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Some Surface Effects in an Electron Gas~
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The eGects of various external probes on a gas of interacting electrons con6ned to a foil are examined in an
approximation for the response functions which reduces to the random-phase approximation for a bulk
sample. Some band effects are included in a phenomenological manner. Surface corrections to the bulk
properties are found which cannot be obtained in a wave-number-independent treatment nor in the Born
approximation. The momentum dependence of the surface plasmon's resonant frequency is found and the
response of the system to fast incident electrons and electromagnetic radiation is calculated.

I. INTRODUCTION Since the slab is infinite in the x-y plane, periodic
boundary conditions are applied on a square of side I.
in this plane. The wave numbers in this plane are de-
noted by p and those in the s direction by k. The letter
q will be reserved for the pair (p,k). The treatment is
restricted to zero temperature and q~d))1, where qp is
the Fermi momentum. Further, A is set equal to 1. The
noninteracting wave functions for this model are

' 'N this paper a formalism is developed to treat a gas
~ - of interacting electrons confined to a slab of hnite
thickness. The boundary condition of specular reQection
is applied directly to the electronic wave functions. The
response functions for this system to various external
disturbances are calculated from a unified point of view
in a well-defined approximation. The basic approxi-
mation to the response functions is identical to the
random-phase approximation (RPA) in a bulk sample.
Using the response functions obtained from this forma-
lism, some properties of metals due to surfaces and finite
size are investigated.

In addition to the usual resonance at the plasma fre-
quency, a surface resonance is found. This is the surface-
plasma mode first predicted by Ritchie' and further
elucidated by Ferrell, ' ' Stern, ' and others. It is shown
that the resonant frequency of this mode depends
linearly on its momentum parallel to the sides of the
slab in a thick sample. There are some minor corrections
to Ritchie's expression for the energy loss of a fast
electron passing through the sample. These corrections
are due to further wave-number dependence of the re-
sponse function. A calculation is also made for the
energy loss in a reQection4 experiment where the Born
approximation cannot be used. A crude calculation indi-
cates that surface effects may alter the electromagnetic
reAectivity in a thick sample if lifetime effects due to
other processes are small.

The model consists of a gas of electrons interacting
via the Coulomb potential in a slab confined to 0&a&d
with infinite lateral extent in the x-y plane. An infinitely
high potential barrier is assumed to exist at the bound-
aries. This boundary condition of specular reAection is
valid only for metals with a smooth surface and no
oxide' coating. The effects of bands and phonons will
be inserted phenomenologically.

Q(r) = (2/L'd)'~' expip g sinks (f)

for 0&a&4 and zero outside this region. The cylindrical
coordinates r=(y, s) have been used. The components
of p are 27m, /L and k is restricted to 7m/d where e
is an integer. The noninteracting single-particle energies
are

E(q) =E(p k) = (p'+k' —qp')/2m (2)

as measured from the Fermi surface. It is assumed that
the background of positive charge does not appreciably
alter P or K

The response functions are calculated in the Appendix
using Green's-function techniques. In terms of these
techniques the approximation used is identical to the
RPA in a bulk sample. The structure of the surface
corrections, and in particular the surface plasmon, are
discussed in Sec, II. The formalism is used to discuss
the energy loss of fast incident electrons and the inter-
action of the sample with electromagnetic waves in
Secs. III and IV, respectively.

II. STRUCTURE OF THE SURFACE PLASMON

The linear response or correlation functions I.„, are
given in the Appendix by Eqs. (A16) through (A24). We
note that L„,(y, k', k",&a) contains two distinct types of
terms. One type, consisting of the first term in Eq.
(A17) and S„', is proportional to 8(k'&k"). These
terms are those which are equivalent to applying specu-
lar reflecting boundary conditions to the system after
calculating the bulk response as is done in calculating
the anomalous skin effect. ' These terms contain the
bulk plasma resonance but not the surface plasma reso-
nance which is contained in R„. In the second type of
term k' and k" are unrestricted except that e'+I"

*Work supported by the U. S. Air Force OKce of Research,
Air Research and Development Command under Contract No.
AF 49(638)—1545.

' R. H. Ritchie, Phys. Rev. 106, 874 (1957).
2 R. A. Ferrell, Phys. Rev. 111, 1214 (1958).' E. A. Stern and R. A. Ferrell, Phys. Rev. 120, 130 (1960).' See, for example, C. J. Powell and J. B. Swan, Phys. Rev.

115, 869 (1959).
' For effects of an oxide layer see Ref. 3.

See, for example C. Kittel, Quantum Theory of Solub (John
Wiley R Sons, Inc. , New York, 1963), Chap. 16.
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must be even. Although in the Born approximation
only contributions from k'=k" enter for large d, the
other contributions are important in general.

For the purposes of this paper only wave numbers
small compared to qp and frequencies of the order of
the plasma frequency, to~=47rne'/I, are considered.
In this limit the last two terms in Eq. (A17) and the
last term in Eq. (A18) may be neglected. The remaining
quantities in Eq. (A17) are easily evaluated with the
exception of E„which will be studied in this section.
Before obtaining R„, however, a short discussion of
e(pkco) defined by Eq. (A24) is necessary. In the limit
as d approaches infinity all sums can be viewed as
integrals and e is identical to the RPA dielectric con-
stant. However, Im e(pkco) =0 if pd(1 except for special
values of co. This arises since contributions to Im e

come from points where the energy denominator of 8
vanishes [see Eq. (A10)]. For discrete k and pd(1
this occurs only for select to. Further Ime(qco)=0 for
large co of q«qp even in a bulk sample. This property of
the model is not shared by real metals because of band
effects, phonons, etc. In order to obviate these difficulties
and render our results more physical, Ime will be given
a small imaginary part g independent of wave number.
8 is altered accordingly. Except under exceptional
circumstances g will be greater than (pre) '.

The plasma mode manifests itself as a resonance in I.
through the functions S and E. which are proportional
to ~ '. Similarly, the surface-plasma mode manifests
itself as a pole in R. From Eqs. (A12) and (A18) one

sees that E„is the solution to the equations

R„(pkto) =d—' Q„. (R„(y,k', k, co) {n+m'), (3)

61„(p,k', k, co) = 8.„'(p,k', k,co)

R, (pk(u—)Cs(pk'to) s(pk') e '(pk'ro)

—(2d) ' p„- (R„(p,k, k,co)B(p, rs(k'+k), —,'(k' —k), to)

Xn(pk'){tr+tr') c '(pk'), (4)

where {m+e') indicates that the summation is taken

only over even values of e+e' and tR„'(p, k', kp&) is

given by S„'(p,k', k,to)s(pk'). The rest of the quantities
are defined in the Appendix. Since Eq. (4) is linear it
can be split into two separate equations, each with the
same kernel. These equations, for {R'„and (R"„, have
4,„' and —CovS„e ' for inhomogeneous terms. The sum

of the solutions equals (R„. {R'„contributes only to the
numerator of (R„so it is sufficient to obtain its lowest

order contribution. To this order it is given by {R„and
contributes

E„=d 'P- 6t„o(p,k'k, to){m+e) (5)

to the right side of Eq. (3).
{R"„is proportional to E„and will determine the

resonant frequency and lifetime of the surface mode.
The most important contribution to it is the inhomo-

geneous term. Using the expansion

for q«q~ and large or, one finds that the most important
contribution to Eq. (3) from S."„is

—R„[to'—to '+alga)'] '

X ', {~-„'(1+e„e ~") ~—'(1 e„—s ~")P/P), (6)

where e„=(—1)", sp is the Fermi velocity, and

The p term would be absent if the wave-number de-
pendence of e were neglected in the summation. By
iterating Eq. (4) and summing to find R„one can see
that the remaining terms in (R"„contribute only to
order p[1—e„exp(—pd)] and are independent of k.
Thus R„can be written as the quotient E„/D where

D=1+[o t—co„'+sgM ] '—{o& (1+e~e "")
—~'(1—"s "")P!A—7(1—e-s ""), (8)

and A'„ is given by Eq. (5). The symbol y is used to
denote real and imaginary terms of order P/qp. r

The real part of co when D=O gives the resonant
frequency of the surface plasmon and the imaginary
part gives the decay rate. If g, 7, and p are neglected
this resonant frequency is in agreement with previous
determinations. For pd))1 the resonant frequency of the
surface plasmon is co~/v2+ terms of order ot„p/q~. s '
The decay rate contains terms of order or„P/q& and
to„g. For pd«1 the surface resonance takes place at
~=a&„(1 pd/4) plus —corrections of order (Pd)M„p/q& if
n is odd. The decay rate contains terms of order (pd)
to„p/qz and gto„. For even n the resonant frequency
approaches zero if pd«1 and is not considered here.
In order to find y exactly, an integral equation must be
solved. This has not been done since its actual value
is not important. Obviously other phenomenological
additions can be inserted to reRect the fact that the
surface-plasma frequency is not to~/K2 for all metals.
(e.g., silver. ) This was not done in the present paper.
The importance of inserting g is especially evident in
Sec. IV.

III. ELECTRON ENERGY LOSS

In this section the probability of a fast incident elec-
tron creating a bulk or surface-plasma oscillation is
calculated. "The volume of the slab is I'd and the inci-
dent electron is quantized in a cube of side I.. To start
with the Born approximation is used. The initial mo-
mentum Q of the incident electron is much greater than

7 For our purposes here, the plasma and Fermi energies are of
the same magnitude.

8 This is not in agreement with the work of Hideo Kanazawa
[Progr. Theoret. Phys. (Kyoto) 26, 851 (1961l].The difference is
attributed to different approximations. Kanazawa's results for
the probability of energy loss from fast electrons also differs from
ours and those in Refs. 1 and 3.

0 R. H. Ritchie, Progr. Theoret. Phys. (Kyoto) 29, 607 (1963);
R. H. Ritchie and A. I . Marusak, Surface Sci. 4, 234 (1966).' For a treatment of the bulk case and further references see
David Pines, E/ementury Excitations in SoHds (W. A. Benjamin,
Inc. , New York, 1963).
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the momentum transfer q and the energy transfer ~ is
much less than Q'/2m. The interaction between the
incident electron and the slab is given by P v(r —r,),
where r; is the position of the ith electron in the slab.

The total transition probability can be calculated as
in Kadanoff and Martin' s" paper yielding

W= ip(q)i' dt' dt" dar'd'r"—
L6

p(q) d gF= — — 8(—oo—q Vo)F
Vp cos80 (2o.)o

(10)

00

F=— dpi —P„.+„- (n'+ I}
d2

1—e„coskd
Xe(q)Lpp" (p,k', k",oo), (11)

(k-k')(k-k")

where Lpp" is the imaginary part of Loo, ~o is the velocity
of the incident electron, and 80 is the angle that the
incident electron makes with the s axis. k is used to
denote the s component of the momentum transfer in

this section while k' and k" refer to the quantized wave

numbers. As mentioned earlier, the last two terms in

Eq. (A17) for Lpp and the last term in Eq. (A18) for Sp

may be neglected. The same is true for the second term
in Eq. (A19) for Soo. When the remaining terms are
combined one obtains

p'+k" d
e(q)Lpp(k', k")= -[8(k'—k")+8(k'+k")j

p'+k' 2

1—o(k') p(1—o(k'))(1—o(k"))(1—o e '")
X (12)

(Po+ko) o(k') o(k")Do(k')

where D is given by Eq. (8). The p and oo dependence

of D and e has been suppressed.
The first term in Eq. (12) contributes to F only near

co„. By first integrating over ~ and then summing one

6nds that this term contributes

F~=xo)„d (13)

to F near ~~. This is exactly the result one obtains from a
bulk sample as expected from the discussion in Sec. II.
Almost the total contribution to F„comes from k'

k. In order to observe the discreteness of the wave

'IL. Kadan08 and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963), Appendix A.

X(e(r t')n(r"t")) e'o'"e 'p'"'e '""' "' (9)

where n is the density operator and ( ) denotes ex-

pectation value. After dividing by the incident Qux,

relating (ego) to the time-ordered product Lpp and shift-

ing to wave-number space through Eq. (A16), one
obtains P, the differential probability of an electron
losing an energy a&=q Vp and a momentum q=(p, k).

numbers one would have to measure q to order m/d and
oo to order qp&'/oi„d T. his would be incredible accuracy
within the limitation q~d))1.

The second term in Eq. (12) gives the surface cor-
rections. In the present case, the Born approximation,
only terms with k'= k" contribute to F. For pd) 1
the surface-plasma resonance contributes

(14)F"=2~»np/(p'+ k')

to F. At this frequency
~ p/p ~

&&1 and the wave-number
dependence of e is unimportant. It is conceivable that
the wave-number dependence of the surface-plasma
frequency could be measured. The contribution to F
from the surface term near o&„ is given approximately by

&F„= (2mco—p/p'+k')max(k'/(p'+k')
g~'/(»'P'+g~. '} (15)

These last two equations are in agreement with
Ritchie's' results except for the factor in the curly
brackets in Eq. (15).This factor would be 1 if the wave-
number dependence of e were neglected in calculating D.

For pd«1 the surface correction to F at oo„ for even
k' and k" is small, of order (pd)F, oFor odd k' and k"
the frequencies of the bulk and surface plasmons are
very close together in this limit. Unless g is very small
or 0 is quite large the two resonances overlap each other
and the energy loss due to them separately cannot be
obtained. It also appears to be impossible to measure
momentum losses p«d ' using electrons fast enough to
satisfy the Born approximation. Thus we shall only
state that the contribution to F in this limit is positive,
and is proportional to F,~ modulated by a factor
(sinoikd)' due to the discreteness of allowed wave
numbers.

In reAection experiments measurements are made
only on those incident electrons which emerge from the
same side of the sample as they entered. The surface-
plasma mode has more weight relative to the plasma
mode for electrons of lower incident energy in this type
of experiment. 4 This happens because lower energy
electrons will not penetrate as far into the sample and
will excite fewer plasmons. On the other hand, the
surface plasmons are primarily excited near the surfaces.
This effect can be taken into account in a semi-quanti-
tative manner by using a modi6ed Born approximation
in which the wave function of the incident electron
decreases as exp( —s/t) in the slab. F has been calcu-
lated with this modification under the assumptions that
d))t '. It is found that in Eq. (13) for F„ that d is
replaced by —', t and that hF~ and F„given by Eqs. (14)
and (15) are reduced by io. This is exactly what is
expected. It is because of the terms with k'/k" that
F p and 8F„are not reduced as much as F„is.

IV. INTERACTION WITH LIGHT

Some aspects of the response of a thick sample to an
incident electromagnetic 6eld are now discussed in the
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gauge V A=&=0. From Maxwell's equations and Eq.
(A7) one obtains

xe'
dsLc; (p,s,z,or) E,(z) (16)

ng2

for the s dependence of an electric Geld which varies in y
and t as exp( iort—+ip p). The quantity zp is 1—(or~/or)'.
The response function L;; is given in the Appendix.
Because of the way that it is Fourier transformed, it
is most convenient to expand E(s) as

E;(s)=d 'Q„.E;(k') trig, (k's), (17)

where trig; is the sine for i =3 and cosine otherwise. One
can verify by direct substitution that

i(k+in) i(k+in)
E (k') =Ep- (1—8...)+— », (18)

k'+k" k'

describes the s dependence expLis(k+in)] in the limit
as d approaches infinity. As in the last section, k is not
discrete; k' and k" are used to denote the quantized
wave numbers.

The transform of E, given by Eq. (18) is not the one
obtained by inverting Eq. (17). In the limit of large d
the result may be veriGed by direct substitution as
previously mentioned. It may also be obtained by ex-
panding BE,/Bs in a cosine series and integrating to
find E,. The reason for the above procedure is that
V R does not converge if E, is obtained by inverting
Eq. (17).

Using Eq. (18), it is easily seen that terms in I.;,(k'k")
which equal some constant times iP; for j=1, 2 and the
same constant times k" for j=3, will not contribute to
Eq. (16) in the present gauge. All terms which originate
from the 6rst term of Sr' in Eq. (A19) fall into this

category. The terms which do contribute are the Grst
term of Eq. (A17), which is temporarily neglected, and
terms due to the second part of 5,'. The lowest order
nonvanishing contribution to L;; is

—Z,;pT;(pk'or)R, (pk"or) c '(p ' k)o(rp'+k"-) —',

which is larger for j=1, 2, than for j=3 by a factor of
approximately q/kr . T and Z' are given in the Appendix.
For small wave numbers T;(p,k,or) is given approxi-
mately by 2q;q&'/3m'or and T; by P;qr/sor for j/3. Thus,

where R, is the part of R; due to the second term of 5,'.
The denominator of E; is given by Eq. (8) and the
numerator by

—(2d) r Pcc T (P k,k,or)cr(Pk)& (Pkc0)

to lowest order in the wave numbers L;, is given by

I "(pk'k" or)= —Z ~ ' —(pk'or) 1——
m' 8qg p'+k" z p

i
~'—-'~ '(1—

V cg) ——'p~ '/-p] '( —».) ( )

where q'= (p, k') and q"= (p,k").
Now consider the reQection of incident radiation from

the s=0 surface of the sample. Let the radiation be di-
rected in the x-s plane. If E is perpendicular to the plane
of incidence, L;; will contribute nothing. On the other
hand, I.,; will contribute if E is contained in the plane of
incidence. In order to estimate the effect of the surface
term E is assumed to be proportional to expL —iori

+ip p+is(k+in)]. Equation (18) and (17) are substi-
tuted into Eq. (16) for E,. A crude equation can be
obtained for k and n by multiplying Eq. (16) by
exp(iks —ns) and integrating over s. This yields the
equation

zcror'+4rrior crp c'(p'+—k' n'+ 2—ikn) = 4rric0—a„(20)
where

0,= 3ior,—2 $1 p/p—][(0 or +—igc0 ] pn
X (P+n ik) '[—c0' rc0 '(]—+y .ig) —'Pc0—'/—P] '. (21)

ro is the bulk conductivity and may be thought of as
arising from the first term in Eq. (17).

Equation (20) can be solved for n and k. At the
surface-plasma frequency 0, eftectively adds a term
+3X2 '

'orlop/qzg to the real part of the conductivity.
A positive term of this size is also added (subtracted)
to the imaginary part of. the conductivity for frequencies
near and below (above) the resonant frequency. The
situation at the plasma frequency is similar except that
the contributions are of the opposite sign. If g is small
enough a measurable di6erence in the reQectivities for
E in and perpendicular to the plane of incidence could
be observed. It has been assumed that g))

~ y~.
This model has not been applied to the interaction

with light in the limit pd(1, a case about which much
has been written in the literature. "The reason for this
is the complication which arises from the anisotropy
of the conductivity predicted by this model. For this
same reason the above calculation is not correct, al-
though it does suggest that an eGect can take place.
This problem and a better treatment of band effects are
being studied.
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APPENDIX

A brief derivation for the response function is given
in this Appendix using Green's-function techniques. "
The single-particle Green's function is de6ned as

G{11')= —i(T(4 (1)k'{1'))&

whose RlguIDcnts s stRnd for thc space-tlIQc coordlnRtcs

{r„,t„}.The symbol T indicates time ordering and the
angular bracket (X) means that the expectation value
at zero temperature is to be taken. Pt and P are the
c],ectron creation and destruction operators. According
to thc Inodcl described in Sec. I, the noninteracting
single-particle Green's function is

du) d'p 1
G{rr',t—t') =

2s. (2n-)'d "

e'"&' '& expiy (y—y') sinks sinks'X,(A2)
co E(y,k)+—ib sgn(~ g~

—gr)

where 8 is a vanishingly small positive quantity and
k=ns/d The s.ummation over y has been converted
to an integral. The starting point for the calculation is
the RPA equation for a two-particle Green's function. '4

where

L{11',22 }=Z.," &
—«&.{1V"(2V. '{2'}e'{1')))

+ 'P'(4.{1)f'(1'))}{T'(4"(2)4" '(2')))), (A4)

0 and 0. are spin indices, dm denotes the space-time inte-
gration d'r„dh„, and v(33') is the Coulomb potentialmulti-
plied by a delta function in time. G is approximated by
the noninteracting Green's function, Results obtained in
this Appendix will not be gauge-invariant because the
approximation described by Eq. (A3}is not conserving. "
The response functions may be obtained by erst forming
an equation for I„,

L.(11'»)= (~/»2 —~/»2 ),L(11',22')
~

2 =2, (As)

where P ls a four-index, (0, 1, 2, 3) whose last three
components f correspond to the g, y, and s axes. (g/»2—~/»2)o is equal «1. After solving for L,„, L„„ is
forlned.

L..(1,2) = (~/»i- ~!»i).L(11',2) t,.=,. (A6)

I.00 is the density-density correlation function and,
except for multlpllcatlvc coDstRnts

p
I ij'y ~oj'y and L io

Rlc thc CUl rent-currcntq density-current) Rnd cull cnt-
dcnslty correlation functloDs. Fol example~ ln R gaUgc
where the scalar potential is zero, the current induced
by an electric 6eld E is"

L(11',22') = —2iG(12')G(21') —2i d3d3'
J;(r)=

4m2cv

e(r)e'
d'r'I-;; (r,r') E;(r)—— — -E;(r) . (A7)

MgM

In order to solve the equations, L„ is Fourier-trans-
G(13)G(3'1')v{33')L{33',22'), (A3) formed according to the prescription

grr2yfr $2)—
d2p d p dM 1

Q (e+m'+n")L, (y,y', k,k',k",co)
(2')'(2w)' (2n) d' ~,", "

Xexp[ i(v(4 4—)+fy —
(yg —

yu)
—iyr'(yu —yp) j sinksr sink'sr. trig„k"s, , {AS)

after settjng )&' ——]& Rnd Using the fact that the system is translationally invariant in f and p. Trig, js thc sjne functjon
for ~=3 and the cosine function for other v, and (e+I'+n"} restricts the summation to even values of the sum of
the integers. Using this transform, an equation for I; is farmed which is algebraic in the p and co variables. Far
exaInple) the cgURtlon foI' Lo lcRds

Lo(y'+y y, k, k,
' k", ~) =&{y+y', k; y', k'; ~}(&dLb(k—k'+k")+&(k—k' —k")—8( +k+kk) S(k+k' k'~)j- —

--;&o(yk" ){1-.-")p(Lp'+(k-k') j- -Lp {k+k}~- )
+-'(So(» k—k' k", ~)v(y, k—k') —So(y, k+k', k", ~)v(y, k+k')), {A9)

where e is (—1}"and 8, R, and B(qg,' q2, ~) =&(8y, 4; y2k2', o)) are de6ned as

~(q q.-)=2u(q. )-~(q.»L~(q.)-~(q.)---'»-
if k, , k,~o and equals zero if kq or k2 does. f is the Fermi (step) function.

(A10)

» The de6nition of G and its Fourier transform in time is the same as that used for zero temperature in. A. A. Abrjkoroy, I,. p.
Gorgo~, and I, F, Dzaloshinslu, 3fethols of QNGÃINPE FsPN Thcofg $N StctbstSMt -V8ckcsks, translated by R. A. Sjhrerman apprentice
Hall, Inc. , Englewood Cliffs, New Jersey, I963).

See for example, I.KadanoR and G. Saym, Q@gm/gag Qg]js]jggg ~qghgw~qs (, A pen&amin Inc
'5 Reference 12, Chap. 6—3.
"The electrical transport «e@cients are related to the correlation function in P. C. Martin and J. Schw&nger phys Re~ IIg

1342 (j.959).
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S„(p,k,k )~

k k) )q(pk){n+I )

inEq
tfort e

A9) is chang~
h Fourier trans

l the erst term
htforward excep

0 the algorithm

'
ns for L; on y '

s but straig
according to

the equations
A9) is tedious

b transformed a

n
' nofEq' . zy can e r

Th derivatio
h direction&

e
onhnedlnt eselectrons are con n

(A»)
(A»)

—P 8&pk) exp(iy y)e'"',
(2m) 2d ~

(A13)

k)= d'p ds nn r exp( y p

ion is
'

olar coordinates

U(pk =

tb 1 td
+ . q

fi t The radial
'

g
' t

m —d to
inte ral is t en

g

—i )e '"*, (A14)

where the
integration perfor

—27d

or
'

he are

1 1d

'
htforward if they ar

tion is then tnviaThe s integration i

ns in obtaining Eq.s necessary in o~ is k2 . The summations in o
'

1 fractions.bro en
'

k i top t
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