) to the dielectric tensor is equivalent to the
SCF microscopic longitudinal dielectric function derived
earlier by Adler" and by Wiser. 30 For a free-electron
gas, our tensor expression (24) for the dielectric func-
tion reduces to the simple scalar form

~o(q) =1—s(q) 2 [f(s(k+q)) —f(s(k))j/

[s(k+q) —s(k) —qs(1+i0+)j, (26)

which is simply related to the RPA and SCF result
dcI'lvcd by I indhard Hubbard, Nozicrcs and
Pines" and Khrenreich and Cohen. "The reader should
consult the literature" "for a discussion of the validity
of the RPA dielectric function and to find calculations
of higher order corrections to the dielectric function;
we have calculated xo merely to illustrate the solution
of the Dyson equations (6)-(10) in a simple approxima-
tion and to make our discussion of the electron-electron
interaction propagator K(q) more specific.

DL THREE-DIMENSIONAL INTEGRAL EQUA-
TIONS FOR THE ANISOTROPIC SUPER-

CONDUCTING ENERGY GAP A(k)

In this section we first show that the Dyson equations
(6) and (7) of Sec. II represent a set of coupled integral
equations from which, in principle, one can determine
tllc supcrconductlng cllcigy gap A(k). " Tllc11, tile

"S.L. Adler, Phys. Rev. 126, 413 (1962)
8~ J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. I4'ys.

Medd. 28, 8 (1954).
~ J. Hubbard, Proc. Phys. Soc. (London) A68, 976 (1955)."P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958)."H. Ehrenreich and M. Cohen, Phys. Rev. I15, 786 (1959)."J.Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957);

A243, 336 (1957);D. F. Dubois, Ann. Phys. (N.Y.) 7, 174 (1959);
8, 24 (1959); A; J. Glick and R. A. Ferrell, ibid. 11, 359 (1960);
A. J. Glick ibid. 17, 61 (1962); Phys. Rev. 129, 1399 (1963);
S. Misawa, Progr. Theoret. Phys. (Kyoto) 30, 780 (1963); D.
Pines, The Many Body Problem (W. A. Benjamin, Inc. , New York,
1961);in Lectures on the Many-Body Problem, Saples, 1960, edited
by E. Caianiello (Academic Press Inc. , New York, 1962), The
dielectric function I((q) is also discussed briefly in Ref. 6 and in the
following books: D. Pines, Elementary Exci tati ons in Sobds
(W. A. Benjamin, Inc, , New York, 1964); P. Nozieres, Interacting
Fermi Systems (W. A. Benjamin, Inc., New York, 1964); T. D.
Schultz, Qgantum Field Theory and the Many-Body Problem
(Gordon and Breach, Science Publishers, Inc. , New York, 1964);
and C. Kittel, QNantlrN Theory of Solids (John Wiley R Sons,
Inc. , New York, 1963).

37 As discussed below, the mathematics involved becomes in-
tractable in the most general case of a clean, anisotropic super-
conductor. However, we are able to treat a very general case which
includes all known cases of experimental interest except for the
case of superconductivity in clean transition metals, which will
be discussed by the author in the third paper of this series.

soliitlo11 of Eqs. (6) and (7) is discussed, under thc
assumption that the matrix elements 3III (q+g; k), the
vertex function I, and the interaction propagator K(g)
all are known within some approximation. The energy

gap A(k) is defined and Eqs. (6) and (7), which represent
a set of four coupled, four-dimensional integral equa-
tions for the components of X and 6, are shown to
yield two uncoupled, approximate, three-dimensional
integral equations which determine A(k). All errors
introduced by approximations in the derivation of
these equations for 4 are discussed; where possible,
they are also estimated numerically as percentage errors
ll1 the determination of A.

Upon following NambuM and Gor'kovsI (or Schrief-
fer') and expressing the electronic self-energy

X(k) = [1—Z(k)]ks~4+g(k)rs+P(k)~I+ ((k)~s (27)

as a linear combination of the linearly independent ~;,
the interpretation of Eqs. (6) and (7) as energy-gap
equations becomes obvious. Then, the substitution of
Eqs. (8) and (27) into Dyson's equation (6) immediately

yields the result

G(k) = [Z(k)k«,+((k)~s+4(k)~1+4(k)~sj
X{[Z'(k)ks' —E'(k)+i0+1$~4
+kp[Z(k) g(k) ~s+P(k)~i+)(k)~s7
+iR(k)k(k)~s —N(k)~Ij+i[N(k)k(k) j~s) '

= {[Z'(k)kss—E'( k)+i 0+1 j~4

-k.[Z(k),~(k)"+~(k)"+S(k)"l
—2(k) 5(k) —0(k) 7—[P(k),4{k) 3) '

X[Z(k)ks~4+((k)~s+ y(k)~I+ y{k)~sj, (28)

where the eigenvalues of the matrices,

~(k) = (k)+X(k) (29)

&(k)= [0'(k)+Y(k)j'"Z '(k) (31)

must be the proper renormalized energy-gap tensor.
Tile nonvaIlislilIig commutatol's of Z $ p and ( 111

the denominators of Eq. (28) present the first important
difficulty, which arises in particular from the replace-
ment of the jellium model by the more realistic model
of a periodic lattice of ions with a local electron-ion
pseudopotential. Fortunately, the nonvanishing of

E(k) = LV(k)+ 0'(k)+V(k)l'"

give the partially renormalized normal-state cnergics

$1 and superconducting-state energies EI corresponding
to the bare electronic energies e~—= e~~. The substitution
of Eqs. (27) and (28) into Eq. {7) now clearly demon-
strates that Eqs. {6) and (7) represent a set of four
coupled integral equations for P, (, Z, and g. Further-
more, in the case that the commutators [Z(k),((k)j,
[Z(k),P(k)j, and [Z(k),$(k)j vanish, an examination
of the form of Eqs. (28)-(30) readily shows that the
fully renormalized normal-state and superconducting-
state energy tensors are $Z ' and EZ ', so that
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these commutators may be neglected in most applica-
tions. The calculation of superconducting properties
in the "dirty" limit in which all anisotropies vanish is
particularly simple; in this case the matrices Z, (,
p, and ( become simply scalar functions of the two
variables e and ko, as is discussed briefly in Sec. IV, and
their commutators vanish identically. A second simple
case is that of a nearly-free-electron metal whose con-
stant-energy surfaces are very nearly spherical when
viewed in an extended-zone scheme, except possibly for
small regions in k space away from the Fermi surface.
Here, even when interested in any small anisotropy
effects, one may again express Z, g, P, and $ as scalar
functions of o(k) and ko, as is also discussed briefly
in Sec. IV. The commutators will also be small in any
materials for which the interband matrix elements
Mu. (q+g; k) are small; they contribute only terms of
order LM&p(q+Q; k)]' to any experimentally significant
quantities. In the event that interband scatterings are
important, that the nearly-free-electron approximation
is not sufFiciently good, and that one is concerned with
the superconducting properties of a "clean" material,
it is necessary to choose a simple two- or three-band
model, use this model to determine G formally as a
function P, G~'i~; of Z, g, P, and $, and then solve

by iteration the resultant exceedingly complicated set
of integral equations. "

Since this case is of interest only for a very few prob-
lems and has no general formal solution, we assume
throughout the remainder of this paper that the
commutators of Z, (, P, and ) with one another either
vanish identically or are negligibly small. Thus, we
express the Green's function G(k) approximately as
an anticommutator,

G(k)—o {LZ(k)ko~4+ $(k)~o+ P(k) ~i+ |,'(k) ~o],
LZ'(k)k '—E'(k)+i0+1] ') (28a)

This expression is exact in the limit that the commuta-
tors vanish, provides a reasonable first approximation to
G for all cases in which the commutators do not vanish,
and has the same simple formal structure as the cor-
responding Nambu-Gor'kov" "Green's function for the
jellium model.

The second important new difficulty arises from our
inability to use the Migdal approximation" to eliminate
the e' dependence of the self-energy X(k') on the right-
hand side of Eq. (7); it follows directly from our in-
terest in band-structure effects. Were one to consider
only interactions between states having energies $ such
tha, t E($) is essentially constant, " no deviation from

"This problem should arise only in the calculation of such
complicated anisotropy effects as should undoubtedly exist in a
clean superconducting transition metal. It should not arise in the
calculation of anisotropy effects in the simple metals, which possess
a nearly spherical Fermi surface.' The condition that E(g) be essentially constant for all values
of & to be considered is obviously not the rigorously proper condi-
tion to use here. However, except in extremely pathological cases,
it is equivalent to the proper condition that variations of the posi-

the law of corresponding states which arise from band-
structure effects (as distinguished from strong-coupling
effects) could possibly be obtained. On the other hand,
the Migdal approximation is valid only if one considers
solely interactions between states having energies P
such that 1V($) is essentially constant. "

Thus those interactions in which we are most in-
terested are precisely those which are important for
large energy transfers qo~E& and for the study of
which the Migdal approximation is inapplicable,
namely, the Coulomb interaction in metals and both
the Coulomb interaction and the phonon-induced
electron-electron interaction in degenerate semiconduc-
tors and semimetals.

Previous authors' ' have used the Migdal approxima-
tion to reduce the dimensionality of the integral
equation (7); fortunately, we have found an alterna-
tive way to reduce its dimensionality which is valid
even when the Migdal approximation breaks down.
First, as have previous authors, ' ' one notes that
the wave vector k can be expressed as a function
k(k, oi) of the unit vector k and the bare electronic
energy o&(k). Then, by approximating the renormaliza-
tion energy X»(k,ko) by the function

Xii&"(k) =-,'Lxi((k, )ii(k))+xii(k, —](i(k))], (32)

one may express k approximately as a function k(k, &i()—=k(k, o, i+xii&o&) of the unit vector k and the renor-
malized energy $«(k). This approximation, which
allows one to eliminate the function y from the equa-
tions for Z, P, and $, is justified (1) by the weak de-
pendence of g(k, ko) upon ko, (2) by the fact that the
dominant contributions to Z, P, and ( come from poles
in the complex $ plane at (or very near) the points

$ii= +(Zu'(k, ko)koo —4u'(k, ko) —)u'(k, ko),—+Z«(k, ko)ko—+ko,

and (3) by the weak dependence of Z, P, and ( upon
the argument $» of k(k, fii)

Next, one should go to a representation in which the
renormalized normal-state energy tensor ((k) is diag-
onal with eigenvalues $i=fii, define k'—=k+q, replace
the sum over q in Eq. (7) by an integral over angles
J'a dk' and an integral over energy

d$',

formally evaluate the integral over d$' by contour
integration, and then evaluate the integral over d'ko'.

This procedure leads to the conclusion that all con-
tributions to either Z, P, or {t which arise from the

tion in %, space of the constant-energy surfaces g(k) be negligible
as & takes on all values to be considered. It is chosen here because
of its simplicity and ease of physical interpretation.

"These justifications are discussed below,
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nonvanishing of the off-diagonal elements of E' in
the denominator of Eq. (28a) are of order

L4'(k')+V(k')7/Lk (1 ') —5 (1 ')7'5 10 '

and may thus be neglected. To be consistent with our
neglect of the commutators which appear in Eq. (7),
we also neglect the small off-diagonal elements4' of Z
and rewrite Eq. (7) in the form

Xrp(k) =—Xrp(l k, fr, kp) = X&p(l,k, fpi kp)

Z d&p=-Z Z
V~ i~sr &&=V' V" (2rr

d'k'

X LZ'kp'~4 —('~s—i&'~r —$'&s7 p p ~

XR(e')/I Z'skp's —E's+i0+17««(33)

XP Z.(q+g')~&p (q+g';1)

X & - p(k, q; g)E „(q) . (34)

Since both the f path of integration and the depend-
ence upon $' of the kernel R'(t') can be sufficiently well
determined independently of any knowledge of the
energy Re{X(k)), as is discussed in Ref. 42, it is never
necessary in practice to solve Eq. (33) for ReX.

Now, noting that the kernel

R(~)=g R&*~(~)' (35)

is a matrix in 7- space owing to the matrix character of
the vertex function

r=P r&'~~ (36)

it is obvious that one can obtain energy-gap equations
of the usual form' only by neglecting the terms F ',
F&'&, and F(') and approximating F by the single term
F~'~z4. Although any detailed discussion or justi6ca-
tion of this approximation is beyond the scope of this
paper, it is at least necessary to discuss it briefly.
The f&rst term in the expansion of r=P„r„as a,

power series in e' or r, (the Hartree approximation 1 p)

is given by Eq. (13); the second term 1 & is given by

' Remember that Z is equal to the unit matrix 1 in the weak-
coupling high-density limit, so that the off-diagonal elements of
Z are small for two different reasons.

4' J. W. Garland, Phys. Rev. (to be published).

Here, for notational simplicity, we have dined
Z'= Z(ir, k', $'; kp'), P'= P(lr, k'—

,$'; kp'), ('= ((lr, k', $'—kp'),
and E'= E(lr,k', $'; kp') and have introduced the kernel

R($') =R(l,l';—k, b, l",l"'; lr, k', $'; qp)

= Ll1 'I'«~'/dl 1 'I) '7'=s«, s, t )

Eqs. (7), (21), and (22):

dip
rt(k, q; g) =i g P P M(q'+g"; lr+q)

277'

X G(k+q+q')& sr p(k+q', q; g) G(k+q')

X~sFp(k, q'; g')t&(q'+g")Ks s (q') exp(iqp0+) . (37)

The first term has the desired simple form Fp= Fp( )~4,

and, by the Migdal theorem, the phonon contribution
to the second term and all subsequent terms must be
of order (m/3f) "s for metals. One can argue from these
two observations alone that F&'~, F&'), and F~') must
be small in the superconducting simple metals such as
aluminium, lead, or tin. Since these metals are fairly
well described within the high-density limit, the cor-
rections to the Hartree approximation Fp should be
small. Moreover, both theoretical calculations" ""
and experimental evidence" " suggest that the Cou-
lomb contributions to Z, &t, and ) should be small.

A study of the form of Eq. (37) suggests that F&",
F('&, and F"~ should be small even for the cases of
degenerate semiconductors or semimetals and of
transition metals, and reinforces the rather naive argu-
ments mentioned above. Let us substitute Eq. (37)
for Ft into Eqs. (33) and (34) and observe the relative
magnitude of the four contributions to X arising from
the four F&&", respectively. In calculating the contribu-
tion of Fj(4& to X, one Ands only a very small degree of
cancellation upon integrating over dip except for large
values of qp I qps greater than some typical important
value of (kp+qp')'7. However, when calculating the
contribution of F~(", F~(2), or F~('& to X, one Ands a
high degree of cancellation for all values of qp upon
integrating over dip'. ' Therefore, the terms F&(",
F~('&, and F~&') should be less important for the cal-
culation of X than is the ordinary exchange term Fi '
which is in turn smaller than the Hartree term Fp.
Similar arguments will show that the terms F (') are
small for i = j., 2, or 3 for any value of e. Thus, although

4' S. D. Silverstein, Phys. Rev. 128, 631 (1963);130, 912 (1963);
T. M. Rice, Ann. Phys. (N.Y.) 31, 100 (1965).

4'Since the Coulomb and phonon contributions to Z can be
differentiated experimentally only through the determination of
the Pauli paramagnetic spin susceptibility x (see Ref. 45) which is
dificult to measure, there is almost no direct experimental evi-
dence of the size of the Coulomb contribution to Z. However, the
experimentally observed coef5cients &=0.5 (1—g) of the isotope
effect in superconductivity do show that the Coulomb contribu-
tion to the gap function i(& is small, particularly in the simple
metals, as does the electron-tunneling data for lead (Ref. 46). See
Ref. 42 for a discussion of this point and for references to the
experimental determination of &.

4'R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58
(1956); R. T. Schumacher and W. E. Vehse, Bull. Am. Phys.
Soc. 4, 296 (1960); J. Phys. Soc. Japan Suppl. B1, 460 (1962).

"W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14,
108 (1965).

4~ This cancellation is most effective in the case of the simple
metals, for which the kernel Q((') has only a very weak depend-
ence on the energy &'. It arises from the integration over dq0' of
terms proportional to a &'& (0+q+ q') G &'& (i+q') R(q')
G(4) (k+q+q') G(') (k+q') Q(q'), where g w4.
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one cannot estimate the contributions to X of F&",
r& ), or r() without extensive numerical calculations,
one may state that their contributions are small and
approximate the kernel Q(f) in Eq. (33) by its principal
component R'($')~4 =—g&'&($')~4. This, in turn, allows
us to set $=—0 without any further loss of generality,
simply by choosing phases appropriately, and to write

Zk0
~n(k)=-Z Z Z

2 i" i'" 4=&".&'" (2n.)4
d'k' d$'

=ZZ
($ $v Z iv )k p i I I v I I i$ i I I i I I I

ii

d'k'

~ko
Im {[Z"kp" E"+j0+—l]i, i,}

o (2~)4

(
P'v v- 0 (N,'+(f'; ko', ko

x
Z'v'v" &R—($'; ko', ko)

(38)

where the kernels Q'~ are dined by the equation

kg(&' ko' ko) =2"(P' —ko' —kp) +St'(r"' k p' —kp) . (39)

Then in order to replace the $' integration of Eq. (38)
by an easily evaluated contour integral, one may re-
replace the functions g, Zv v and p'i .v. by functions
of the form P; [(2mi)($' —u;—ip,)] 'k~'

Z L(2 )(e—*(/",/"') —y (/", /"'))] 'Z'- -"'

and

z [(2 )(5'- ~ (/",/"') —7 (/" /"'))] '4 - - "'

which are analytic throughout the complex $' plane

XN,'(]')[Z'ko'~4 &'ro—y'~,—]v p-/

[Z"kp"—E"+i0+1]i,&, . (33a)

It is now obvious, assuming particle-hole symmetry
about the Fermi surface for small energies, that the
only important contributions to g are from interactions
which involve large energy transfers. Thus, the depend-
ence of g upon ko must be weak, as was asserted above.
Also the weak dependence of X upon $, which was also
asserted above, is now apparent from the weak depend-
ence of the kernel R(/, /'; k, $; /", /"'; /i, k', $'; qp) upon (.

Having reduced Eq. (7) to the much simpler form
(33), which is valid whenever the matrices Z and P
either reduce to scalar form or are nearly diagonal, and
then having approximated Q($) by its principal term
R($)~4, we next proceed to simplify Eq. (33a) insofar
as is possible without the introduction of further
approximations. First, one follows the integration pro-
cedure of Eliashberg, ' defining the kernel g as the
sum 2 +Q' of parts analytic in the upper and lower
halves, respectively, of the complex ko' plane. One Ands
the matrix equation

except for isolated simple poles at the points u,+&;,
x,+iy;, and p, +i&;, respectively. "These replacements
of 0, Z, and P by analytic functions of $' can be per-
formed to any desired degree of accuracy along any path
in the complex $' plane on which they are defined, even
though k, Z', and P' themselves are nonanalytic func-
tions of $'4o; thus, these replacements can be considered
formally as exact. It is this new technique of replacing
Q, Z', and P' by simple analytic functions of $' which
ultimately allows us to reduce the dimensionality of
Eq. (38).

If the f dependence of p' and Z' were known, one
could now immediately evaluate the f integral of Eq.
(38). However, neither is the P' dependence of P' and
Z' known a priori, nor can it be totally neglected. In
order to proceed further it is necessary to classify the
different sets of contributions to X which one would
obtain were one able to perform the &' integration.
To obtain equations which display insofar as possible
a simple relationship to the quasiparticle picture, it is
best to evaluate the P' integral of Eq. (38) by performing
contour integrations around both the upper and lower
parts of the complex f plane and then formally averag-
ing the results. One finds contributions from several
distinct sets of poles. The residues associated with the
poles at

5'= 5.(/i, k; ko')
—=s[Zi, i, '(/i, k', &„kp') kp" y„i,'(/i, k'—,&„pk')]'~' (40)

s[Zi, i,'(/i, k', skp', ko')ko" —pi, i,'(/i, k', skp,' kp )] i'

give the dominant contributions to superconductivity,
where s=&1. Neglecting the f dependence of Z',
these poles very nearly give the standard quasiparticle
results. "However, both the residues associated with
the poles of thekernels 2+ and those associated with
the poles of X' which arise from the $' dependence of
p' and Z' contribute additional terms to the self-energy
X. Fortunately, by grouping terms properly" one can
show that many of these contributions are negligible.

In order to study these contributions in a systematic
manner, we label each contribution by a set of three
indices i, j, and k, each of which can assume the values

4'The positions of the points N, +in;, x,+iy;, and q;+iy; of
course depend upon all the arguments (except &') of the functions
Q', Z'/-&-, and p'&-&, respectively, although they depend only
weakly upon q0 (or k0').

4'That these replacements can be performed to any desired
degree of accuracy is a purely formal point. Of course, in principle,
the path P'=e'+g' is not given, since one must solve Kq. (33)
for x in order to find the path. However, since our results are nearly
independent of the choice of path for any reasonable choice of
path, as is shown in Ref. 42, it is sufficient to determine the path
$'=e'+x' within the quasiparticle approximation. See, for ex-
ample, J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (j.958).

"See Sec. IVC for a discussion of this point.
"Whenever poles in two diferent functions which are mul-

tiplied by one another become close together in the complex ('
plane, the residues associated with each of the poles tend to become
very large, although the sum of the residues remains approxi-
mately constant. Thus, such residues should always be grouped
together.
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zero or one. For all contributions arising from the poles
of G at („i assumes the value unity; for all other con-
tributions, i assumes the value zero. For any contribu-
tion calculated under the assumption that P'(f)
=f1'(0) and/or Z'($')=Z'(0), the indices j a,nd/or k
assume the value zero. For any contribution arising
from the $' dependence of fl' and/or Z', the indices j
and/or k assume the value unity. We also define three
characteristic energies for any superconductor: (1) the
maximum superconducting energy gap t1, (2) the maxi-
mum phonon frequency (oob, and (3) the largest energy
(ob such that the density of states 1Vt($) of any important
band" remains essentially constant as $ varies from
—(ob to +(00.00 If our results are to be suKciently general
to be applicable to the case of superconducting semi-
conductors and semimetals, we cannot neglect quantities
of order (o,b/(ob as is customary. ' "'However, we shall
neglect quantities of order 6/(ob&0. 01 and terms of
second and higher order in 6/(o, b&0.1.

Together, the four contributions to X denoted by the
indices (1,j,k) give a total contribution

, (0,0,0)

(P„,—Z„,](0,0,0)

" dkp'

ZZ
t(b (Ill )4 (lb trrr (27r)4

d'k' Im tl Z'(0)'k "0(u—,+i()t)'1 (ti'—(0)'jt, t,j '

0'4" 4 -(0)
X

0

ZZ
)II )III iI ill ill/

" dkp'

(2)r)4

sum of the remaining two i=1 contributions to X is
even smaller than the (1,1,0) contribution to fi.br

The four i=0 contributions arising from the poles of
Q+, (h', and Z' in the complex 0' plane are all very small.
Two, the (0,0,0) and (0,1,0) contributions,

Ptt «t'"—jko

4't t-(f-')
d'k'Re s$,' '

0 0

dkp'

4(2)r)'

0

Z', , „((.')4,')

XIm Lt Z'(0)'ko" —(rtt+iy;)'Ijt, t,] '

(0+(4'))

The evaluation of the dominant (1,0,0) contribution
does not require any knowledge of the $' dependence of
fi' or Z'. The (1,1,0) contribution to (1 is a factor of
order 8&0.1 smaller than the dominant contribution
for any superconductor'4 "; the (1,1,0) contribution to
Z is of order 10 ' or less, and may be neglected. The

"By "important band" we mean any band or subband whose
existence directly inQuences the superconducting properties of a
material to any important extent."L.P. KadanoG, Lectures at the 1963 Spring School of Physics,
Ravello, Italy (to be published).

~4 For metals 0 is given approximately by the formula

() (4oob/84obl+[8+21n{44o)/coobl] 4 0.05,
where co» is the electronic plasma frequency; for semiconductors
and semimetals it is given approximately by the formula
t)~[2 1n(44ob/&l] 4&0.1. The factors of two and eight occurring
in these expressions are obtained from highly approximate nu-
merical calculations and cannot be explained in detail here. The
factor of two arises from the fact that the change in the density
of states 1V(&) of hole states as & increases in the negative direction
and the change in the density of states of electronic states as &
increases in the positive direction tend to cancel in the calculation
of X. The factor of eight comes from this factor of two multiplied
by a factor of four which corresponds roughly to the inverse of the
kernel Q, appropriate to the second step of the Tolmachev two-
step-function model (Ref. 55) used by Swihart (Ref. 56), Morel
and Anderson (Ref. 3), and the author (Refs. 16 and 42). The
dependence of 0 upon 6, col„co&, and col is readily seen.

"N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A
New Method crt the Theory of Supereortduettot'ty (Consultants
Bureau Inc., New York, 1959), Sec. 6.3."J.C. Swihart, IBM J.Res. Develop. 6, 14 (1962).

reduce to zero in the limit as the imaginary part of the
kernel Q vanishes, since in this limit the contributions
arising from the poles of R and fi' in the lower half of
the complex $' plane cancel those arising from their
poles in the upper half of the $' plane. They are approxi-
mately two orders of magnitude smaller than the domi-
nant (1,0,0) contribution for the case of metals and
approximately 1-', orders of magnitude smaller for the
case of superconducting semiconductors and semi-
metals. The sum of the reamining two contributions,
which arise from the P' dependence of Z', is equally
small; it cannot be expressed in simple form, and shall
be neglected here.

In sum, we have found that the self-energy X of
any material can be expressed as a sum of three
contributions:

(1) a contribution Xo which contains both the
dominant (1,0,0) contribution and the (1,1,0) contribu-
tion and which depends only upon the self-energy at the
two points f=$,', s=&1, for any given energy ko',
and which is equivalent to the quasiparticle contribu-
tion in the limit as Z—I —4 0.

(2) a contribution Xo which arises entirely from
lifetime effects and vanishes in the limit as the imaginary
parts of the energies $' and fi' both vanish, and which
ldepends upon fi'(P') for all $', but which is very smal

57 For metals it is smaller by a factor of the order of the elec-
tronic contribution [Stt.—Ztt ],&0.3 to the tensor 1—Z; for
semiconductors and semimetals it is smaller by a factor of order
iZ(t —St) i, also &0.3.
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and depends only upon Z'(0), not upon Z'(t') for all

f, and
(3) a contribution Xz which depends upon Z'($')

as well as upon fi($') for all p', but which is very small.
For metals Xz is nearly two orders of magnitude smaller

than Xo, for superconducting semiconductors or semi-
metals it is more than a factor of 10 smaller. This
suggests that one should calculate the contribution
Xo and if necessary then calculate the $ dependence of
ft 0 and use it to determine X~ approximately. One finds

dkp
Ls.(&)]«"=-Z Z Z Z

4(2ir) '

or, including lifetime eGects properly,

d'k.

LS'( ko'Z'(0))] - -'
X Rp(sko'Z'(0))Re, (44)

{Z'(o)'kp"- Bo'(sko'Z'(0))]44') '"-

~«"(&)=--Z Z Z
)rrr )I

dko'

4(2m)o n

d'k' Q+(sko'Z'(0)) Re
y't. .t-"(sk p'Z'(0))

{Z'(0)'ko"—4'44'(skp'Z'(0))) "'
p Qj 't),Vj ~«g«r

+or 'Q k+(" Irn +v 'QQ+(rt;+iy;) Im
Jl (u, +iv, )'—Z (0) kp

Lff '(t)]t„t,„tt
(45)

(rt;+ip;) ' Z'(—0) 'k()"

where we have defined P« 'P(g) ==rt)tt (le,k, f; kp), P't. t.-' (pr) =yt .t".(&,k', ('; k,'), 4,'t.4=—y'44 ~ and Z'(0) =
t Z'(0))t..,

for notational simplicity. For almost any case the difference between Eqs. (44) and (45) is negligible in the sense that
uncertainties in the determination of the kernal Q+ are a more important source of error in Eq. (44) than is the
neglect of the final two groups of terms in Eq. (45).

If one neglects the small contribution q)z, one may now further simplify the calculation of P by eliminating
the dependence of (k upon the function Z'(0) in Eqs. (44) and (45). In order to do this one must first define the
renormalized energy-gap functions

and
Att(k) =4 tt(k)lZ)t(0)

A« "(k)=0 « "(5)/Zt, t,(0) .

(46)

(4&)

Then, rewriting Eqs. (44) and (45) in terms of these new functions, one finds

L(f'o(e)]«'"=Ztt(0)L&p]«"
dkp'

d'k' Q'+(skp'Z'(0)) Re
tll tl/I ty t// tel/ g+rp4(2rr)8

and

[&o'(sko'Z'(0))]t t-"
{kp's—L~p'(skp'Z'(0))]44s) its

ett "(5)=—2 2
Irrr ~I ~rr ~rrr &—gy

dkp'

4(2v)o

6 pIpi t(skpZ (0))
d'k' g+(skp'Z'(0)) Re

{kp"—A'4 t, '(skp'Z'(0)) ) 't'

+rr-) P g (j) Im (49)
[ao'(u;+iv, )]t .t-t (~ '(r)]t„t„,tr

+~ 'Z @+(~t+iV~) Im
Z' '(0)(u,+iv;)' kp" — ~' Z' '(0)(rtr+ivr)' ko's ——

Note (I) that the dominant terms in Eqs. (48) and (49) depend upon Z' only through the negligible dependence of
g (sk, 'Z'(0)) g (skp') and p(»p'Z'(0)) —p(skp') upon" Z'(0) and (2) that the very small additional contribu-
tions to p in Fq. (49) arise from residues at poles far from the origin of the complex $' plane and thus depend only
sHghtiy on the value of Z'(0), especially in the region of small k p', where Z'(0) differs most substantially from unity.
This means that one may set Z'(0) equal to unity throughout Eqs. (48) and (49) without introducing a total error
greater than approximately 3% for the case of metals and 6% for the case of semiconductors and sernimetals. "

» Since Z'(0) is approximately unity for very large kp', the quantity ) kp'(2'(0) —tl I
is much less than Er for kp'+Er and much less

than ko' for ko' &p~. Then, since Q ((') is a slowly varying function of $'approximately proportional to (('+Ex)'l' for small 5', Q(sko'~ (0))
is very nearly equal to Q'(sko') for all ko' (except for sko' —Ez). Furthermore, the errors introduced by setting Q(sko'Z'(0)) equal to
Q(sko') tend to cancel as one sums over s= &1.

@ Of course the limits of error stated here refer to effective errors in the kernel Q; i.e., to errors in the corresponding quantity S(0)U
=[in(2arps/nip for the simple BCS gap equation. Our limits of error do rtot refer to limits of error in the calculation of a, which is a
nonlinear function of Q'. Furthermore, the limits of error quoted here include only those errors which result from the approximations
employed in the derivation of Eqs. (47) and (58) from Eq. (33a). In particular, they do not include errors which result from our igno-
rance of the exact kernel R, from our approximation of the kernel Q by its principal component c4Q'(4) or from the possible nonvanishing
of the commutators of g, Z, fl, and $ with one another, since these errors vary greatly from case to case and cannot be estimated ac-
curately. Nor do these limits include errors which in principle can be made to vanish, such as possible errors in the evaluation of the
poles and residues of R and fi or in the numerical solution of integral equations.
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We And the approximate equations
d~o

[Ao($)7«"=—Z '(0) P P g P d'0 g~(skp') Re
&Iri && pl &err & y& 4(2&)3

and

[Ap(skp )7@ipii ~

{ko"—[&o'(sko')7&, & ')"' (48a)

dkp'
a«'o(])=—Z—'(0) P g

&II &III $g &tl &—tip g —y& 4(2v)p
d'k' g+(skp') Re

p ~(skp )

(ko ' 6 &i&i'(sk o))"'
[Ap'(u~+iv~)7&-&-" [Ap'(i&7&„&„,

ypr ' g R'~&» Im +7r ' Q 2+(»+iy, ) Im . (49a)
(u, +iv, )'—ko" (»+'~;) -k."—

" d&o'

[Ao(t)7&v"=-Z Z
p 4(2m.)' o

X [R+(sko') Re{[cko'7v r""[ko" [&o—7&,&, '7 '&')

—[kp'/kp7[Ap(&)7« "@-(skp') «(Lko"—[Ap'7&x&i'7 "')7 (50)

l" l"' lI=lis, is~I 8=+1

and
dkp'

A« "(t)=—Z E Z Z d'k'(@+(skp') Re(A'&-&-"[ko"—~'&i&i'7 "')
&II &Ill &g &II ]pit g —y& 4(2pr)p a

+~- g Q+& & Im([Ap'(u~+ iv )7&-i- "/[(u +iv )'—kp"7}+~ ' & @+(»+i&D

Finally, following a procedure similar to that of Kadanoff, "one can eliminate the dependence of 6 upon Z(0)
given by Eqs. (48a) and (49a), leaving an integral equation for A in which enither Z nor Z appears. In order to do
this, it is only necessary to write equations for 1—Zp and 1—Z equivalent to Eqs. (48a) and (49a) for hp and 6
and then to substitute them into Eqs. (48a) and (49a). Since the quantity Z—1 arises largely from the exchange
of virtual phonons and is small for large arguments kp, andsince it is small in semiconductors and semimetals,
any percentage error in the calculation of Z will be smaller than the corresponding error in the calculation of @.
Moreover, it is obvious from the form of Eqs. (48s,) and (49a) that corresponding systematic errors in the calculation
of Z and of P tend to cancel in the determination of h. Thus, by eliminating Z from Eqs. (48a) and (49a) in this
manner, we reduce our previously accumulated errors rather than enhancing them. We find

XIm{[&0'o&7&-P-"/[(0+ivJ)' ko"7} —[kp'/k p7—[~« "(5)@-(skp')«([kp" A'44'7 '"—)
—2 g u, v,R' o'&[(u'+v')' —2ko"(u' —v')+ko'47 '7), (51)

where the kernels

and
R+(f)=0(l, l', k, &;

—l",l"'; l„k',]'; kp', kp)

($')=R' (lo, lo,—k, g; l",l'"; l&,k', $'; kp', kp)

have indices corresponding to the component indices

l, l' of P and lp, lo of Z, respectively. These two equa-
tions are much easier in principle to solve than any of
the preceding equations, because they contain no
integral over dt' and because the integrand of each
equation contains only one unknown function, Ap in

Eq. (50) and A in Eq. (51). Furthermore, these equa-
tions determine A within an accuracy of 2 or 3/~ for
the case of metals and better than 5'P~ for the case of
superconducting semiconductors and semimetals. "

IV. SOLUTION OF THE GAP EQUATION FOR
DIRTY SUPERCONDUCTORS AND NEARLY

ISOTROPIC SUPERCONDUCTORS

In this section we consider those cases in which the
three-dimensional integral equations (50) and (51) can

be reduced to one-dimensional form. Making reference
to the simple physical arguments of Anderson, "which
are supported by the more detailed, quantitative work
of Markowitz and Kadanoff, ' it is 6rst shown that in
the important dirty limit, both P and Z become simply
scalar functions p&(p, kp) and Z(p, kp) of the scalar variables
o and kp. The reduction of Eqs. (50) and (51) to scalar
form then becomes obvious. Next, an approximation
scheme is presented for reducing Eqs. (50) and (51)
to one-dimensional form in the case of clean but nearly
isotropic superconductors. Fortunately, these two cases
include almost all cases of interest: the case of dirty
superconductors is applicable to almost all experimental
results pertaining to the superconductivity of transition
metals or degenerate semiconductors or semimetals;
the case of nearly isotropic superconductors is applicable
to all of the simple metals.

Finally, our one-dimensional equations are compared
with the corresponding equations of Schrieffer' and with

"D. Markowitz and L. P. KadanoB, Phys. Rev, 131, $6/
{&963).
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those derived previously by the author" ' in the
random-phase approximation (RPA) using complex
Bogoliubov quasiparticle transformations" and a gen-
eralization of the Englert effective Hamiltonian. " In
this way, those results of our analysis which differ
from previous results are isolated, so that they may be
discussed further.

A. Dirty Suyerconductors

As was pointed out by Anderson, " one may divide
superconductors into two classes: (1) the class of
relatively pure superconductors for which scattering
has a rather sharp effect on superconducting transi-
tion temperatures, and (2) the class of dirty supercon-
ductors for which additional scattering has very little
effect."The fundamental assumption of the Anderson
theory is that for class (2) superconductors, the wave
functions of the superconducting state are best con-
structed by first diagonalizing the interaction be-
tween the normal-state electrons and the impurity and
imperfection-scattering centers, and then calculating
the interaction between electrons. That is, one must
first find a new set of one-electron wave functions

l p,o) to replace the standard Bloch functions l/; k,a)
for the electrons, and then consider the matrix ele-
ments of all interactions relative to these new wave
functions.

Anderson observes that if lp, o.) is an exact one-
electron wave function, then the time-reversed state

l p, a)* is also an exact eigenfunction of the one-electron
Hamiltonian in the absence of magnetic scattering.
Furthermore,

l p,o) and
l p, o)* have the same energy,

e(p). Since the interaction V» between states lp, o)
and lp', a) is simply the average interaction over all
states l/;k, o) which make up the scattered state

l p,a), and since, for strong scattering, the states
l /; k,o)

are taken more or less at random from the smeared out
constant-energy surface e&(k)—e(p), the interaction
V» is a function only of the energies e(p) and

Brillouin zone. The assumption of perfectly random
scattering yields the result

which is accurate to order 7, '(dlV(e)/de), ,&„&«=1,
where 7., is an average scattering time for an electron
of energy e(p) and 8 is a spread-out delta function of
approximate width ~, '. Both this equation and the
assumption that the coeKcients (p,o

l /; k,a') have
random phase should be valid in the region A«7, '
«Ep, where the assumption of random scattering cor-
responds only to the assumption of randomness after
a large number of successive scatterings.

It is now clear from the above discussion that Eq. (8)
for the noninteracting Green's function Gp assumes
the simple form

Go(E ko) = [kp(1+i0+)~4 &~3—]-'

X(e,kp) =i
„(2~)'

de'~3G(e', ko')

X~gR(e, c'; kp' —kp), (7a)

where the kernel R is dered by the equation

d'k g P Mgp(q+g'; k)rp)(k, q; g)

X &(~—n(k)) b(~' —~v(k+q)), (54)

for the case of a dirty superconductor. Then, neglecting
the unimportant spread in energy of the spread-out
delta function 8 of Eq. (53), the form of Eq. (7) for the
electronic self-energy X is easily simplified. We find the
result

l k o'

~(v'). where G and X are matrices only in ~ space and where
Following Anderson, we write the integrals over d'q and d'k are defined as in Secs.

II and III; i.e., both integrals extend only over the first
lp,o)=P P P (p,o l/; k,a')l/; k,a'), (52) Brillouin zone, and the k integration (but not the

q integration) implicitly includes a sum over spin states.
Equations (50) and (51) of Sec. III then immediately

where the sum over k extends only over the Grst yield the simplified results

~0(k,ko)=—Z
tQp

[R+(P,skp', kp —kp)Re(60 (sko)[kp —Ap (skp)] ~ )
4(2m)'

—[ko Dp($ kp)/ko]Q ($ sko ' kp —kp) Re[(kp Ap (sko )]—'~'}] (50a)
"Reference SS, Secs. 1.2 and 2.1.
62 F. Englert, J. Phys. Chem. Solids 11,23 (1947).
"Here we consider only superconductors either so clean that scattering by impurities and lattice defects may be neglected or

else so dirty as to belong to class (2); we do not consider the more dif5cult intermediate case studied by Markowitz and Kadanoff
. (Ref. 60).
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and

Z (g,k,)=—g
" d&p'

{fl'+(f,sko'; ko' —ko) Re{5'(sko')Lko 6"(skp')5 't'}
4(2&r)'

+~-' P g+U&(t; kp' —kp) Im{ao'(u;+it&, )/I u, +it&r)' k—p"5}+7r 'P R+(P,rt+iy;; ko' —ko)

XIm{Ao'o&/E(t&t+ip;)' k—o"5} I
—ko'/ko]l ~(k,ko)g' —(p,skp', ko' —kp) Re{(kp"—g"(skp')5 't'}

+tr &p(f kp) g 0—
'

($' kp kp) Im{—L(u;+it&;)' —kp P] '}]}, (5&a)

where the kernel P($,]'; qp) is defined to within a very energy X(k) in the form
good degree of approximation by the equation

oo dg
&' oa

d g
~(4k'; qo)=P'(6)?'Z Z P(tl+g')&- (q)

tt tt' (2&r) o

X(k) =i tip cpG(o~, kp )
„(27r)'

X&o+(k,&'; ko' —ko)+%X(k), (7b)

XP g d'kLd('/dpi'5 —
'Mt t (q+g', k) rt t(k, q; g)

where the kernel R(k, o'; kp' —kp) has components

8'tt (k, o'; qo)=p p g v(tl+g')Z„(q)
e a s'

X8(&t—Re{Pt(k) })8(ti' —Re{Pt (k+g) }), (54a) XexP(iqo0+) 2 Mtt" (ti+g'; k)

where b and $i' are simply the real parts of the energies

t and f, respectively, and the functions R~(f, $'; qp)

and R'+&'&($; qo) are defined in terms of the ~4 com-
ponents of Q($,$'; qo) by precise analogy with the
definition in Sec. III of g~(P') and Q+o& in terms of the
kernel Q(f)=g(l, l'; k, $—; i",i"'; lt, k', f'; qo).

B. Nearly Isotroyic Suyerconductors

Considering for the moment an extended-zone
scheme, we see that all matrix elements of the form

(k+q+g'~ exp{i(tI+g") r}~k+g), except those for
which g" is equal to g' —g, must approach zero in the
isotropic or free-electron limit. This immediately im-

plies that the Green's function G(k, kp) reduces to the
simple scalar form G(~k~, kp)=G(o(k), kp) in the free-
electron limit. Since it has been demonstrated that the
band structure of the simple metals differs from a
spherical free.electron band structure only through
perturbation by a saba/l electron-ion pseudopotential, "
for the case of the simple metals one should be able to
treat as small any correction

LSGp(k)jtp= I Go(k)]tv Go(ott(k), k—o)f'ttt~ (55)

to the elements of the noninteracting, free-electron
Green's function defined by Eq. (8a) above. This im-

mediately suggests that we rewrite Eq. (7) for the self-

Xl t" t (k,q; g)5(o' —ot (k+q)), (56)

G(o')ko') —=G(ot (k'),kp')—= G«(k') —5Gtt(k')
= LGp-t(o', kp') —X(o',kp')5-' (57)

in terms of the isotropic, average self-energy X(p,kp)
given by Eq. (7a) immediately shows that the diagonal
elements of the small term

6,X(k) = i p p p p(ti+g')
a

dip
M(tl+g' k)

2'
X~o&G(k+q)~o&(k, q; g)Eott (q) exp(iqp0+) (58)

on the right-hand side of Eq. (7b) are second order in the
small anisotropy of the self-energy X(ot(k),k,kp) =—X (k),
and may be neglected. Since the off-diagonal elements of
X (k) enter into physically meaningful or experimentally
observable quantities only in second order, we may also
neglect the oG-diagonal elements of the small term
SpX(k). Thus, we can construct an easily applied ap-
proximation scheme for determining the anisotropic
energy gap 6($«(k),k,kp).

As a first approximation to 6(k), one finds the
isotropic, average energy gap hp(), kp) from Eq. (50a).

and is nearly isotropic.
The definition of the isotropic, average Green's

function
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Then one writes

t1tt(k)= —Z
dkp' Ao(sko', ko')

g+(k, sko', ko' —ko)7tt Re +s' i Z [2+t' (kl ko' ko) jtt
4(2rr)' [ko —Ap (sko ko )j

XIm
~o(u;+is, ,ko') go(i) (k,~)

+s.-t Q (R+(k,g,+iy, ; ko' —ko) jtt Im
(u,+fo,)'—ko" i (.;+'~;) -k"

1—P
dko ko—[[R (k,sk o', ko' —ko) jtt Re{[ko"—6'(sko', ko') j—'t')

4(2s.)o ko

+27r—'g uto, [R &&&(k; ko' —ko)gtt/[(u'+s')' —2ko"(u' —s')+ko'4jg, (51b)

where g~( kf; qo) and k~"'(k; qo) are defined in terms
of the ~4 component of the kernel Q(k, g

'
qo) by precise

analogy with the definitions in Sec. III of k~(t') and
R~&'& in terms of the kernel

k($') =g(l, l'; k—,$; l",l'"; /t, k', $'; qo) .
This equation gives the anisotropy of the energy gap
A(k) to first order merely by integration. It is easily
possible to perform further iterations and thus, in
theory, to find the anisotropy of cL(k) to higher order
and to find the off-diagonal elements of ck(k); however,
this is impractical for the case of the simple metals (and
for any other cases of interest known to the author).
If one is concerned primarily with the determination of
the anisotropy of the energy gap t1(k) in the simple
metals, one can simplify its determination even further
by neglecting all terms on the right-hand side of Kq.
(51b) except those in which (' is set equal to sko'.
The neglected terms all must have a very small effect
upon the anisotropy of the energy gap (1) because of
the Migdal theorem" and (2) because of the unimpor-
tance of the Coulomb interaction for the determination
of t1(k) in the simple metals. "

C. Comparison with Earlier Results

We now wish to compare the form of Eqs. (50a) and
(51a) with that of the integral equations derived by
previous authors. ' " ' First, it is important to note
that by the Migdal theorem" our equations reduce to
the much simpler form presented by Schrieffer' for
the case of a metal with a vanishing Coulomb inter-
action, although our kernel is of course different from
that of Schrieffer. " The extra terms included in our
equations but not in those of Schrieffer are important
only (1) in determining the effect of the Coulomb in-
teraction, (2) for the case of superconducting semi-

' See Ref. 42 for a discussion of this point.
"Our equations for Q~ reduce to the form of Eq. (7-70) of

SchrieQ'er (Ref. 6) for E+ in the appropriate limit. However, in
determining X our Q+ is multiplied by p', whereas the E+ of
Schrieffer is multiplied by —@'; our equations agree with those
of Eliashberg (Ref. 2) in the appropriate limit. We presume that
this discrepancy arises from a misprint in Ref. 6. {The same error
occurs in Ref. 4.)

conductors or semirnetals, and (3) for the case of those
few metals such as lanthanum and uranium for which
band-structure effects very near the Fermi level are
important. Since Schrieffer has dealt primarily with
the superconducting properties of the simple metals
and has been especially interested in the strong-
coupling superconductors, his equations were not in-
tended for use in calculating the effects of the Coulomb
interaction upon superconductivity or for cases (2)
or (3).

The only equations previously presented which have
been intended for use in calculating the role of the
Coulomb interaction in superconductivity are those of
Tolmachev, "Morel and Anderson, ' and the author "'
That of the author,

h($') cosh'

is the most recent and the most general of these. Here,
the factor cos8'=P'(f, "+ps") 't' is a lifetime effect
which results from allowing the energies $'—=$t'+t'(o'
to assume complex values and from using generalized
complex Bogoliubov quasiparticle transformations. ""
This quasiparticle equation for the superconducting
energy gap is identical in form to Eq (50a) in. the limit
that cosh' approaches unity, that the imaginary part
of the gap function 6 vanishes and that the kernel 2
vanishes [that Z(ko) approaches unity7. Thus the
Green's-function technique yields an equation for 6
which in the neglect of lifetime effects is no more
dificult to solve than the quasiparticle equationor (59),
provided that one knows Z(k,). It yields (1) an impor-
tant correction to the quasiparticle results which arises
from wave function renormalization, (2) small correc-
tions arising from lifetime effects, and (3) a method in
principle for determining a kernel better than that which

"The factor cosh' in Eq. (59) corresponds to, but is diferent
from, the factor (d&'/dft'l ' which appears implicitly in Eqs.
(50a) and (51a) through the factors Qy($, $; gp) and Qy~)($; gp).
Thus, as might be expected, it does not lead to the correct evalua-
tion of lifetime sects.

"This remark is of course valid at finite temperatures as well
as at the absolute zero.
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the author derived previously" using a generalization
of the Englert effective-Hamiltonian formalism. "Even
on purely formal grounds, one might well be surprised

by the agreement with experiment found by the author
in his first calculations of the coefficient of the isotope
effect in superconductivity, since they were based on a
simple quasiparticle approximation. In fact, the phonon
contribution Z~h to the wave-function-renormaliza-
tion constant substantially reduces the calculated
deviation from the BCS value of —0.5 for the coef-
ficient of the isotope effect.

Equation (60) contains two sources of nonlinearity:
(1) the factor Ap(skp&kp)[kp Ap (skp&kp)] '~' which
appears explicitly in Eq. (60), and (2) the factor
Re{kp'[kp"—Ao'(skp', kp')] ' '] which appears implicitly
through the factor Zp '(f,kp) H. owever, the second
source introduces only a negligible nonlinearity of
order 6'/&mph', so that we may replace Zp(), kp) or even

Z($,kp) by its normal state value Zpp(g, kp) in all calcula-
tions to order A'/pp, h'(0.01. In attempting to minimize
the effects of the nonlinearity of the first factor, it is
convenient first to define the normalized gap function

=. p((,ko) = ~o(5»o)IAo (63)

V. QUASILINEARIZATION OF THE GAP EQUA-
TION AND ANALYSIS OF THE FORM

OF ITS SOLUTION

In this section we present a technique for the quasi-
linearization of the energy-gap equations (50a) and
(51a) of Sec. IVA. The homogeneous nonlinear integral
equation (50a) is transformed into an inhomogeneous
integral equation which, since its kernel vanishes at the
point kp= 60 is nearly linear. This technique is applica-
ble to any other one-dimensional nonlinear integral
equation whose nonlinearity is important only in the
neighborhood of a single point and is applicable both
to numerical computations and to the approximation of
the energy gap by purely analytic means. Here, its
application to numerical computations is outlined only
brieQy, but it is used to analyze the behavior of the
energy gap d, ($,kp) as a function of the form of the kernel

R(e,&'; kp, kp').
We erst consider Eq. (50a), which can be rewritten

in the form

and the normalized kernel

I+(Q ' kp kp )=X+($ $ ' kp kp )/X+(0 0' &p Ap) (64)

in terms of the energy gap 60 which is defined by the
self-consistency condition Ap ——Ao(0, hp). Upon sub-
stituting Eqs. (63) and (64) into Eq. (60), setting $
equal to zero and ko equal to 60 and multiplying both
sides of Eq. (60) by I+($,0;ko, Ap)/Ap, one Gnds the
result

0= Q I+($,0;kp, ho)+Zo '(O, Ap)
s=+1

dko'

XI+(O,skp Ap kp )X+($,0; kp Ap)

XRe{Ao(sko', ko') [ko"—&o'(sko', ko')] '"} (65)

Then, upon dividing Eq. (60) by Ao, multiplying Eq.
(69) by Zp(O, Ao)Zp '($,ko) and adding the resultant
equations, one Gnds the quasilinear equation

Ao(4ko)= —Zp '(k,ko) Z
e=+1

dko'X+(4sko'i ko,ko') o(),kp)=Zp '($,k ) I+($,0; ko, A,)Zo(O, A,)

XRe{ho(sko'&ko')

X[ko"—Ao'(sko', ko')] 'I'} . (60)

Here the renormalization constant Zo is given by the
equation

@=+I 0

dko [X+(f~skp', kp, kp')

—I+(O,skp', Ao, ko')X~($,0; ko,ho)]

XRe{ o(sko')ko')[ko" —Ap'o'(sko', ko')] '"} . (66)

Z, (~,k,)=1—g dkp X($ skp' , kp, kp )
8=+1 0

XRe{kp'[kp"—Ap'(sko', ko')] '"}, (61)

and the kernels X+ are defined by the equations

Xg(&; skp', kp k ') =-'[1/(2n-)']ko-&&'+'&

XR+($,skp', ko, kp') . (62)

Since Eq. (60) is a generalization of the gap equation
of Scalapino, Schrieffer, and Wilkins" (and of other
forms of the propagator equations), the qua, silineariza-
tion technique to be presented here is applicable to
many different calculations.

In order to see that Eq. (66) is indeed quasilinear,
note that although the nonlinear factor ho(skp', kp')

X[kp"—Ap'(skp', ko')] 'I' of Eq. (60) remains in Eq.
(66), it is now multiplied by the new kernel

Xy($ sko;ko ko) I+(0 sko '
Ao, ko )X+((,0;ko,ho),

which vanishes at the point kp =60 of maximum non-
linearity. Not only does this kernel vanish at the point
Pp =60 it vanishes linearly at this point, whereas the
nonlinear factor has at worst only a square-root singu-
larity at this point. Furthermore, this kernel vanishes
for ko= 60 as well, and is small for small values of ko.
Thus, the most important nonlinearity present in
Eq. (60), that arising from the explicit factor hp(skp kp)
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X[kp"—Ap'(sko', kp')] '" is reduced in Eq. (66) to a
small correction factor of order Ap/pooh(0. 1.Thus, Eq.
(66) is quasilinear in the sense that the replacement of
Ao'by zero at all points in Eq. (66) and the eva, luation
of'both Zo and the kernels I+ and E+ in the normal

state lead to the linear integral equation

=Zpp-'(q, kp) I+(~,0; ko,O)Z00(0, 0)

dkp [X+(t skp", kp, kp') —I+(o,skp", O,ko')

XX+($,0; ko,o)]ko' i oi(sko', ko'), (66a)

which determines p(kp) within a factor of order &/oiph.

Of course, Eq. (66a) determines only oi(ko) and

hence the approximate f and kp dependence of Ap($, kp),

not the value of d 0. However, given both the ko depend-

ence of 60(skp, kp) and any reasonable zero-order estimate

600 of 2 0,
"one can easily evaluate the expression

A„=[~, 6„]'&'sech(3,'~(0,0; 0,0) ' Z, (0,0)

(~pp~ph) ' I'
dkp'X+(o, sko', O, kp')

XRe{ oi(sko', kp') }kp' ', (67)

which gives a first approximation to 60 accurate within

a factor of the order of max(App/pooh, Aoi /ApoMoh(0 1.
If greater accuracy is desired, one can solve the equation

Ap, +1 Ap, Zop (0 0)
8=+1

dko Xy(0 skp,' O, kp )

XRe{Boi(sko',ko')[ko' —&0 „oi'(skp, kp )] "} (68)

iteratively, obtaining values of Ao, „which bracket the

solution 60 „and converge toward it with a convergence

ratio better than [1+in(oi,h/60 „)]—'.
In order to determine Ap(p, kp) numerically by our

quasilinearization scheme, one should 6rst invert

Eq. (66a) to find pi(& kp) and then determine hp& by
integrating Eq. (67). Equation (66a) is easily inverted

numerically, because it has the simple matrix form

[I—M] -=I (69)

where I and are vectors in ko space and M is a matrix

in ko space; but of course it cannot be inverted analyti-

cally. If greater accuracy is desired, one may then ap-

"Such a reasonable zero-order estimate can be obtained either
from experiment or from any such simple approximation as the
two-step-function model of Tolmachev (Ref. 55).

proximate p on the right-hand side of Eq. (70) by pi

and either invert the resultant linear integral equation
or solve it by iteration" to obtain 00(p,kp). I'inally,
one may then substitute, & into Eq. (72) for pi and
solve this equation iteratively once or twice. The
resultant approximation Apo(t, kp) to the solution Ap(p, k p)

of Eq. (60) will be accurate to order 1'Po.
In order to find an approximation to Ap(f, ko) by

analytic means, we must find a zero-order approxima-
tion App(( kp) to Ap($ kp) for use in iterating Eq. (66a).
The inhomogenous term of Eq. (66a),

I(f,kp) =Zpp
—'(f,kp)Ii((, 0; kp, o)Zpp(0, 0),

is unfortunately a poor approximation to 0(p,ko)
since it corresponds to the replacement of the factor
Re{60(sko',ko') [ko'0 —Boo(skp', ko')] '~'} in the integrand
of Eq. (60) by the delta function 5(kp'). This approxima-
tion would (1) yield structure at energies kp which
should actually occur at energies kp+60 and (2) fail
to take account of the broadening or damping of the
structure of the kernel E+(t,skp',.kp, kp') produced by
its convolution with the function Re{60(skp,kp )
X[kp"—&0'(sko', ko')] '"} The first objection to this
choice is easily overcome by simply redefining Bop(kp)
as Io(kp —Ap„) as soon as we find the approximation
60„ to 60. However, the second objection is serious and
cannot be overcome without modifying the form of the
function I(f,ko).

The broadening of the structure of the kernel

X+(P,skp '
kp, kp ) produced by its convolution with the

function Re{60(skp',kp')[kp" —Ap'(skp', kp')] ' '} yields
a normalized gap function p($ kp) which differs from

I(),k 0) in two principal respects: (1) any sharp structure
in the function I(g,kp) is spread out in 0(t,kp) over an
energy several times as large as the gap energy 60,"
and (2) the absolute value of 0(f,kp) is, in general, less
than the absolute value of I(g,kp), especially for values
of ko much greater than the maximum phonon frequency
co». Although the first of these differences may be
neglected, since any sharp structure in I(g,kp) is already
broadened by the integration over phonon frequencies in
the determination of X+($,0;kp, o), the second one is
important. Taking account of it in an approximate
manner, one may define ™poin terms of a zero-order
estimate 600 to 60. One finds

00(E kp+Apo) = {I($ko) QI($ po )+Dn(COoh/App)]

X[I(g, lko —"~l)—I
+[in(oioh/Aoo)] '[I(6,oisr) —I(8,0)]}, (70)

where n is a numerical factor which it is convenient to
set equal to 0.6 for simple metals, 0.5 for transition
metals, and 0.2 for degenerate semiconductors or semi-

"Its solution by iteration will converge very rapidly since the
Grst aPProximation "p1(&,kp) is very good.

"For example, a step-function discontinuity in I((,kp) at the
point kp=coph would produce only a continuous change in p((,kp)
centered near the point kp=coph+Ap with maximum slope less
than E+(0;0,0)PI(cosh+0+) —I(amph —0+)g~p '& d p
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s=+I
O

dkp'(X+((, skp', kp, kp') —I+(O,skp', happ, kp')

XX+($0' kp happ)] Re( pp(skp kp )

XLkp"—&pp'"-pp'(~kp' kp')]-'I') (71)

and from Eq. (67), where the function .pp(f, kp) is given

by Eq. (70).
One may use the arguments of this section to analyze

the effect of changes in the kernel g and renormaliza-
tion constant Z upon the form ($,kp) and magnitude 6
of the gap function A((,kp), since the solution A(g, kp)

of Eq. (51a) differs only very slightly from that of

Eq. (50a). However, we reserve such an analysis for
the following paper, 4' where it is useful in discussing the
isotope eRect, and present here only a simple argument
as to why the dynamic interaction arising from the
virtual exchange of phonons of frequency co~~» is
most important in inducing superconductivity. Ke
have seen that "(),kp) has very approximately the same
form as the function I(kp) or X+($,0; kp, o), but with the
structure of the function I(g,kp) spread out and di-
minished and with the value of the ratio 6(),kp)/

I((,kp) much smaller for kp)~pph than for kp(&p&h. It
follows immediately from this fact that an increase in

the absolute value of the kernel X+(&,0; kp, o) for
almost any value"' of ko must lead to an increase in the

7' It is possible to determine the factor cx self-consistently for
any given kernel by comparing ™pp(kp) to the next order approxi-
mation 01(kp), which is given later. However, this complicated
procedure is not necessary; a simple good approximation to o.
is given by the formula=p/{1+p), where p=Zpp '(0,0)E(0;0,0)

J Q ph dkp I(kp )/kp'.
' By almost any value of kp we mean any value of kp such that

I(( kp)™(p,kp) is positive; except for a pathological kernel or in the
extreme weak-coupling limit, the product l((,kp)™((,kp) is positive
for all values of kp.

conductors, "and where I(&,M.) is an average value of

I(),kp) for kp much greater than the maximum phonon
frequency co» but much less than the electronic plasma
frequency co» and where I(p,pp2r) is the maximum value
of I(&,kp). Note that although Eq (.70) reduces to the
simple form

=pp(t, kp)—LI(k» o)—&I(8 M.)]/EI((,0)—i2I(p, pp.)] (7Oa)

in the weak-coupling limit and thus determines pp($, kp)

independently of Ap, Eq. (70) is quite unreliable in

extreme weak. -coupling cases. This unreliability follows
from the fact that p($,kp) approaches plus or minus

in6nity for all values of kp except kp ——0 as ln(pppz/imp)

approaches inanity; it is a necessary consequence of
the nonlinearity of Eq. (60).

Now, given any reasonable zero-order estimate Aoo

of the gap energy 60,"one can easily determine 6rst-
order approximations to both 0 and 60 from the
equation

Zpl(gykp+~pp)~(kykp) Zpp (t)kp)

gap width 6, provided only that the kernel X+(0,0; 0,0)
is negative (attractive). It immediately follows that
the dynamic interaction arising from the virtual ex-
change of phonons of frequency co~co» must play a
much greater role in determining 6 than either (1)
any dynamic interaction whose resonance frequency is
significantly less than &mph or (2) any quasistatic inter-
action such as the Coulomb interaction.

—E—Z—1((2+y2) 1/2 (72)

In the case of super conducting semiconductors or
sernimetals, or even in the case of metals with a non-
vanishing Coulomb interaction, the inapplicability of
the Migdal theorem leads to gap equations which can-
not be interpreted exactly within any generalized
quasiparticle picture. However, in the neglect of life-
time eGects we find an energy-gap equation identical to
that which is found for quasiparticles having the prop-
erly renormalized energies Z 'P in the normal state.
Furthermore, those lifetime eGects which cannot be
treated within a generalized quasiparticle picture are
unimportant in determining the superconducting prop-
erties of metals. Thus, a generalized quasiparticle
picture can be constructed which yields results identical
to those of the Green's-function formalism for those
cases to which the Migdal theorem is applicable, for

"J.W. Garland (to be published).

VI. CONCLUSIONS AND SUMMARY

Since this paper is intended only to give the formalism
necessary for applications to physical problems pre-
sented elsewhere4' or to be presented elsewhere, "
we have few conclusions of physical significance. Those
few conclusions which are presented here relate to the
validity or interpretation of approximations such as
the jellium approximation and the quasiparticle approxi-
mation as applied to superconductivity; other con-
clusions, related to the role of the Coulomb interaction
in superconductivity, are presented elsewhere. "

First we note that the replacement of the jellium
approximation by the assumption of a crystal lattice
with a local pseudopotential leads to no physically new
results for the case of a dirty superconductor. Even for
the case of a clean superconductor, this replacement
leads to no new qualitative results other than the intro-
duction of an easily calculated anisotropy in the energy-

gap function A(k), except possibly for the case of clean
transition-metal superconductors, which is not discussed
here.

Next, we consider the quasiparticle approximation.
In the unreal but interesting case of metals with a
vanishing Coulomb interaction, the application of the
Migdal theorem" and the Nambu-Gor'kov ' 7 Green's-
function techniques yields an integral equation for the
energy gap p(k) which can be described within a gen-
eralized quasiparticle picture in which the energy of an
excitation of wave vector ir is given by the equation
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either weak or strong coupling, " and very nearly
equivalent to those of the Green's-function formalism
for all metallic superconductors.

In this paper we have performed essentially four cal-
culations. First, in Sec. II the usual scalar Dyson
equations appropriate to the jellium model are gen-
eralized to a set of tensor equations appropriate to the
interacting electrons and phonons of a perfect crystal,
and the electron and phonon fields are separated.
Second, in Sec. III a set of three-dimensional integral
equations for the energy gap 4(k) and the renormaliza-
tion function Z(k) is derived; the role of the Coulomb
interaction is specifically calculated. This calculation
corresponds essentially to the derivation of a method
for the calculation of the effective Coulomb pseudo-
potential U of SchrieGer4 ~ 6 or, alternatively, to the
calculation of the corrections to the results of an ap-
propriately generalized quasiparticle calculation of
A(k). The terms calculated are of the order of 2 to 10%%uo

corrections to the quantity in(&oni, /d, ) and are calculated
to order 20 or 25%%uo accuracy. Third, in Sec. IV our three-
dimensional equations are reduced to one-dimensional
form for the case of dirty superconductors and an easy
method is presented for the determination of any
nearly isotropic energy gap A(k), such as is found in the
case of the simple metals. Fourth, in Sec. V a technique
is presented for the quasilinearization of any one-
dimensional gap equation. This technique is used to
analyze both the general form of the gap function

A(g, k,) and the influence upon rf(t,ko) of the Coulomb
interaction.

Although for the ease of the reader all derivations are
presented only in the zero-temperature limit, our results
are easily generalized to the case of finite temperatures
by the technique of Abrikosov, Gor'kov, and Dzyalo-
shinski. ~' One Ands, as expected, that the integrand on
the right-hand side of every integral equation for P(k) or
cL(k) should be multiplied by the factor tanh(ko'/2knT).
At the temperatures of interest here (T&~T,&&8D) all

other quantities calculated are essentially independent
of temperature.
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~s+s=Z c.+s'M(a+I;1)c.

of the column vector I9~ are Fourier components of the
electronic-charge density. The form of Eqs. (A1) and
(A2) suggests adding to the Hamiltonian (1) the source
term

&.=Z LFs(&) 6(&)+J-s esj,

which adds the term

Lcs,H,j=p Q J',+sM~(q+g; k) ci,+, (A4)

to the commutator (A1). We assume that the external
fields Fs(/) and Js(i) vanish at. (=~m, introcluce the
Nambu spinor

(cat )
Ec i s'j

and the Pauli spin matrices

0 1~ t 0 s~ 1 0~
'C2 =

Oj 5-s 0) O -1j

(AS)

(1 0~
and

Eo 1)

APPENDIX DERIVATION OF THE
DYSON EQUATIONS

Here we derive and discuss briefly a set of Dyson
equations for the system of interacting electrons and
phonons of a perfect crystal at zero temperature. We
restrict ourselves to the zero-temperature case in order
to avoid unnecessary corn.plication for the reader; how-
ever, our results are easily generalized to the case of
finite temperatures by the technique of Abrikosov,
Gor'kov and Dzyaloshinski, ~' We include all e6ects of
umklapp processes, calculate the renormalization of
phonon frequencies by electron-phonon interactions,
and express our results in terms of the renormalized
phonon frequencies.

In the Heisenberg picture, the Hamiltonian (1) yields
the equation of motion

sci, (t) =Lcs(t),H(/) j
=e' c~+Z Z Le(ti+a)ps+a+~'(sl+C) 0-sl

XM "(q+g; &) c,+„(Ai)
where the elements
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We can then define a generalized electronic Green's
function

G(1,2)—=G(ki, k2, ti, t2) = —i(Tg {kr('k, (ti)%'k2t(»2) ) & (A7)

in this c space, where T~ is the Wick time-ordering
operator, and where the elements of %' and %'t are to
be considered as column vectors and row vectors,
respectively, in / space.

The symbol ( ) is defined by the equation

(f)1(tl)t)2(»2)&= (o I U(~ »1)ol(o) U(»1»2)

x 02(o)U(»„— ) I o)/(o I U(,— ) I o&. (As)

Here, the 8(t) s are Heisenberg operators for the
Hamiltonian H4= H+H„ I 0) is the ground state of our
system, and

where the inverse of the Green's function is dined by
the equation

IG 'Gjig=—2 dtgG '(1,3)G(3,2)

t)kik2()(»1 »2)1 . (A15)

Next, we note from Eq. (A15) that, even with sources
present, Eq. (A12) defines the inverse

G() (1,2)= {[iv41(8/(t»2) sag(k—i)j@,k2

Uy(kg —kg+2)(»2)M(k1 k2 gl k2))

X ()(ti—t2) (A16)

U(t', »")= T~ exp i d»H, (—t) (A9)

of the "noninteracting" Green's function. Now, treating
the U's rather than the J's as independent functions, a
vertex function

is the Heisenberg time-development operator, where

TII is the Heisenberg time-ordering operator.
We now use the Hamiltonian source term (A3) to

generate the equation of motion of the electronic Green's
function (A6) and to obtain Dyson equations. The
definitions (AS) and (A9) immediately yield the
equations

~(6(t))/», +.(t )='L(6(»))(. . .(» ))
—(T~{()(»)P—2—g(t')) &j, (A1o)

and

~(6(t)&/&F. (» ) =
I (f)(t))(lt.(t'))

—(T {~(t)(t (t'))&j (A11)

Thus, from Eqs. (A1) and (A4) and the Hermitian-
conjugate equations, we And the relationship

l9

i—~gg(kg) ()k,k,—~2 Q M(ki —kg —g; kg)
~3 Bt3 g

X LU~(k4 —ki+g) (»2)+i((kg —ki+ g) (()/&J~(»»+,) (tg"))

+i(2'(q+g)(b/bF~(k, k, )(tg+)H G(3,2)

r(1,2; 3)—=r(1 „k„t„t„kg+g„ ti, t2, »,)
~2L»)/&U+(ka+gs)(»2) jLG '(1,2)ji,i, (A17)

can be dehned in such a way that the lowest order term
in r is particularly simple. Substituting Eq. (A16) for
G() ' into Eq. (A17), we find

r,(1,2,3)=~48k, ,k, k,b(ti —»2)b(ti —»2)M&, (, (kg+gg; k,).
(A18)

Then, we introduce the transformation matrices

R(1,2)—=»)U(1)/8J(2) and %(1,2) =—()U(1)/t)F(2),

which have matrix elements

R(1,2) =»)k,k2()g, g,8(ti—t,)+2(ki+gi)
X(4k+g (»1)&/»k~g (»2))

++ (ki+gi) (~(0-ki(»1)&/»k2+22(»2)) i (A19)
and

R(1)2)= 8kyk28(tl »2)+'U(kl+gl)

X (t)(Pk +,(ti)&/»-k(»2)),
+42'(ki+gi) (8(p k,(ti))/bp„g, k2(»2)), (A20)

respectively. Finally, we obtain the Dyson equation

where the element
=%4hkik2()(»2 —»2)l, (A12)

I
G —Gj &»)»g(»» )]pic . . . g g g

&3 &V g6 gv

Uk,+.(»1)=~(ki+g)(Pki+g(ti) &+~'(ki+g)
~ (P k,(ti) &+Jk14.2(ti) (A13)

of the column vector U(1) is the ki+ g component of the
effective Hartree field at the time ti, and where 1 is
the unit matrix in / space. The sign ~ is defined to be
+ for the 1,1 and 1,2 elements in ~ space and to be-
for the 2, 1 and 2,2 elements; the t+ is defined to be
t+0+, where 0+ is a positive infinitesimal. In order to
convert Eq. (A12) into a Dyson equation, we note that

t)G= —G ()(G-') G (A14)

dt,M(k, +g, ; k,)~,G(3,4)~,r(4,5; 6)

XG(5,2) I 2 (k2+g2)R(6i7)+42'(ki+ g2) %(6,7)7

X()k, ,kg k18(tg —ti) &(»2—ti") . (A21)

We now remove all sources and make use of the in-
variance of the Hamiltonian II of Eq. (1) under transla-
tions either in time or though any lattice vector R 4.

in space. For nonsuperconductors, it is obvious that the
generalized single-particle Green s function G(1,2) is
diagonal in spin space. Assuming that the ground state
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~0) need not be an eigenstate of the total number

operator and assuming Cooper pairing" in the super-
conducting state, ~' one finds that the Green's function

G(1,2) and the interaction propagators R(1,2) and

%(1,2) reduce to the simple form

(H+H, )], which yields the equation

M, ,[—(8'/Bt') —((o„'(q))']Q„, ,(t))
=F-, (h) —Z -'(a+g) E

g h

XTr[M(q+g k)G"(k,k+q; h, t+]), (A32)
(A22)G(1,2) = kgb„G(ki, ti—t2),

R(1,2) =4,g,R(ki, ti—t2),

%(1,2)= bg, g,S(ki, ti—h2),

where G" is the 1,1 component of G in z space. An-

other set of equations for (P„~(t)) arises from the

(A24)
definitions (A2) and (A13) of y and U:

in all cases. This simplification of the form of G(1,2),
R(1,2), and g(1,2) allows us to define the simple Fourier
transforms

'(tl+g) 8- (h)) = U + (h) —~+ (h)+ ( +g)

XP Tr[M(q+g, k)G"(k k+q t,t+)]. (A33)

G(k) =— ChG(k, t) exp(ikot),

R(q) =— Ch R(q, t) exp(iqot),

It is now clear that the elimination of Q „,~(t)) between

Eqs. (A32) and (A33) and the functional differentiation
of the resultant equation with respect to J, and F,
should yield equations for R(q) and Q(q), respectively.

(A26) Removing all sources, one finds the equations

and

@(q)=— Ct~(q, t) exp(iq4), (A27)

R(q) = [I—Ao(q) P,(q)]-'

&.(q+g)=tl-f. , a '2 ~as (il)~-'(&+g')/

(A34)

[r(k,q; g)]»—— ChCt'

xr(k+q, k; t„t,; gag; h,o; t—h')

Xexp[i(kpt+qpt')], (A28)

where the arguments k—=k,ko and q—=g, qo are four mo-
menta. This, in turn, allows us to rewrite the Dyson
equation (A21) in the simplified form

[qP—(o)„'(q))'], (A35)

where the tensor Ao(q) has matrix elements

LAO(q)]gg = b.g

-'(q+g) -'(q+g')
(A36)

- ~., "(a+g') [qo' —( -"(q))'+h0+]

and where the tensor P, (q) has matrix elements

where
G(k) = [Go—'(k) —X(k)] ', dko

exp(ik00+)(A29) [P.«)],.=-'(q+g) Z
2x'

dip
X(k)=i P g g Mr(q+gi; k)~BG(k+q)

g1 g2 oo 2'

X~sr(k, q; gi)v(tl+g2)Ki2(q) exp(iqo0+) (A30)

is the irreducible self-energy tensor, and where

&»(q) =[R(q)]i +Z -(0+g )&-(0+gi,qo)/

is the total interaction propagator.
Finally, in order to evaluate Eq. (A30) for the self-

energy X, we must Qnd a simple expression for the
interaction propagator R and St This requires the
evaluation of the double commutator P[P,„(H+H,)],

7' L. N. Cooper, Phys. Rev. 104, 1189 (1956).
77These are essentially the two basic assumptions of the

BCS theory.

XTr[G"(k+q) M(q+g; k)

XG»(k) r"(k q. g')] (A37)

which give the electronic contribution to the polariza-
bility of any crystal and dehne the dielectric tensor

v(q) = 1—P,(q) =I (q) . (A38)

Finally, from Eqs. (A31) and (A34)—(A36) we 6nd the
total interaction propagator

K(q)=LAo '(q) —P (q)] '. (A39)

Given the definitions (A17), (A28), (A36), (A37),
and (A39), of I' and K, Eqs. (A29) and (A30) con-
stitute a complete set of Dyson equations for the elec-
trons of a perfect crystal, in either the superconducting
state or the normal state. However, our equations for
the total-interaction propagator K(q) do not have a
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convenient form. We should express K(q) as a sum This allows us to define the Fourier transform

K(v) = K.(v)+ K"(v) (A40)
D(q) = Ch D(q, i) exp(iqpf), (A45)

of Coulomb and phonon-induced contributions, where
the phonon-induced contribution is expressed in terms
of the renormalized, experimentally observable phonon
frequencies cp„(q), rather tha, n the bare frequencies
rp p(q) rs

In order to determine the renormalized phonon fre-
quencies, we now And the phonon Green's function

and to write the phonon Dyson equation

("46)
where from Eqs. (A42) and (A43) the phonon self-
energy is given by

D(1,2)=»P'rr{0» (r')A '(~s) }). (A41)

The functional differentiation of Eq. (A32) with respect
to F„,» (3') yields the equation

L(o'/@ ')+( '(q))'3{D (1 2)—(4', (~ ))

X(4. ,„'(~s))= ~..~„„~(~&—~s)

—s Z ~-'(qr+0) Z
s & 8F , », (/s)

X{Tr)M(qr+g; k) G"(k,k, +qr, tr, t&+)]}, (A42)

which is analogous to Eq. (A12). This equation yields
the simple formula

LDo '(1,2)j.,"=~-, t:(~'/~~ ')+(~-'(q ))'3
X ass 8„»sb(t t—ts) (A43)

for the noninteracting phonon Green's function, even
in the presence of source terms. Mak. ing use of the in-
variance properties of the Hamiltonian H of Eq. (1),
we see that the phonon Green's function must have the
simple form

D(1,2) =
&»r», D(qr, 4—4) . (A44)

"As we shall show, the index v of or, (q) does not have precisely
the same meaning as the index n of co„'(q). Renormalized phonon
states are hybridized by electron-phonon interactions in the same
way that electronic bands are hybridized by electron-electron
interactions.

go
2M„,»

—D, (q)dip= 1,'. 2~
(A49)

which is only of order m/cV„, »«1 for metals. Even in
degenerate semiconductors these poles at higher energies
contribute only negligibly to the sum rule (A49).

79 The 0,0 component of u„l(0) is the conventional plasma fre-
quency cop&, the real part Re(~;;(q,q0)} of the i,j component of
the dielectric tensor vanishes at the frequency Lrop~(qlg;;, which in
general is greater than ~pl.

and where the tensor Ip(q) has matrix elements

('Ip(q) j-,ss =~-'(q+a)~"'(q+g')/n(q+C') (A4g)

Remembering that the quantity Re{L'P,(g)K,(q)jss. }
is negative for values of qo less than the g, g' com-
Ponent of the Plasma-frequency matrix rapt(q) rs and
that it decreases very rapidly from plus infinity at
qp

——Lrp~t(q)jss. to a value of order unity for larger
values of qp, we see immediately from Eq. (21) that the
eigenvalues D„(q) of the phon on Green's function
D(q) must each have more than one pole in the com-
plex qo plane. The 6rst and most important pole occurs
at a frequency rp„(q) which is lower than the unrenor-
malized frequency rp. s(q) snd which, for acoustic pho-
nons, approaches zero as q approaches zero. This pole
gives the renormalized phonon frequency. The other
poles, which are at frequencies slightly higher than the
frequencies [pp„~(q)jss, and which correspond to plasma
oscillations, give a total contribution to the integral


