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effect of the free surface of the experimental specimen
must be eliminated either geometrically or by an
appropriate coating of normal metal. "

rs L. J. Barnes and H. J. Fink, Phys. Letters 20, 583 (1966);
J. P. Hurault, ibid. 20, 587 {1966).In the paper by Hurault it
is shown that for a normal metal S deposited on a superconductor
S with perfect electrical contact, h

&i)H, 2 only if the conductivity
o& of S is smaller than the normal-state conductivity crz of S.

So far as I know, Hurault's paper is the only calculation prior
to mine of the nucleation Geld of an internal phase boundary. The
physical situation considered by Hurault is, however, quite differ-
ent from that considered here. One expects the sheath at an ÃS
phase boundary with perfect transmissivity to be one dimensional
(no Quxoids at the boundary), hence P may be assumed real with-
out the vector potential becoming discontinuous at the phase
boundary. Furthermore, the temperature T is necessarily distant
from the critical temperature of at least one of the two metals, so
that one may not argue that P in the bulk varies slowly over the
range of the kernel in Gorkov's integral equation for the nucleation
field. The field dependence of the logarithmic derivative of P at the
boundary in Hurault's problem is due to the extremely rapid
exponential variation of P in Ã near the barrier for large H. There
is of course no question of this occurring in the tunneling-barrier
problem near T„ in which P varies slowly on both sides of the
barrier.

The critical-Geld ratio H»/H, 2 calculated by Hurault is strongly
temperature-dependent, but his curves are concave up in the
Ginzburg-Landau region of the superconductor, in contrast to our
Fig. 2.

Since H«/JJ, s is especially sensitive to tetnperature
very close to T„ it might seem that measurements in
this temperature range will be the most crucial test of
the validity of our theory. For this reason one should
choose material with a narrow transition width. How-
ever, we must sound a warning: If the composition of
the metal near the barrier differs from that of the bulk,
it may have a slightly different critical temperature, in
which case it is possible that our results may not be
strictly applicable for temperatures extremely close to
T,. For any given alloy system, it would be wise to
choose a composition at which T, has an extremum, so
that small variations in composition will not appreciably
affect T,.

We wish to point out that the effect we have predicted
may be useful as a tool for the experimental investiga-
tion of the electronic properties of grain boundaries in
polycrystalline metal.
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The eftect of anisotropy of the superconducting energy-gap parameter upon the critical field H, when
nonmagnetic impurities are present is theoretically examined. Gap anisotropy is shown to produce cor-
rections, of the order of the mean-squared anisotropy (a'), to the isotropic-gap values of H, . With an aniso-
tropic BCS-like model introduced by Markowitz and Kadanoff, the reduction of these corrections as im-
purities are added is calculated. An upward shift in the value of Ho'/8m7T, ' and in the curve of h=H~/Hp
vs t= T/T, results when impurities are added to an anisotropic, moderately weak-coupling superconduc-
tor. Expressions for these shifts are given.

I. INTRODUCTION

'HE presence of anisotropy of the superconducting
energy-gap parameter has many interesting

effects upon the properties of superconductors. One
way to observe these effects is to add nonmagnetic im-
purities to pure superconducting crystals and measure
certain properties as a function of the impurity concen-
tration. If these properties depend upon gap anisotropy,
then they will change in a theoretically predictable way
as the scattering produced by the impurities reduces the
effect of the anisotropy. An example of this kind of
experiment is the behavior of the critical temperature
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as a function of impurity concentration, ' ' which has
been treated theoretically by a number of authors, ' "in
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particular by Markowitz and Kadanoff. "Another ex-

ample of this kind of experiment, and one which forms
the topic for the present paper, is the behavior of the
critical Geld as a function of impurity concentration. "

The effect of anisotropy upon critical-field curves, as
was shown by the author" with the use of a simple BCS-
like model for the anisotropy, is to introduce corrections
of order (a') to each of the relevant quantities Hp, T„
and k =H, /Hp versus t= T/T, . The quantity (a'), called
the mean-squared anisotropy, may be defined in terms
of the Fermi-surface average of the square of the devia-
tion of the gap parameter 6„from its average value in
the absence of impurities:

(")=—((~.—(~,)-)')-/(~.)'-, (1)

and is a small quantity (typically, (a') =0.02) for most
superconductors. "As impurities are added, the resulting
scattering reduces the magnitude of the anisotropic part
of the gap parameter, "which in turn causes the small

(a') corrections to disappear. It is the purpose of this
work to investigate and describe this reduction of the
anisotropy effect upon the superconducting critical field

as nonmagnetic impurities are added.
In Sec. II we shall perform a calculation of the

impurity dependence of the anisotropy effect for a
simple model of an anisotropic weak-coupling super-
conductor. We shall study first the behavior of the gap
parameter and then that of the critical Geld to derive a
function, X//(t, X), of the reduced temperature and

impurity concentration which describes the effective-
ness of anisotropy corrections. In Sec. III we shall dis-

cuss in terms of Xl/(t, X) the expected behavior of the
experimentally measurable quantities.

II. CALCULATION OF THE CRITICAL FIELD

A. Impurity Deyendence of the Gay Parameter

In order to perform a calculation of the critical field,
we choose to study the model of a weak-coupling
superconductor for which the BCS effective electron-
electron matrix element" has the separable form, "' "
V» = (1+a„)V(1+a„),where av is an anisotropy func-

tion chosen to have zero average over the Fermi surface.
The anisotropic energy-gap parameter A(p, s) (as a func-

tion of the wave vector p and complex energy s in the

upper half plane) can be obtained from the equation" "

impurity cross section a (here assumed to be isotropic) .
The primed angular bracket refers to the averaging of
p', rather than p, over the Fermi surface. The quantity
pp must be determined self-consistently from Eq. (2)
and" "

~p= 21Vpl/' Re
t42D ~(p,s)

ds (1+a„)
L~' —&'(| ~)j'")

&& tanh-,'Ps. (3)

Here, Ep is the average density of states per unit energy
of one spin at the Fermi level, P = (kT) ' where T is the
temperature, and ~D is a cutoff of the order of the Debye
energy.

To obtain the effect of the impurity scattering upon
ep, it is convenient to deform the integration contour
such that it makes an arc from —coD to icosa, runs down

along the left side of the imaginary axis to the origin,
runs back up along the right side of the imaginary axis
to i~D, then makes another arc to era. With the neglect
of the great-circle contribution this yields

vD

1=21VpV Q ((v2+2:) '"
odd v=1

( /~ o)((1+ .)~(p, ,)/[ '—~'(p, ,)]'")-
—(v2+ g)

—1/2+ (a2) [v4/ (v2+ g) 2 ((v2+ a)1/2+ 1) /t)
—v x/2(v +x) ((v +x)' +X/t) ] (5)

where s.=i2rv/p, which can be obtained from Eq. (2)
as described in Ref. 14 by expanding in powers of the
anisotropy function and keeping terms through order

~~ = ~y~ av.

At the critical temperature, Eq. (4) becomes

"Dc
1=21VpV P [v—'+(a')(v+))) '],

odd v=1

where vD, =P,p)r&/2r. Since

+ (a )[v /(v2+g)'((v2+ g)'/ +1)/t)

—v x/2 (v +x)2/ ((v +.2)'/ +7,/t) ]), (4)

where v is an odd integer, vt)=p4pD/2r, 2:=capp/2r]',
X= (22rkT, r,) ', and t= T/T, . We have made use of

~ (p', s) —~ (p,&)

~(p, s) =«(1+a.)+, (2)
2r [s2 +2(p& s)])/2

vDc

2 P v '=ln2y, vn. +O(vt), '),
odd v=1

(7)

Here, r,= (2trpvo)' depend. s upon the density 2tr of
impurities, the Fermi velocity vJ, and the electron-

"D. Markowitz and L. P. KadanoR, Phys. Rev. 131, 563
(1963)."J.A. Gueths, C. A. Reynolds, and M. A. Mitchell, Phys. Rev.
150, 346 (1966).

J. R. Clem, Ann. Phys. (N. V.) (to be published).
' J. R. Clem, Phys. Rev. 148, 392 (1966).
6 J.Bardeen, L.N. Cooper, and J.R. SchrieBer, Phys. Rev. 108,

117S (1957).

where &.=1.78107, Eq. (6) yields in the weak-

coupling limit

kT, = (2y,p)n/2r) exp( —1/1V )p(V1+(a')X.), (g)

where
vDc

X„.(1),) =2 P (v+1).) '.
odd v=1
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The function X, describes the eRectiveness of the
anisotropy upon the critical temperature as a function
of the impurity concentration. For small X it obeys

X (X) =1/EoV —-'l (2)X+(7/4)l (3)X'+ (10)

coinplete description of the anisotropy eRect upon
oo/AT, as a function of temperature and impurity con-
centration. Some special values of X6 are

X,(0,0)=-;, X.(1,0)=-;, Xg(~, )=O. (»)
where 1 is the Riemann zeta function, and for P))vnc Although we could make use of Eq. (16) to display Xg
(or 2~op&r.((1) it obeys for arbitrary t and X, we shall now turn our attention to

X.(X) =in[1+ (2ioi)r.)$. (11) an. examination of how the anisotropy effect which
enters into oo/kT, in turn influences the critical 6eld.

odd v=1
[v '—(v'+x) '~']+(a')X

It is related to the function I, introduced by Markowitz
and Kadanoff" via X,=1/1VoV —~I, ~. We note that
additional valence eRects upon the critical temperature
enter through the variation of ~D Sp, and V as a func-
tion of thc llIlpullty concentration.

By subtracting Eq. (6) from Eq. (4) we obtain

B. Impurity Dependence of the Critical Field

An expression for the superconducting critical field in
the presence of nonmagnetic impurities can be obtained
by means of a procedure used by Skalski, Betbeder-
Matibet, and Weiss, ' suitably modified to account for
Rnlsotlopy. Thc I'csult ls

—2(g') P (v4/[(v'+x)'~'+X/tj
odd p=l

&,'/&ir =Xo Re ds Lp(s) —1j

—"x/2("+x)'"L("+x)'"+&/tj') (»)
This cquRtlon ls to bc leg Rrdcd Rs determining
x= [B.oo(t)/x-tj' for a given reduced temperature t as a
function of (g') and X.We now wish to expand in powers
of (a'). Let us introduce the quantity Xg(t,X) via

o, (~,Z)/kT. = [1—(g')Xg(~, l )j.;(~)/uT. o, (13)

where the superscript "0"denotes the value of a given where

quantity if (g') were equal to zero. Then, inserting

&& [s tanh-', Ps—ion] —oo'/V

Re ds [p(s) —1j

p(s) = (s/[s' —~'(p, s)j'")-.
x=x'(1—2(a')Xg)

into Eq. (12) we obtain

1nt ' = 2 P [v ' —(vo+xo) '~oj
odd v=1

With the introduction of

F(s) = ds [p(s) —13 (20)

o
&Dc

0

Eq. (18) can be converted via an integration by parts
into the convenient form

odd a=I odd v=1
Xgx' Q (v'+x') "'= Q (v+l~o) —'

+c &0
--= ———X Re

8m- V
ds F(s) tanh-,'Ps. (21)

—2 {"/("+x')'[("+x'8'+&'/&]
odd v~l

—v'x'/2(v'+x')oi'[(v'+xo)'~'+V/t]'), (16)

where we have neglected terms of order ooo/a&D'. Equa-
tion (15) yields for a given value of t the corresponding
value of xo and, hence, of ooo(t)/kT '. Miihlschlegel" first
used this procedure (with vino ——~) to generate tables of
thermodynamic functions for the BCS isotropic weak-
coupling model. The known values of t and xP can then
be inserted into Eq. (16) from which Xg(t,X) may be
ob tRlncd.

We remark that the function Xg(t, l~) provides the

"B.Miihlschlegel, Z. l'hysik 155, 313 (1959).

We next make use of the analyticity of F(s) in the upper
half plane by deforming the contour as we did to obtain
Eq. (4), which yields an expression for H, in terms of
the values of F(s) at the poles s„=iorv/P, where v is an
odd integer, of tanh-', Ps. An expansion in powers of the
anisotropy function similar to that used to obtain
Eq. (5) yields

(Ar/P)-'F (s,)= (v'+x)'"—v

+(g') v'x/2(v'+ x)[(v'+x)'"+l~/tj. (22)

Thus, we obtain with the use of Eq. (4) and v = os'&o&'

"S.Skalski, Q. Betbeder-Matibet, and P. R. gneiss, Phys. Rev.
136, A1500 (1964).
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FIG. i.XII (f,X), Which
describes the efkctive-
ness of anisotropy cor-
rections to II,2/87fyTp
versus the reduced tem-
perature t for various
values of the impurity
density parameter

X=—(2~k T,~.)-1.

where A(t) is the penetration depth. As impurities are
added, Xrr(r, X) decreases in value, at first linearly with
), then gradually tends to zero.

For numerical computation of X~ it is convenient to
convert the upper limit yii,o in Eq. (27) to yD', keeping
track of the difference. Since Xrr(r, X) is rather insensi-
tive to the value of P~n for large P~n, we then take the
limit as P~n ~~. With the help of Eq. (16) we then
obtain

0 0.2 04 0.6 0.8 l.o

the expl esslon

B.2 V~8.—= '
=-;~ P (4(,o+x) ~ —4,—2x/(. +x)

8gyT', 2 odd v-S

+(a'}[2y'x'/(y'+x)'((y'+ x)'I'+X/t)

+"x'/("+x)'"(("+xP'+&/~)'7) (23)

We next expand for a given value of & in powers of (a')
as we did to obtain Eqs. (15) and (16).With the intro-
duction of the function Xri(t,&i)»a

8 o(i ~)=8 o'(r)[1—2(a')Xn(~ l )) (24)

we obtain with the help of Eq. (14)

8."(&)
V~

oto p [4-(y'+x')'I' —4y —2xo/(y'+xo)'~'7 (25)
odd v=l

-oo'(t)B '(0) '

ooo (0)H, o (/)

vg) o

Xrr ——2 P (y+l,o)-i

y'/(~+xo)[(~+x')'('+l, o/t) (27)
odd v~1

Fquation (25) yields 8;o(t) as a function, of t. Equation
(26) then determines XH for a given 3 as a function of
the impurity concentration. (In the following we shall

suppress the superscript "0" wherever possible. ) We
observe from Eq. (24) that the function Xrr, shown in
Fig. 1, describes the effectiveness of anisotropy correc-
tions to the critical Geld as a function of the impurity
concentration. In the absence of impurities X~ is of
order unity. For example,

XJi(0,0)=1, Xir (1,0)= 2,

(f~$) 2 P ( (y2+x) 1/2 yo (y2+ x) i

odd v=1

X[("+*)"+&/6 '—
I

y ' —(y+&) ')) (30)

As t —+ 0, the summation involving x may be con-
verted into an integral, yielding

X~(o,l )

d8 sin'8(1+y cos8) ' —X(lb,)

=or/2y —(1—y')'i' cos-'y/y —X(l~) y&1 (31b)

=s/2y+ (y' —1)'i' cosh-'y/y —x(l~) y& 1 (31c)

where y = [2oo(0)r,) ' =y, li and X(X) is defined in terms
of the digamma or psi function via

f'1+ii —&(-')=2 Z [ '—(+&)'7
k 2 odd v=1

For a given X an expansion of X~(t,X) about the
critical temperature in powers of (1—r) can be obtained
with the help of Eq. (15), with the result that

X (» X)=B,(x)(1—r)+B,(X)(1—r)'+" . (33)

In terms of the derivatives X& "& (li) =d "X/dpi" of X (li) and
the derivatives xi"&(t)=d"x/dP of x(t) evaluated at

Bi(li) = —x'(1)[x'(0)/X —x(X)/2X' —x'(li)/2l~)
—[1—Xx'(x)) (34)

x'(1)= —0.9508,
x"(1)= 2.2457.

Some special values of Bi and Bo are

(36)

(37)

B,(Z) =x"(1)[x'(0)/2X —x(Z)/4zo —x'(y)/e)
—[x'(1))'[x"'(0)/6X+3X"(0)/16)P
+x(l~)/SX' —x'(X)/Sa' —x"(l~)/Sl~'7

+x'(1)[x'(0)/Z —X(~)/~o+X" (~)/2)
—[1/2 —Xx'(& )—Xox"{X)/27, (35)

and for intermediate temperatures

oo(t) Ho --'A(0)
Xrr(t, 0)=

oo(0) B,(/) h. (t)

Bi(0)=2,
Bo(0) =1+x""(0)/2[x" (0))'= —0.3620,

Bi(")=Bo(~)=o.

(38)

(39)

(4o)
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The zero-temperature result (31) and the power-series
expansion (33) together are sufficient to give a fairly
good approximation to the behavior of XII(t,X) vs t as
a function of X. These results are shown in Fig. 2 as
dashed lines. The solid lines in Fig. 2 are sketches of the
expected behavior of Xrr(t, ) ) obtained by interpolating
by eye between the dashed curves. The accuracy is
estimated to be about 2%. Values of XH(t, X) obtained
in this way were combined via Eq. (26) with the tabu-
lated values of ss(t) and H, (t) to obtain Xlr(t, X) shown
in Fig. 1.Note that Xrr(1,) ) =Br() ).

The zero-temperature critical Geld Hp as a function
of the impurity concentration may be written in terms
of X~ and X, as

Hp() ) =4(s-Np)' '(on exp( —1/NsV)
X{1+(a')[X,() )—X„(0,),)7) . (41)

Because of the dependence of coD Xp, alld V upon the
impurity concentration, Hp exhibits valence effects
similar to those of T..

The reduced critical ffeld h=H, /Hs may be ex-
pressed as

k(t, ) )=hs(t) {1—(as) [Xrr (t,) )—Xrr (0,) )7) . (42)

The fact that the anisotropy effect upon the critical
ffeld can be analyzed in terms of (a') is perhaps sur-
prising, since the critical Geld is thermodynamically
related to the superconducting electronic speciGc heat,
which at low temperatures depends rather sensitively
upon the anisotropy distribution. "Because expansions
in powers of the anisotropy function a„were performed,
the above results should rot be extended to cases where
very small gap excitations play a signiGcant role, as is
the case for the low-temperature specific heat. However,
this procedure may be applied successfully to H., since
at no temperature is the magnitude of the critical field
strongly affected by these excitations.

III. DISCUSSION

In the previous section we derived, using a simple,
anisotropic weak-coupling model, the impurity de-
pendence of the anisotropy effect upon the quantities
T„Hs, and h(t) which characterize the superconducting
critical Geld H, (T). We next wish to cast these results
into a form which will perhaps allow comparison with
measurements of critical-field curves of moderately
weak-coupling superconductors as nonmagnetic impuri-
ties are added. Since we are here solely interested in the
effectiveness of the anisotropy as a function of the
impurity concentration, there are two complications we
wish to avoid: valence effects and strong-coupling,
retardation effects.

In experiments upon samples of different impurity
concentrations, one is faced with the possibility that
changes in Ep, V, and co~ inhuence the value of the
experimental quantity in question. The critical tem-
perature exhibits such effects, called valence effects.

I.O

I I I i I I I I I

FxG. 2. XII(t,) ) versus
t' as a function of
X= (27fkT,j.~) ' as ob-
tained by (1) Eq. (31)
(short dash), (2) Eq.
(33) gong dash), and (3)
interpolation as de-
scribed in the text
(solid).

04

0.2

00 0.2 0.4 2 0.6 0.8 I.Ot'

These quantities are directly comparable with the
results of Sec. II by means of the relations

8Hs(X)/Hs(0) = (a )8H(X) (47)
and

bh(t, ) )/h(t, 0)= (a' )S,(t,) ). (4S)

A procedure to obtain the connection between
the experimentally measured resistivity ratio and

From Eq. (41) we see that Hs should also exhibit similar
valence effects, making Hp itself somewhat undesirable
for the study of the anisotropy effect. However, since
in the weak-coupling calculation the valence effects
upon Hp enter by means of the proportionality of Hp'
to NsT s, the quantity Ho'= Hss/grryT—s should be very
nearly free from valence effects. (Here p is the coefficient
of the temperature in the normal electronic contribution
to the speciffc heat. ) Furthermore, since h=—H,/Ho
versus t= T/T, is —already relatively free from valence
effects, it follows that an experimental study of Bs and
h(t) as a function of impurity concentration is well
suited for analysis in terms of the anisotropy effect.

Because of the high sensitivity of critical-field experi-
ments, the behavior of Ho and h(t) often deviates
noticeably from the results of the isotropic BCS model
in the weak-coupling limit. However, since we are
interested in the anisotropy-produced deviations of Hp
and h(t) from their values appropriate to isotropy, only
the changes in Hs and h(t) as impurities are added are
of importance to us here. For the moderately weak-
coupling superconductors with which we are concerned
we shall assume that strong-coupling, retardation effects
change much more slowly with increasing impurity
concentration than does the anisotropy effect.

The experimental quantities which seem best suited
for a study of the anisotropy effect as a function of
impurity concentration are therefore

5IIp(X)/Bp(0) = [IIp() )-Hp(0)]/Bp(0) (43)
and

8h(t, ) )/h(t, 0)= [h(t,X)—k(t, 0)]/h(t, 0), (44)
where

II,s() )=H,s() )/8 ~(~)T.'() )
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Fxo. 5. Entropy versus
temperature T for fixed
T, : normal-state en-
tropy S„(T)=yT (solid)
and superconducting-
state entropy S,(T) in
the absence of gap ani-
sotropy (solid) and in
the presence of gap
anisotropy (dashed).

FIG. 3. 50() ) versus 'A, obtained from Eqs. (31) and (49), show-
ing the expected increase in IIo' ——Ho~/8~pT, 2 as impurities are
added.

X= (2rrkT, r,) ' has already bein given by Marlrowitz
and KadanoR. " The quantities 811()) and 8p(f, X) are
defined as

(49)

Hp'/SIr = d T LS-(T)—S.(T)]

The normal-state entmpy is given by 5 (T) =yT, but
the superconducting-state entropy 5,(T) has a more
complicated behavior, shown in Fig. 5, which depends

0.2ah
ca~&

O. l

0
0 0.2 0.4 0.6 0,8 I.O

2

Flo. 4. Sh(I,X)/(a')
=h(t, 0)8A, (t,P ) versus
t2, obtained from Eq.
(50) using for h(t, 0),
for convenience, the
BCS results tabu-
lated in Ref. 16.
These curves show
the upward shift in
curves of h=H. /IIp
versus IP = (T/T )' as
impurities are added.

i~ The author is indebted to Professor R. A. Ferrell for suggesting
this point of view.

s„{~,) )=—t x~(f,o)—x~{0,0)g
—Lx„(&,) )—xH (0,) )j. (50)

Thc quantity &II(),), which describes the anticipated
increase in Ho as impurities are added, is shown in Fig. 3.
The upward shift, 8h(f, ),), to be expected in curves of
h(f) versus f is shown in Fig. 4.

To obtain a feeling for the anisotropy effect upon
Ho,"we 6rst note that Ho obeys

upon the thermal probability for excitations above the
energy gap. Both 5 {1')and 5,(T) for the isotropic gap
case are shown in Fig. 5 as solid lines. We see that
Hps/Srr is given by the cross-hatched area between the
curves of 5„(T)and 5,(T).The effect of gap anisotropy
is to enhance thermal excitation probability, thereby
increasing the entropy 5,(T) slightly, as shown by the
dashed curve in Fig. 5. Thus, for fixed y and T, the
area between the curves of 5„(T) and 5,(T) and hence
the value of IIO are reduced when anisotropy is present.
However, as impurities are added, the magnitude of the
anisotropic part of the gap parameter decreases, " the
anisotropy effect diminishes, and the value of Ho
gradually increases, tending to that appropriate to the
isotropic case.

The upward shift in curves of h(f) as impurities are
added for 1&0.3 is a direct result of the behavior of Ho
discussed above. At higher temperatures this shift arises
from a small upward shift in ep(f)/ep(0) versus f with in-

creasing impurity concentration.
In brief, the main conclusions of this paper are that:

(1) The effect of anisotmpy of the superconducting
energy-gap parameter upon the critical field H. (T) is to
produce corrections of order (II') to the corresponding
isotropic gap values. (2) As nonmagnetic impurities are
added, these anisotropy corrections decrease in magni-
tude, and their dependence upon impurity concentra-
tion can be calculated. (3) These effects should be ob-
servablc lll cxpcllIIlclltal studies of 8IIp/Hp and 8h/h,
which are relatively free from valence and strong-
coupling, retardation effects.
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