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The effects of various external probes on a gas of interacting electrons confined to a foil are examined in an
approximation for the response functions which reduces to the random-phase approximation for a bulk
sample. Some band effects are included in a phenomenological manner. Surface corrections to the bulk
properties are found which cannot be obtained in a wave-number-independent treatment nor in the Born
approximation. The momentum dependence of the surface plasmon’s resonant frequency is found and the
response of the system to fast incident electrons and electromagnetic radiation is calculated.

I. INTRODUCTION

N this paper a formalism is developed to treat a gas
of interacting electrons confined to a slab of finite
thickness. The boundary condition of specular reflection
is applied directly to the electronic wave functions. The
response functions for this system to various external
disturbances are calculated from a unified point of view
in a well-defined approximation. The basic approxi-
mation to the response functions is identical to the
random-phase approximation (RPA) in a bulk sample.
Using the response functions obtained from this forma-
lism, some properties of metals due to surfaces and finite
size are investigated.

In addition to the usual resonance at the plasma fre-
quency, a surface resonance is found. This is the surface-
plasma mode first predicted by Ritchie! and further
elucidated by Ferrell, 23 Stern,? and others. It is shown
that the resonant frequency of this mode depends
linearly on its momentum parallel to the sides of the
slab in a thick sample. There are some minor corrections
to Ritchie’s expression for the energy loss of a fast
electron passing through the sample. These corrections
are due to further wave-number dependence of the re-
sponse function. A calculation is also made for the
energy loss in a reflection* experiment where the Born
approximation cannot be used. A crude calculation indi-
cates that surface effects may alter the electromagnetic
reflectivity in a thick sample if lifetime effects due to
other processes are small.

The model consists of a gas of electrons interacting
via the Coulomb potential in a slab confined to 0<z<d
with infinite lateral extent in the -y plane. An infinitely
high potential barrier is assumed to exist at the bound-
aries. This boundary condition of specular reflection is
valid only for metals with a smooth surface and no
oxide® coating. The effects of bands and phonons will
be inserted phenomenologically.

* Work supported by the U. S. Air Force Office of Research,
Air Research and Development Command under Contract No.
AF 49(638)-1545.
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4 See, for example, C. J. Powell and J. B. Swan, Phys. Rev.
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5 For effects of an oxide layer see Ref. 3.

153

Since the slab is infinite in the x-y plane, periodic
boundary conditions are applied on a square of side L
in this plane. The wave numbers in this plane are de-
noted by p and those in the z direction by k. The letter
q will be reserved for the pair (p,k). The treatment is
restricted to zero temperature and gpd>>1, where ¢r is
the Fermi momentum. Further, 7% is set equal to 1. The
noninteracting wave functions for this model are

¢(r)=(2/L2d)'/? expip-p sinkz 1)

for 0<2<d and zero outside this region. The cylindrical
coordinates r=(p,5) have been used. The components
of p are 2mn/L and k is restricted to mn/d where n
is an integer. The noninteracting single-particle energies

are
E(q) = E(p,k)= (p*+k*—qr?)/2m 2)

as measured from the Fermi surface. It is assumed that
the background of positive charge does not appreciably
alter ¢ or E.

The response functions are calculated in the Appendix
using Green’s-function techniques. In terms of these
techniques the approximation used is identical to the
RPA in a bulk sample. The structure of the surface
corrections, and in particular the surface plasmon, are
discussed in Sec. II. The formalism is used to discuss
the energy loss of fast incident electrons and the inter-
action of the sample with electromagnetic waves in
Secs. IIT and IV, respectively.

II. STRUCTURE OF THE SURFACE PLASMON

The linear response or correlation functions L, are
given in the Appendix by Eqs. (A16) through (A24). We
note that L,,(p,k’,k"”,w) contains two distinct types of
terms. One type, consisting of the first term in Eq.
(A17) and S.9 is proportional to 8(k'-=k”). These
terms are those which are equivalent to applying specu-
lar reflecting boundary conditions to the system after
calculating the bulk response as is done in calculating
the anomalous skin effect.5 These terms contain the
bulk plasma resonance but not the surface plasma reso-
nance which is contained in R,. In the second type of
term &’ and %" are unrestricted except that n'4-n’’

6 See, for example C. Kittel, Quantum Theory of Solids (John
Wiley & Sons, Inc., New York, 1963), Chap. 16.
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must be even. Although in the Born approximation
only contributions from %'=%"" enter for large d, the
other contributions are important in general.

For the purposes of this paper only wave numbers
small compared to ¢r and frequencies of the order of
the plasma frequency, w,=4wne?/m, are considered.
In this limit the last two terms in Eq. (A17) and the
last term in Eq. (A18) may be neglected. The remaining
quantities in Eq. (A17) are easily evaluated with the
exception of R, which will be studied in this section.
Before obtaining R, however, a short discussion of
e(pkw) defined by Eq. (A24) is necessary. In the limit
as d approaches infinity all sums can be viewed as
integrals and e is identical to the RPA dielectric con-
stant. However, Im e(pkw)=01f pd<1 except for special
values of w. This arises since contributions to Im e
come from points where the energy denominator of B
vanishes [see Eq. (A10)]. For discrete £ and pd<1
this occurs only for select w. Further Ime(qw)=0 for
large w of ¢&Kqp even in a bulk sample. This property of
the model is not shared by real metals because of band
effects, phonons, etc. In order to obviate these difficulties
and render our results more physical, Ime will be given
a small imaginary part g independent of wave number.
B is altered accordingly. Except under exceptional
circumstances g will be greater than (grd)=

The plasma mode manifests itself as a resonance in L
through the functions S and R which are proportional
to ¢ Similarly, the surface-plasma mode manifests
itself as a pole in R. From Egs. (A12) and (A18) one
sees that R, is the solution to the equations

R,(pkw)=d1> . Ru(p,k k) {n+n'}, 3)
(R,,(p,k/,k,w) = (Ruo(p,k',k,w)
~Ruke)Co@F ) k)
— 24y 25 Ru(, ke ey0) B(p,5 (B'+-F), 3 (k' — k) )
Xo(pk){7i+n"} e (pk'), (4)

where {n+#'} indicates that the summation is taken
only over even values of n+#n" and ®(p,%,k,w) is
given by S,9(p,k’ k,w)v(pk’). The rest of the quantities
are defined in the Appendix. Since Eq. (4) is linear it
can be split into two separate equations, each with the
same kernel. These equations, for ®’, and ®&”,, have
®,° and —Co®Rue~* for inhomogeneous terms. The sum
of the solutions equals ®,. ®’, contributes only to the
numerator of ®, so it is sufficient to obtain its lowest
order contribution. To this order it is given by ®,° and
contributes

Nu=d_1 Zﬁ (R“O(p,klk,w){n—l—ﬁ}

to the right side of Eq. (3).

®”, is proportional to R, and will determine the
resonant frequency and lifetime of the surface mode.
The most important contribution to it is the inhomo-
geneous term. Using the expansion

e(qe) =1—(wp/w)’[1— (vrg/w)*1+1ig

()
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for ¢<qr and large w, one finds that the most important
contribution to Eq. (3) from ®”, is

— R [w?—wy2tigw? ]!

Xi{wy?(1+ene ) —w*(1— ene?9)p/p}, (6)
where e,=(—1)", vp is the Fermi velocity, and
pP=p*+(wp*— wP—igw?) (w/vrwy)*. ()

The $ term would be absent if the wave-number de-
pendence of ¢ were neglected in the summation. By
iterating Eq. (4) and summing to find R, one can see
that the remaining terms in ®’’, contribute only to
order p[1—e, exp(—pd)] and are independent of k.
Thus R, can be written as the quotient N,/D where

D=14[w?— 0w, igw? T 3 {w,2 (14 e.779%)
—*(1—exe™?)p/Py—y(1—ee™??), (8)

and N, is given by Eq. (5). The symbol v is used to
denote real and imaginary terms of order p/gp.”

The real part of w when D=0 gives the resonant
frequency of the surface plasmon and the imaginary
part gives the decay rate. If g, v, and p are neglected
this resonant frequency is in agreement with previous
determinations. For pd>>1 the resonant frequency of the
surface plasmon is w,/VZ+ terms of order wyp/qr.®?
The decay rate contains terms of order w,p/qr and
wpg. For pd<K1 the surface resonance takes place at
w=w,(1—pd/4) plus corrections of order (pd)w,p/qr if
7 is odd. The decay rate contains terms of order (pd)
wpp/qr and gw,. For even 7 the resonant frequency
approaches zero if pd<1 and is not considered here.
In order to find v exactly, an integral equation must be
solved. This has not been done since its actual value
is not important. Obviously other phenomenological
additions can be inserted to reflect the fact that the
surface-plasma frequency is not w,/VZ for all metals.
(e.g., silver.) This was not done in the present paper.
The importance of inserting g is especially evident in
Sec. IV.

III. ELECTRON ENERGY LOSS

In this section the probability of a fast incident elec-
tron creating a bulk or surface-plasma oscillation is
calculated.’ The volume of the slab is L2d and the inci-
dent electron is quantized in a cube of side L. To start
with the Born approximation is used. The initial mo-
mentum Q of the incident electron is much greater than

7 For our purposes here, the plasma and Fermi energies are of
the same magnitude.

8 This is not in agreement with the work of Hideo Kanazawa
[Progr. Theoret. Phys. (Kyoto) 26, 851 (1961)]. The difference is
attributed to different approximations. Kanazawa’s results for
the probability of energy loss from fast electrons also differs from
ours and those in Refs. 1 and 3.

9 R. H. Ritchie, Progr. Theoret. Phys. (Kyoto) 29, 607 (1963);
R. H. Ritchie and A. L. Marusak, Surface Sci. 4, 234 (1966).

© For a treatment of the bulk case and further references, see
David Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963).
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the momentum transfer q and the energy transfer w is
much less than Q2/2m. The interaction between the
incident electron and the slab is given by 2 v(r—r.),
where 7; is the position of the ith electron in the slab.

The total transition probability can be calculated as
in Kadanoff and Martin’s!! paper yielding

t t 1
W=|u(q)|? f dt’ / ar" / d‘*r’d“r”B

Xn(@)n(@"t"))erv e gmio W=t

©)

where # is the density operator and { ) denotes ex-
pectation value. After dividing by the incident flux,
relating (nn) to the time-ordered product Lo and shift-
ing to wave-number space through Eq. (A16), one
obtains P, the differential probability of an electron
losing an energy w=gq-V, and a momentum q= (p,%).

u(g) d’q
P= (w—q-Vo)F R (10)
Vo COSBo (27!')3
© 1
F= —f dw — > prynre {0’ +n""}
0 d?
1—e¢, coskd
X(q)Loo” (D' & ) (11)

(=¥ (k—E")

where Lyo” is the imaginary part of Lo, Vo is the velocity
of the incident electron, and 6 is the angle that the
incident electron makes with the z axis. % is used to
denote the z component of the momentum transfer in
this section while %’ and %"’ refer to the quantized wave
numbers. As mentioned earlier, the last two terms in
Eq. (A17) for Ly and the last term in Eq. (A18) for So
may be neglected. The same is true for the second term
in Eq. (A19) for S¢°. When the remaining terms are
combined one obtains

2k d
00 I’ 17 = ] kl_k/l 5 k/_l__kll
9(g) Loo(k' ") p2+k22[6< )+8( )]
1—e(t)  p1—e(®))1— (k)1 ewe?) 2
(') (p*+E)e(k)e(k")D ’

where D is given by Eq. (8). The p and » dependence
of D and € has been suppressed.

The first term in Eq. (12) contributes to F only near
w,. By first integrating over w and then summing one
finds that this term contributes

(13)

to F near w,. This is exactly the result one obtains from a
bulk sample as expected from the discussion in Sec. II.
Almost the total contribution to F, comes from &’
= k'~k. In order to observe the discreteness of the wave

Fp=mw,d

111, Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963), Appendix A.
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numbers one would have to measure ¢ to order 7/d and
w to order gup?/w,d. This would be incredible accuracy
within the limitation ¢pd>>1.

The second term in Eq. (12) gives the surface cor-
rections. In the present case, the Born approximation,
only terms with 2'=%" contribute to F. For pd>1
the surface-plasma resonance contributes

Fep= 2\/2pr/(?2+162) (14)

to F. At this frequency |$/5|<1 and the wave-number
dependence of € is unimportant. It is conceivable that
the wave-number dependence of the surface-plasma
frequency could be measured. The contribution to F
from the surface term near w, is given approximately by

OF p=— (2mwpp/ p*+ k%) max{k?/ (p*+k?),
gwy/ (vr*pP+gwy?} . (15)

These last two equations are in agreement with
Ritchie’s! results except for the factor in the curly
brackets in Eq. (15). This factor would be 1 if the wave-
number dependence of e were neglected in calculating D.

For pd<1 the surface correction to F at w, for even
k' and k" is small, of order (pd)Fp. For odd ' and &’
the frequencies of the bulk and surface plasmons are
very close together in this limit. Unless g is very small
or k is quite large the two resonances overlap each other
and the energy loss due to them separately cannot be
obtained. It also appears to be impossible to measure
momentum losses p<<d~! using electrons fast enough to
satisfy the Born approximation. Thus we shall only
state that the contribution to F in this limit is positive,
and is proportional to F,, modulated by a factor
(sin3kd)? due to the discreteness of allowed wave
numbers.

In reflection experiments measurements are made
only on those incident electrons which emerge from the
same side of the sample as they entered. The surface-
plasma mode has more weight relative to the plasma
mode for electrons of lower incident energy in this type
of experiment.® This happens because lower energy
electrons will not penetrate as far into the sample and
will excite fewer plasmons. On the other hand, the
surface plasmons are primarily excited near the surfaces.
This effect can be taken into account in a semi-quanti-
tative manner by using a modified Born approximation
in which the wave function of the incident electron
decreases as exp(—z/I) in the slab. F has been calcu-
lated with this modification under the assumptions that
d>171. It is found that in Eq. (13) for F, that d is
replaced by 3/ and that 6F, and F,, given by Eqgs. (14)
and (15) are reduced by }. This is exactly what is
expected. It is because of the terms with A/54k” that
Fyp and 0F, are not reduced as much as F, is.

IV. INTERACTION WITH LIGHT

Some aspects of the response of a thick sample to an
incident electromagnetic field are now discussed in the
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gauge V-A=¢=0. From Maxwell’s equations and Eq.
(A7) one obtains

42
(eow —c2p2-c2— )E (2)
dz?

we?
. / dLiy(pyez ) Ex®)  (16)
mZ

for the z dependence of an electric field which varies in g
and ¢ as exp(—iwi-+ip-p). The quantity ¢ is 1 — (w,/w)2
The response function L;; is given in the Appendix.
Because of the way that it is Fourier transformed, it
is most convenient to expand E(z) as

Ez)=d1 Y. E;(%) trigi(k'z), @7
where trig; is the sine for =3 and cosine otherwise. One
can verify by direct substitution that

Ei(k)= Eo,( i ) Sj(1=din)+ iﬂam (18)
k24 4

describes the z dependence exp[iz(k+ia)] in the limit
as d approaches infinity. As in the last section, % is not
discrete; &’ and %" are used to denote the quantized
wave numbers.

The transform of E, given by Eq. (18) is not the one
obtained by inverting Eq. (17). In the limit of large d
the result may be verified by direct substitution as
previously mentioned. It may also be obtained by ex-
panding dE./dz in a cosine series and integrating to
find E,. The reason for the above procedure is that
Vv -E does not converge if E, is obtained by inverting
Eq. (17).

Using Eq. (18), it is easily seen that terms in L;;(k'%"’)
which equal some constant times ip; for j=1, 2 and the
same constant times %2” for j=3, will not contribute to
Eq. (16) in the present gauge. All terms which originate
from the first term of S;° in Eq. (A19) fall into this
category. The terms which do contribute are the first
term of Eq. (A17), which is temporarily neglected, and
terms due to the second part of S,°. The lowest order
nonvanishing contribution to L;; is

—ZipT ok &) R(pk"w) e (k'w) (p*+ £,

where R; is the part of R; due to the second term of S,°.
The denominator of R; is given by Eq. (8) and the
numerator by

—(2d) Za T k" Fw)o(ok) e (pheo)

which is larger for j=1, 2, than for j=3 by a factor of
approximately ¢/kp. T and T are given in the Appendix.
For small wave numbers Ti(p,kw) is given approxi-
mately by 2¢:q#%/37% and T; by pqr/mw for j#3.Thus,
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to lowest order in the wave numbers L;; is given by
2 /
g
L wf1-2]
P2+k/2 € p
[w?— %‘*’pz(l_'y—ig)“%?"-’pz/P]_l(l'_ 8i,2)

where ¢'= (p,k") and q"'= (p,k"").

Now consider the reflection of incident radiation from
the 2=0 surface of the sample. Let the radiation be di-
rected in the x-z plane. If E is perpendicular to the plane
of incidence, L;; will contribute nothing. On the other
hand, L,; will contribute if E is contained in the plane of
incidence. In order to estimate the effect of the surface
term E is assumed to be proportional to exp[—iwt
+ip-o+iz(k+ia)]. Equation (18) and (17) are substi-
tuted into Eq. (16) for E,. A crude equation can be
obtained for k2 and o by multiplying Eq. (16) by
exp(tkz—az) and integrating over z. This yields the
equation

3r
“(p,k’ k' )= —Z

(19)

e+ 4miwog— c2(p?+k2—a?+2ika) = —4miwe,, (20)

where

7,= =31, 21— p/B 1w~ +igo'] e
X (p+a—iB)1[w*— ha,*(1+y—ig) —Fpa,t/BT2. (21)

oo is the bulk conductivity and may be thought of as
arising from the first term in Eq. (17).

Equation (20) can be solved for @ and k. At the
surface-plasma frequency o, effectively adds a term
43X 272,p/qpg to the real part of the conductivity.
A positive term of this size is also added (subtracted)
to the imaginary part of the conductivity for frequencies
near and below (above) the resonant frequency. The
situation at the plasma frequency is similar except that
the contributions are of the opposite sign. If g is small
enough a measurable difference in the reflectivities for
E in and perpendicular to the plane of incidence could
be observed. It has been assumed that g&>|v|.

This model has not been applied to the interaction
with light in the limit pd<1, a case about which much
has been written in the literature.!? The reason for this
is the complication which arises from the anisotropy
of the conductivity predicted by this model. For this
same reason the above calculation is not correct, al-
though it does suggest that an effect can take place.
This problem and a better treatment of band effects are
being studied.
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APPENDIX

A brief derivation for the response function is given
in this Appendix using Green’s-function techniques.'?
The single-particle Green’s function is defined as

G(11)=—«TE¥' 1)),

whose arguments # stand for the space-time coordinates
(#aytn). The symbol T indicates time ordering and the
angular bracket (X) means that the expectation value
at zero temperature is to be taken. Y and ¢ are the
electron creation and destruction operators. According
to the model described in Sec. I, the noninteracting
single-particle Green’s function is

(A1)

azp 1
G(r' p—1)= / /
(27r)2d "
¢io (=t expip- (o—g’) sinks sinkz’

w— E(p,k)~+146 sgn(|q|

, (A2)
—qr)

where § is a vanishingly small positive quantity and
k=nw/d. The summation over p has been converted
to an integral. The starting point for the calculation is
the RPA equation for a two-particle Green’s function.4

L(117,22") = —2iG(12)G(21")—2i / d3d3’

G(13)G(3'1)9(33) L(33,22)), (A3)

&p @ de 1

L,(rirvre,ta—1 =/
(rurvryhi=b) (27)2 (27)2 (27) d? non' 0’

PETER A.
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where

L(11,22") =30, {—{We(L¥e (200" (2),1(17)))
AT ANKTWo 2 1(2))}, (A4)

o and ¢’ are spin indices, dn denotes the space-time inte-
gration d®r,dt,, and v(33’) is the Coulomb potential multi-
plied by a delta function in time. G is approximated by
the noninteracting Green’s function. Results obtained in
this Appendix will not be gauge-invariant because the
approximation described by Eq. (A3) isnot conserving.s
The response functions may be obtained by first forming
an equation for L,,

L,(11",2) = (8/8xs— 8/ 9x2),L(11/,22") | y—s, (AS)

where » is a four-index, (0, 1, 2, 3) whose last three
components ¢ correspond to the «, y, and z axes. (3/9x,
—0/0x2)o is equal to 1. After solving for L,, L,, is
formed.

Lu(1,2)= (3/ 31— 3/ dx1),Ly(11/,2) | v (A6)

Ly is the density-density correlation function and,
except for multiplicative constants, L;;, Lo;, and Ly
are the current-current, density-current, and current-
density correlation functions. For example, in a gauge
where the scalar potential is zero, the current induced
by an electric field E is¢
—ie? n(r)e?
Ji(r)= /d%”Lij(r,r’)Ej(r)‘ Ei(l‘).
4o imw

(A7)

In order to solve the equations, L, is Fourier-trans-
formed according to the prescription

20 {ntn/+n" ) L(p,p ko )

Xexp[ —iw(ti—t2)+1p- (p1—02)—p1 (02— o1/) ] sinkzy sink’zy trig,k 2., (AS8)

after setting ty/=

{1 and using the fact that the system is translationally invariant in ¢ and p. Trig; is the sine function

for »=3 and the cosine function for other », and {n-+n'+n""} restricts the summation to even values of the sum of
the integers. Using this transform, an equation for L, is formed which is algebraic in the p and w variables. For

example, the equation for Lo reads

Lo+, b, b, b ¥, )= B0, 5 ', 5 0) (RALO(e—R+)+ (k= = k") =8k K+ H")— 8k F — 1) ]
—Rok"6) (1 exep{[4+ (=) = [p (ot K)TT1)
HHSo, k=, B, )o@ A—E)=Sulp, A+, K, 0)olp, bHE)}, (49)

where €, is (—1)" and S, R, and B(q1; qz; @)= B(7i, k1; Peks; ) are defined as

B(quqaw) = 2L f(q1) — f(q2) JLE(q) — E(q2) —w0—138]!

(A10)

if k1, k20 and equals zero if &y or ks does. f is the Fermi (step) function.

18 The definition of G and its Fourier transform in time is the same as that used for zero temperature in A. A. Abrikorov, L. P.
Gorkov, and I. E. Dzaloshinski, Methods of Quanium Field Theory in Statistical Mechanics, translated by R. A. Silverman (Plentlce-

Hall, Inc Englewood Cliffs, New Jersey, 1963).

u See for example, L. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc., New York, 1962), Chap. 8-2.

16 Reference 12, Chap. 6-3.

16 The electncal transport coefficients are related to the correlation function in P. C. Martin and J. Schwinger, Phys. Rev. 115,

1342 (1959).
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Su(p, k' w)=d' X5 Lu(p, k+k, &, k', 0){n+7}, (A11)
Rk w)=d"1 37 Su(p,k,k w)v(pk) {i+n'} . (A12)

In the equations for L; only the first term in Eq. (A9) is changed and So and R, becomes .S; and R;.
The derivation of Eq. (A9) is tedious but straightforward except for the Fourier transform of v(r). Since the
electrons are confined in the z direction, »(r) can be transformed according to the algorithm

ap 1
o= | — — 3 5¢ <0(in-0)e'

) f o VP el e (A13)
17([>/e)=/d2p/dz o(r) exp(—ip-p)e %, (A14)

where the z integration runs from —d to +d. In the last equation the p integration is done in polar coordinates
with the angular integration performed first. The radial integral is then a limiting case of a tabulated integral.l”

The z integration is then trivial yielding
o(pk)=v(pk)[1—esc™?], (A15)

where v(p,k) is 4re?/(p?+k2). The summations necessary in obtaining Eq. (A9) are straightforward if they are
broken into partial fractions.
After more tedious labor, one obtains the following exact equation for L,,.

a?p 1
L= [ Lo 5 b\ Lulp ) e oo (i) e ). (At6)
(27!')2 dZ n,n’
d3q d
LF,(p,k,k',w) =Zw { / @ q>aB((-I+ q;i) (2<'1+ Q)M(ZQ+q)VE[5(k_ k)~ €y (k",'k,)]_"' Tn<k)7)(k>5v (k,k’) - C,.(pk)R,,(k’)

11 d*%
—f . 7 LB 0 H); BAG—H) e B4 A =) A

L4+ @) u(1=8,,8)+%'8,,5]L(2q+@)s(1—8,,5)+kd, s L1 — 0 (k+E) J[1—0(k—%)]

a2
- / L 0440, B+ 0D RS, Q1)) . (A1)

(2m)?

The p and w dependence of functions in this equation has been suppressed where possible and (2d)~'2; has been
denoted by (27)~1/ dq. for convenience. (2G+q)ois 1 and ¢, is (—1) if u=3 and -1 otherwise. Z,, equals €, times
a factor of 7 for each u and » which is 1 or 2. .S, is the solution to the equation

S, (kE) =S, (kR")— R, (R Co(k) e (k) — (2d)~' 3_ 7 B(p, k+k, k)S,.(kk)v(2k+E), (A18)
S,0(kk") = 3d[0(k— )+ €u8(k+k) IT (k)€ (k) — € () T u(p, R, k) [1 — 8 (k+-F) L1 — 0 (k—E)]. (A19)
R, is given by Eq. (A11) and the rest of the functions are

where

4%
B(p, k+k, k, w)= / (2:;23(?1+q, d,w), (A20)
a3
Tﬂ(pk“’)=/ '(';g);B«_l‘i‘(L , «) (2q+a)4, (A21)

T u(pkw) / d*q B(@+4q, T «)(24+q),
P2k (2r) P (k)

_ 1, d»
Tu(p, &, %/, w)=5 / 2 )2[B(f>+p,k;1'>, k) +e.B@+p, &' B, ) IL24+q).(1—6,,.)+kd,,.], (A23)
us

Cu(pkw) = p(1— ene?9) { (A22)

and
e(pkw) = 1= To(pkw)v(pk). (A24)

17 A, Erdélyi, Tables of Integral Transforms (McGraw-Hill Book Company, Inc., New York, 1954), Vol. II.



