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can be applied successfully to "physical impurities, "
e.g., lattice defects in thallium, when they are introduced
by virtually hydrostatic compression at 2.5'K.

At zero pressure, we 6nd an extremely small gap-
anisotropy parameter X(u') =0.0008 (compared with
X(a')=0.02 for Sn and in). We also find that the ani-
sotropy parameter of Tl increases strongly with pres-
sure, reaching X(a')=0.007 at 4 kbar, which explains
quantitatively the anomalous pressure dependence of
T, in thallium.
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The efkct of magnetic impurities in superconductors is studied by using the dispersion equations, which
are simple extensions of those introduced by Suhl. In the case of a single impurity, we find that, if T,p) T„
(where T,0 is the superconducting transition temperature and T„is the Suhl-Abrikosov resonance ternpera-
ture), a pair of bound states appear in the energy gap, while if T,0 (T„resonances appear at low temper-
atures. Also, self-consistent equations are constructed to treat the case of dilute concentration of impurity
atoms. In the gapless region it is established that the Abrikosov-Gor kov expressions are valid, except
that 7., in their theory must be replaced by the exact frequency-dependent spin-Qip lifetime w, (c0) in the
normal state.

I. INTRODUCTION

~ ~

S Rondo' has recently pointed out, the spin-
exchange scattering from magnetic impurities

gives rise to an electron scattering amplitude in normal
metals, which diverges logarithmically at low tempera-
tures. Since Kondo s calculation is perturbational, his
approach is valid only within two approximations. The
impurity concentration must be small so that the spin
correlation among impurity atoms is negligible, and the
temperature must be relatively high, so that the
logarithmic term (which comes from the second-order
Born term) is still a small correction to the first-order
Born term. Therefore there naturally arises a question
concerning the convergence of the perturbation series
at low temperatures, even if one still confines oneself to
the dilute-concentration limit of magnetic impurities. ' '

Recently, Suh12 and Abrikosov' were able to show

~This work was partially supported by the U. S. Air Force,
through Grant No. AF-AFOSR-610-64, Theory of Solids.
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Mathematical Sciences, Kyoto University, Kyoto, Japan.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' H. Suhl, Phys. Rev. 138, A515 (1965); Physics 2, 39 (1965);
Phys. Rev. 141, 483 (1966).' Y. Nagaoka, Phys. Rev. 138, A1112 (1965).
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that, if one sums up a certain class of the higher order
effects [which essentially consist of diagrams containing
only single-particle (or hole) states as intermediate
states] than the second-order term, the logarithmic
divergence in the scattering amplitude disappears,
but the scattering amplitude develops a pair of poles at
temperatures lower than T„, the resonance temperature.
T„corresponds roughly to the temperature at which the
second-order Born term becomes comparable with the
first-order term and thus a simple perturbation calcula-
tion breaks down. In spite of the apparent success of
Suhl and Abrikosov's theory [which not only gives a
formal answer to the convergence problem of the per-
turbation series, but also allows one to calculate various
equilibrium as well as inequilibrium properties of a
dilute impurity system at low temperature (2'& T„)), a
detailed study of the analytical behaviors of the scat-
tering amplitude as a function of energy reveals a serious
drawback: The poles are in the physical sheet (i.e., the
6rst plane) of the complex energy plane, which is in-
consistent with the principle of causality. ' ' Fortunately,
in a recent work Suhl and Wong' have succeeded in
removing this difhculty in the framework of his dis-
persion theory.

It is well known that the spin-exchange scattering
drastically modifies the electronic properties of super-

H. Suhl and D. Kong, Physics (to be published).
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conductors. In their now classic paper, Abrikosov and
Gor'kov7 treated the e6ect of magnetic impurities only
in the first Born approximation, but nonetheless ar-
rived at a number of strik, ing theoretical predictions.
For example they showed that the superconducting
order parameter 6 is no longer equivalent to the gap in
the excitation spectrum, in contrast to the BCS case,
which applies to pure metals. Moreover, in the case of
strong exchange scattering the gap is completely sup-
pressed, though the order parameter is still finite. This
type of "gapless" superconductivity was confirmed re-
cently by the beautiful experiment of Woolf and Reif.'

As mentioned, the scattering amplitude is anom-
alous in normal metals if one treats the exchange scat-
tering to higher order. We expect similar features in
the superconducting state. A discussion of the spin-
exchange scattering up to third order in the exchange
constant J (which is the same approximation as used
by Kondo for normal metals) has been given by Liu. '
He concluded that, within the above approximation,
there is no serious modification of the original results
of AG. ~ However, the Born approximation to the spin-
Aip lifetime v, in AG theory has to be replaced by a
new lifetime, which contains a term proportional to
pJ 1n(E&/kT, s). Here p, E&, and T,e are the density of
states at Fermi energy, the Fermi energy itself, and the
superconducting transition temperature of the pure
metal, respectively. More recently, using the diagram
technique developed by Abrikosov, Grifhn' calculated
the shift of the superconducting transition temperature
due to magnetic impurities. His result (which included
te~s to all orders in J') gives a small deviation from
the result due to AG.

The purpose of the present paper is to give a sys-
tematic way to treat the effect of the spin exchange
scattering on the electronic properties of supercon-
ductors. The dispersion-theoretical technique of Suh12

for a normal metal is suitably generalized to deal with
a superconductor. This equation involves not only scat-
tering amplitudes of particle to particle and hole to hole,
but also of particle to hole and hole to particle. Two
simple applications of the above equation are discussed.
First, we study the effect of a single impurity atom in a
superconductor. We find that the complex poles still
appear in the scattering amplitude at low temperature,
if the superconducting transition temperature T,o is low

( .T&sT„w ehre T, is the Suhl-Abrikosov resonance
temperature). However, a pair of poles (which can be
interpreted as bound states) appear in the energy gap
of the excitation spectrum, when the superconductor has
a high transition temperature (T,s&T„). Second, we
consider the effect of impurity scattering in the gapless

region (the temperature region close to T, where the
order parameter A is small) by using a self-consistent
dispersion equation for the case of finite concentration
of impurity atoms. An additional complication, foreign
to a normal metal, arises in the case of a superconductor
because the exchange scattering strongly modifies the
density of states. In the gapless region this self-consist-
ent equation is solved rigorously and we establish that
to a good approximation AG expressions hold, except
that r, the spin-flip lifetime has to be replaced by r, ( c)o,

the exact spin-Qip lifetime in the normal metal. The
above result is not trivial, since we can show that the
above substitutional law is valid only in the gapless
region. Thus we can quite naturally reproduce the shift
of the transition temperature previously obtained by
GrifFin. "The explicit form of the density of states is
also given, which can be measured by a tunneling
experiment.

As already mentioned, Suhl and Wong' have recently
obtained a solution of his dispersion equation free from
the unphysical complex pole. The same technique has
to be used in the present case in order to avoid an un-
physical conclusion for the case of a single impurity
atom with T,o& T„.The other results, stated above, are
unchanged in this new formulation.

II. DISPERSION EQUATION FOR
SINGLE-IMPURITY PROBLEM

We shall here consider the eBect of a single magnetic
impurity in a superconductor. The interaction between
the impurity atom and conduction electrons is given by

Hr= lie(r)(V(r)+-', J(r)S rr)f(r)d'r, (1)

where r is the distance from the impurity atom. Here
S, rr, and lt are the spin operator of the magnetic im-

purity, the Pauli matrix, and the field operator (two
components) of conduction electrons, respectively. In
the following we shall assume that the interaction is
local [i.e., V(r) = V3(r) and J(r) =J3(r)7 for simplicity.
The method we shall expound here is a straightforward
generalization of that employed by Suhl in a normal
metal. In the superconducting state there is an addi-
tional degeneracy in the energy of the quasiparticles
and we have to treat a four-channel scattering problem
even if we confine ourselves to a single-particle (or -hole)
state. Therefore it is convenient to introduce a four-
dimensional space" in which the electron field operators
are written as

7 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
39, 178 (1960) LEnglish transl. : Soviet Phys. —IETP 12, 1243
(1961)j, hereafter referred to as AG.

M. A. Woolf and F. Reif, Phys. Rev. 137, A557 (1965).
9 S. H. Liu, Phys. Rev. 137, A1209 (1965).' A. Griffin, Phys. Rev. Letters 15, 703 |,'1965).

In this space the interaction Hamiltonian (1) is
n V. Ambegaokar and A. GriKn, Phys. Rev. 137, A1151 (1963).
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recast as which satisfies the Schrodinger equation

where

Irz —— 4' r V r p3 -,'J r S.o. @ r d'r, (3)
(H —s) Ik,n&+=0.

(We hereafter drop the obvious index M indicating the
ground state. ) The solution is easily written as

n= ', (1-+pa)n'+p(1 p—p)&p«p (4)
(12)lk,n)~=A, iln)y(H —s~ps)-r J, ln&,

whereHere p~ p3 and 0.~ . o.s denote the Pauli spin
matrices acting on diferent spaces. The product p,o;
is defined, for example, as

Ja= [Hr, Aa'].

p30 j.=
The scattering matrix from a single-quasiparticle

(5)
(or -quasihole) state k to another state k' is defined as

Saint;i, n=— (k n
I
kn)+, (13)

The Green's function in the superconducting state is

given as
G(P,~) = (~ (up —&-~i~—p) ', (6)

where )=p'j2m Ia an—d p, is the chemical potential.
As we shall see, the introduction of four-dimensional
space enables us to obtaiD the dispersion relations for
the scattering amplitude in the superconducting state in
close parallel to those in the normal state.

Following Suhl, ' we make the following assumptions:
(1) At an infinite distance from the impurity, the

ground-state vector approaches weakly the ground-state
vector of the BCS state.

(2) There are an even number of conduction elec-
trons, and the value of the impurity spin is S, so the
ground state of the target is (2S+1)-fold degenerate.

(3) Low-lying excitations of the target (with energies
infinitesimally above the ground-state energy) are
described with wave functions which asymptotically
approach the vector of electron-hole pairs at an infinite
distance from the impurity.

The last assumption is crutical in the present problem,
since it allows us to treat the dynamical character of the
impurity by a spin operator.

A single-quasiparticle (or -hole) state is generated
from the ground state by applying a creation operator
Aat (which is 4X4 matrix operator):

ga n', an=Ra, nn
—2rr»(pa —pa )Ta n, an

The first term in Eq. (16) is further rewritten as

(17)

(n'IA, .J, ln)
= (n'I(A, .J,),ln) —(n'I J,A, . In)
= (n'la, .In&+ &n'I J,(H+s')- J, t In&, (18)

where

ga a= {Aa Ja)p

Here we have made use of the equations

A„.In) = —(H+s')-'J, , t ln),

which is reduced to a 4&&4 matrix. Making use of the
relation

Ikn)+ —Ikn) = —2 i6(s—H)J„In),
which follows from Eq. (12), we obtain

ga n;an= t'aa, nn —»&(s—pa ) (k'n'I Jaln&. (15)

Now let us introduce the 1matrix which is given by

Ta n; an =— (k'n'
I
Ja

I n)
=(n'IA, .J, ln)+. (n'I J,.t("—H+ s)-'J, ln).

(16)

We note here that the S matrix is expressed in term of
the T matrix as

Aat In, M&, (7) [Hp, Aa ]=—s'Aa. .

where M is the s component of the impurity spin.
Furthermore AI,t has to satisfy the equation

where

and

[Hp, Aat]=sAat,

Hp (P'/2m —p) pa+A——piap,

s ~p j(]p+.g p)1/p

lk, n&+=A, tin&+ Ix)~, (10)

In the presence of an impurity atom the total
Hamiltonian is given by

H=Hp+Hr.

We shall first find the exact incoming and outgoing
scattering eigenstates (1+pp)Ta n;an= (1+up)T(s) I.= a+,p,

(1—pp)Ta n;an ——(1—pp)T(s) I.= „,p)

(21)

(22)

From Eqs. (16) and (18), we finally obtain

T ~ 'anan(n',
I paa ln)

+Z.&n'I J"l~&--(~IG (")l~& &~I J.ln&

+p„&n'I J„l~&--(NIG, (—")l~&--&~l J,'In&. (2o)

The above equation is formally equivalent to the one
obtained by Suhl, except that now T, pkI, .JI„and Go are
matrices operating in 4-dimensional space. In the fol-

lowing we further assume that the important inter-
mediate states

I e) are exhausted by single-aprticle
(or -hole) states. Introducing an analytical function

T(s) which is related to Ta n', an by



we can write Eq. (20) as where wc have assumed that the spin of the magnetic
impurity is ~ I

or (S e/2)'= i36+—', {S.n/2)] for sim-

plicity. Here g(s) and f(s) are given by

T* (")G(p' —s)T'(")S(~ '—s') (23)
(2w)'

g(s) =«Ls/(s' —~')'"j

f(s) =«I:~/(»' —~')'"3,

respectively. 7)(s) ls giveil by

(27)

V=Vpg+J(S n)/.2

Here we made use of the fact that e~. ——el, .
From the above equation we see that the crossing

relation holds:

)7(s)=+1, for

=O) fol
= —1) for

s&O;
2'=0&

s&O. (2g)

T(z) =T'(—s) (24)

which is a simple generalization of that in the normal
state.

In order to solve the above equation for T(s), we
decompose the scattering matrix as follows:

T(s)=t{s)+r(s)(S e/2)+pa(X+A(S e/2))
+pi~2(~+s(S ~/2))+ pi~2p8(&+&(S ~/2)) (25)

Substituting Eqs. (6), (24), and (25) into Eq. (23),
and after a straightforward but rather lengthy calcula-
tion, we obtain

4(s) =~(s)~N(s)

+ (a~f) (I L+ I'+—'s I
~+ I'))

r~(s) = r(s)ai)(s) =J+

It is not dificult to show that at 6nite temperatures

s (s) is replaced simply by tanh (-',Ps) with P = 1/T.' The
above results are exact within two approximations:
(1) The important intermediate states must be ex-
hausted by single particle states; (2) the impurity con-
centration must be extremely dilute {i.e., c —+ 0 where
c is the density of impurity atoms). In the case of a
6nite concentration of impurities, the self-energy correc-
tion due to impurity scattering modifies both g(s) and

f(s) and we have a more complicated set of equations
(for discussion, see Secs. IV and V).

Ilr. soUmD sT&Tzs lm 7Hz zmzRGv GAp

Before going into the solution of the above equations,
wc note the fact that I., A., E, and II vanish identically
if V=O, while r) e) A, and H vanish if J=O. Since Kq.
(26) is too complicated to be tractable, we confine
ourselves in the following to the case V=O, where we

can dcducc some rigorous conclusions. In this case wc
have

( if(x)
&& (a~f)l 4*++ +*&+—

2

g(x)
+ (x~f)(L+"&++&+"f.+

2

L~( )=L(s)~&()= &+

q(x)
& (g~f)l &+*~++r+*I+— (+*~+) I

dx ))(x)
r+(s) =J+ p 4*r++4r~*-„s—x 2

X (a~f) (29)

The above set of equations has the same mathe-
matical structure as the one discussed by Suhl LEq.
(3) in Ref. 2), if one replaces f~, r~, and. p(g& j) by
I,, 7, and p, respectively. The solution is written as

~p(g+f)4(s) = —(1/2~) ("'"—1),
+(s)e """=+(s)/L1 —2 ip(a~f)4(s) j—=~+(s),

s ""'*'= 1—o+(s) I +(s) I'= L1+~+ I ~+(s) I'3-',

if(x)
—'

dxp(ga f)Ii~(s) =4 —2
J

=J(1—pJ4(s)) ',

s(x)
+(r~f)('~~~"+ ~&+" (~&+"))—

(26) (30)
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Di san
=arccosh —i+

g j (A2 s2)1/2
arcsin—

&aJ
'

for isa &6;

where we have put

S(s)= S'(s)+i&"(s),
~+(s)= 12~'p'(g~ f)

Here I~(s) are given as

1 dxI,(.)=- &(z)(g(~)~f(*))
2 -Dg 3

dh (xaA)

(z2 +2)1/2 g2 s2

As one sees from the relation

Ir+I2= IF+I2/(1+o+IF+I')

rg has poles at the same places as P~ has for T,/T, p& 1,
since /2~ ——0 for

i si &A. On the other hand, t~(z) does
not have corresponding poles, as can be seen from Eq.
(30). The equation for t~(s) reduces in the case of weak
scattering (pJ«1—the usual case) to

4(s) =— 3p
(g~f)'

(g~f) g—s

and

1—-'~2[2 —in(T,/T. p)] ' Tr
for «1. (37)

(31) 1+~12r [2—1n(T„/T, p)]
' T,p

(Di sad
=arccoshi —i-

(s' —52)'/2

t/s )
arccoshi —

i

—-i
&Ai

3pJ
(g~ f)'

I
1—p~4(s) I

' (»)
(ga f) x—s

1—pJI~(s) =0. (33)

Equation (33) is written in a more convenient form as

where
ln(T„/T p)+ fy(s) =0 (34)

a+6 s
(s) = arcsin-

(g2 s2)1/2
for isi &6;

(s2 A2)1/2

fs 2r

are cosh' ——-i

for isi &h. (35)

Here T„=(yD/x)e "» is the Suhl. -A—brikosov reso-
nance temperature. One can easily see that Eq. (34)
has a real solution for

i si &A if T,/T. p&1, while Eq.
(34) has a complex root if T„/T,p) 1.Therefore we con-
-clude that there appear a pair of bound states below the
energy gap for T„&T.0, while the complex poles remain
even in the superconducting state for T„&T.D. The latter
poles have to be treated by a more elaborate method, 6

which will not be discussed here. As the resonance tem-
perature decreases, the complex poles approach the
real axis and at T,= T.D the poles of the bound states
appear at s=0. Further decrease in T, is accompanied
by the increase of isi along the real axis, and finally
the bound states merge into the continuum for T„=O.
Asymptotic solutions of Eq. (34) are given as

for isi &A. (32)

In the computation of I~(s) we have cut off the inte-
gration at a frequency D which corresponds roughly to
the Fermi energy. The location of the pole in r~(s) is
determined by

IV. SELF-CONSISTENT EQUATION FOR THE
CASE OF FINITE CONCENTRATION

OF IMPURITIES

We have restricted ourselves so far to the effect of a
single impurity atom on the conduction electrons in the
superconducting phase. We found in certain cases
(T p) T„) that the impurity induces a pair of bound
states below the energy gap in the quasiparticle excita-
tion. We shall next consider the case of a finite concen-
tration, though we still assume that the concentration
of impurity atoms is so low that the correlation between
spins of different impurity atoms is negligible. The
present case is more complicated than that in the normal
state, where we could assume that the density of states
was not changed by the presence of the magnetic im-
purities. This situation is related to the fact that in the
normal state the effect of scattering from many random
impurities gives rise to a renormalization of energy
only. This amounts to the introduction of a 6nite life-
time for the electron, but no change in the density of
states. [More precisely, there is a small change in the
density of states of the order of (c Ret(p/))/Ez due to the
shift of the energy of excitation, where c is the density
of impurity atoms. $ In the case of a superconductor,
the asymptotic SCS state is replaced by a uniformly
disturbed state, which is described by the renormalized
Green's function. ~ Since the exchange scattering breaks
the time-reversal symmetry of the electronic system, the
renormalization factors for the frequency and the order
parameter are different, which causes nontrivial changes
for both g(s) and f(s) in Eq. (27). The renormalized
Green's function is given now by

G(P, )=( -~,p -Ap .)-', (40)
where

T ) 1 T„T„
s= +6 1— —— 1—,for &1; 36

T„) 2 T„' T„
P/=PP=ct(/d);

Z=6+cg(pp) . (41)
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Here c is the concentration of impurities and t and I
are components of the scattering amplitude. The dis-
persion equations in the present case are still given by
Eq. (23), but the old G(p, o)) has to be replaced by the
one in Eq. (40). After carrying out the same reductions
as given before, we arrive at the set of Eq. (29), where
now g(s) and f(s) are given by

g(s) =Im
(+2 ~2)1/2

f(z) =Im
(t) s ~2)t/2

(42)

The set of equations thus obtained allows us to discuss
the effect of magnetic impurities at finite concentration
in considerable generality (though we still neglect the
spin correlation between impurity atoms). The mathe-
matical structure of the equations is, however, quite
complicated, since we should solve self-consistently for
both the T matrices and the single-particle Green's
functions. We shall see, however, in the next section
that the above set of equations will be solved in gapless
superconductors, where the order parameter 6 is small.

Here we neglect for simplicity the term due to the
ordinary scattering (i.e., we assume V=O). We can
recast the above equation into the form

where

r, (o))-'=c Re

( 1 z
o) o)l 1+

4"( ) ~I
I)

tt' 1 dx
exp~—

mp &2m x—s

X)n(1+ a
i
P

i '))—1

where

a= n+ic Iml(o)),

N(o)) =.',-(t+—t ), (49)

2 i&(1~t)4,)

which is proportional to 4(4r~r~'), ts the square of the
spin-Rip amplitude. Second, we shall set up a self-
consistent equation for the renormalization factor of
A. 6 is defined by the second equation in Eq. (41):

V. EFFECT OF ANOMALOUS SCATTERING
IN GAPLESS SUPERCONDUCTORS

exp-
-2x g—8

in(1+~, ~F, ~ ) —1 . (50)

By "gapless superconductors" we mean supercon-
ductors in which thermodynamical quantities as well as
transport coeKcients can be expanded in powers of 5.
In particular we know from the AG theory that, in the
presence of magnetic impurities, the superconductor
becomes gapless at temperatures close to the transition
temperature. The present technique oGers a powerful
method for approaching the problem of gapless super-
conductors in the presence of magnetic impurities. We
shall solve the self-consistent equation here by expand-
ing all quantities involved in powers of the order
parameter h. First, let us consider the renormalization
of the energy. By putting tI)=0 in Eq. (41), we have

Here

and

a,= 12~ p (1~t),yp')

Fp=J 1—pJ
dg px' -'

(1~&4t p') tanh
g —g 2

4t)p'= Re4i)p.

In the above derivation we have put

g(z) =o)/(o) —Z )'/ =1+0(444 ),
7(z) = ~/( '~')'"=~.(z)~+0(~'),

(51)

(52)

o)=o)+ic Imt„(o)) (43)

t-(~) =— 1 z dg
exp-

2x'pz -27K' g 8
ln(1+a~F ~') —1

where t (o)) is the non-spin-Rip scattering amplitude"
in the normal metal. According to Suhl, t„(o)) is given by

4(s) = t.(z) .
(1+64t'p)

(53)

As we shall see later, 4t)p' vanishes as o) at the Fermi
surface (in the gapless case). Thus we can further neglect
rt p' in the integrands in Eqs. (50) and (51),which develop
at most the singularity T lnT for small T. Finally we
have

where

and
g= 12~&p&

(44)
Inserting this into Eq. (49), we obtain

N(o)) = —a4t pt„(o)) . (54)

( Ch' X')-'
F=J) 1—pJ tanh —

(

x' —x 2)
(45)

"Since the real part of t„(co) depends weakly on frequency and
the constant part has to be absorbed in the shift of the chemical
potential, we only consider the imaginary part given in Eq. (41).

Noting the relation
6 1

~o()=——,
07

"Precisely speaking, it also contains terms proportional to
~
t ~'

)which is of the order of (pJ)4j.
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we have from Eq. (48)

or
capp(s) = 1—imp(s)c Imt„(s),

Pp(s) = ((u+ic Imt„(s))—'= (or+i2c Imt„(cp))—'. (55)

From Eq. (55) we obtain

which vanishes linearly in or at Fermi surface.
Summarizing the results, in the gapless region, more

rigorous treatment of the exchange scattering amounts
to the AG theory with the exact spin-flip lifetime Li.e.,
r,s ' in the AG theory should be replaced by r, '(cp)
in Eq. (47)].For example, the shift of the superconduct-
ing transition temperature due to a magnetic impurity
is given by

=0, (57)

where

co (s)
—I

dz.

AT (0)
(59)

with the exact r, '(~).
It is interesting to note that this frequency de-

pendence of r, '(&p) might account for discrepancies
between the AG theory and the observation by Woolf
and Reif' for alloys contaminated with Fe and Cr,
though it is too early to draw a definite conclusion. It is
not difFicult to calculate various transport coefficients in
the same limiting case.

' By using Abrikosov's diagram technique, GriKn obtained, up
to the third orde. in (pJ) an expression for E(co)/E(0), which
agrees with the present results (private communication).

The above equation has been derived previously by
Grif6n, ' by using the diagrammatical method proposed
by Abrikosov. 4 The tunneling density of states in the
gapless region is given by the usual expression":

VI. CONCLUSION

We have treated the effect of magnetic impurities on
superconducting properties. Using the technique de-
veloped by Suhl for normal metals, we have discussed
some limiting cases in superconductors.

First, the effect of a single impurity atom was con-
sidered. If the transition temperature T.o is large
(T,p) T„),a pair of a bound states appears in the energy
gap. It is not clear at present how the bound states
affect various electronic properties.

Second, in the gapless region (6 small), the self-
consistent equation in the presence of randomly
distributed magnetic impurities was solved. It was
shown to a good approximation that the results of AG
theory (which essentially treated the spin-exchange
interaction in Born approximation) still hold, if one
replaces v-, by the exact scattering amplitude in the
normal state. We expect that, under favorable condi-
tions, the measurement of the tunneling density of states
will reveal an observable deviation from the AG theory
on the low-frequency side.

The case of a finite concentration of impurities in a
more general situation (for arbitrary value of 8) is
more difFicult to analyze and will be left for the future.

Very recently Suhl and Wong succeeded in removing
the difFiculty associated with the complex poles by in-
troducing a pair of Castillejo-Dalitz-Dyson poles in the
expression for the Ii function. The revised treatment is
easily extended to the case of superconductors. We can
show that the result concerning the appearance of
bound states in the case of a single impurity is not
affected in this new version. Also we find that the results
concerning the properties of gapless superconductors
still hold.
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