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Magnetization of Ellipsoidal Superconductors
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A well-known result which can be rigorously deduced from Maxwell's equations and potential theory is
that the magnetization M of any homogeneous, isotropic ellipsoid is related to the local Geld B and the
external applied magnetic field Hp by H=B—4mM=Hp —AN M(H). The configuration matrix N, whose
elements are the demagnetization coeKcients, depends only on the shape of the ellipsoid. In particular,
this relation provides a means for computing the magnetization M (as a function of Hp), if it is known for
the special case of an infinitely long cylinder whose axis is aligned with Hp. This transformation has been
commonly applied to systems for which the M(H) relationship is linear: M=xH, where x is a constant.
We Gnd, more generally, when the ellipsoid is homogeneous and isotropic, that the transformation depends
only on the assumption that M is a smooth, single-valued, and otherwise arbitrary function of the local
Geld B. We apply the above result to the well-known magnetization functions for superconductors and
find for spheroids whose symmetry axis is parallel to Hp.

4~M = —Hp/(1 —n) (Meissner state)
and

4ooM= —P(@ o
—&o)/(y+to)Ho]Ho (mixed state),

where p= (2z2' —1)p, and n is the element of N associated with the symmetry direction. We also compute
the torque exerted on a superconducting spheroid whose symmetry axis is not aligned with Hp.

INTRODUCTION
' 'N the performance of an experiment on a magnetized
- - sample one often needs to be concerned about the
effect of the sample shape on its magnetization and on
the magnetic Geld in its vicinity. A familiar example is
the simple case of a substance whose induced magnetiza-
tion varies linearly with an applied external field. If a
long thin rod aligned parallel to a uniform applied field
Ho, is found to magnetize according to

Ho. ,

where X is a constant, then it is known that for a
specimen of the same substance but of any ellipsoidal
shape the magnetization will be given by

ilrl, =XHp, /(1+4otis, X),

where X has the same value as in (1) and the shape of
the ellipsoid is characterized by the geometrical factor
e„ the so-called demagnetization coeKcient. The
validity of Eq. (2) is understood to depend on the fact
that the specimen magnetizes uniformly.

In the following, we consider bodies for which the
dependence of 3f on IIO is in, general not linear' as in

Eq. (1) and investigate the problem of describing the
magnetization of such a body of arbitrary ellipsoidal
shape, thus obtaining expressions analogous to (1) and

(2) for the general nonlinear case. In pursuing this goal,
we 6rst reproduce for the sake of clarity and dehniteness
the classical boundary-value approach to the solution
of the macroscopic field distribution arising from a
magnetized body. In the final section we apply the
general results to the computation of the magnetization
of variously shaped superconductors and consider the
effect on the torque and specific heat.

'We do not include ferromagnetics, however, and limit our
attention to systems for which a well-defined "reversible" magn=t-
ization is induced by an externally applied Geld.

THE CLASSICAL FORMULATION

cV xM= j(r), (4)

where M is to be finite at all points inside the body and
vanish outside though II, need not.

Thus, in the presence of an applied external field Hp,
the total local field B=Hp+H, satisfies the relations

V x 5=4~V xM, V.Q=O.

We will find it more convenient, as usual, to introduce
the Gctitious Geld H defined by H—=B—4otM. (6)

From (5) H satisfies

vxn=o, v H= —4~V M. (7)

The boundary conditions which lead to the desired
macroscopic solutions are that the tangential and
normal components of I and 8, respectively, shall be
continuous across the surface of the specimen. To
complete the formulation of the problem it is necessary
to specify the way in which the magnetization M
depends on the local field S. In the following, we
summarize the results of such a formulation; details of
the analysis are outlined in the Appendix.

We consider only homogeneous isotropic substances
so that the dependence of M on 8 may be given by a
scalar function M= f(B). It can be shown that if this
function is single-valued and has a continuous deriva-
tive, then one is led to a constitutive relation M =g(H)
416

We consider that the quasistatic magnetization of a
body may be attributed to a distribution of its magnet-
ization currents j(r) which are related to the body's
magnetization field II, according to the Maxwell
(time averaged) equations

VxH, =(4or/c)j(r), V H, =O. (3)

We define the "magnetization" associated with H, and

j as
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for which the sects of geometry do not enter explicitly.
These eBects are handled implicitly through the
dependence of H on the shape of the body. Moreover,
for ellipsoidal samples the field H and therefore also M
turn out to be uniform inside the specimen. One then
obtains the well-known result' (see Appendix),

H; =H p; 4m+—n;,.3f, (H)

which relates the fields H and M to the externally
applied field Hp. In (g), the i's and j's refer to the
Cartesian components of the vectors and the elements of
the matrix (n;,}=N are the well-known geometrical
factors' called "demagnetization coefficients" which
prescribe the shape of the ellipsoid.

It should be emphasized that since the constitutive
relation g(H') does not explicitly involve the geometry
of the specimen (that is, the ts,,), this function can be
completely elucidated for any convenient geometry
and the dependence on configuration accounted for
through the held H. The functional dependence may be
discovered empirically. In this connection, we note that
outside the specimen the field produced by the magnet-
ized body approximates at distant points the 6eld of a
dipole whose moment is defined by

1 1R—=— (r xj)de= — (r x V xM)de= Mdp, (9)
S S S

where the integrals are to be taken over the volume of
the specimen 5 and the last equality results from
application of Gauss' theorem. As most magnetometric
experimental procedures involve measurements which
depend on the Geld in the vicinity of the specimen, it is
conventional to interpret the experiment as a measure-
ment of the magnetic moment Pg and hence of the
M(Hp) dependence. In particular, if one can determine
the dependence Mp(Hp) of M on Hp for the special
case of a cylinder long compared to its lateral dimen-
sions, for which case H=Hp, 4 then the constitutive
relation MN for an arbitrary ellipsoid characterized by
the configuration matrix N is simply given, using (8) by

MN(Hp) =MpLH(Hp, N)].

In the next section we apply the transformation (10)
to the magnetization functions of superconductors.

'Equation (8) is derived in numerous standard texts by
invoking the assumption of uniform magnetization: e.g. , W. F.
Brown, Magnetostatic Prince ples in Ferromagnetism (North-
Holland Publishing Company, Amsterdam, 1962). In the present
case, we prove (see Appendix) that it follows directly from the
well-behaved nature of the magnetization function f(B).' For tabulated values see Brown (Ref. 2) and E. C. Stoner,
Phil. Mag. 36, 803 (1945).

More precisely, we mean an exceedingly prolate spheroid
(eccentricity approaching unity) with Hp parallel to the axis of
revolution. The only element of N which enters Eq. (8) in this case
is that one multiplying the component of M parallel to Hp.
Since this component, n~ ~, is zero and M is parallel to Hp, the sum
vanishes.

APPLICATION TO SUPERCONDUCTORS

Magnetization

In applying the foregoing results to superconductors'
we restrict the present discussion to bulk. specimens.
That is, all of the dimensions of the specimen are much
larger than the weak-field penetration depth. This
restriction is necessary primarily because the magnetiza-
tion becomes size-dependent as well as shape-dependent
when the sample approaches this characteristic
dimension.

Since insofar as their magnetization is concerned,
type-I superconductors may be treated as a special
case of type-II, it will be sufhcient to consider the latter.
The analytical expressions for M(Hp) for the geometry
ts„=0' ' are known for two cases: (a) the Meissner state
for which

4trM = —L(H, s—Hp)/yHp]Hp. (12)

Here y—= (2xs' —1)8, where P is a numerical constant of
order unity, and a2 is the Abrikosov-Maki parameter,
the value of which may be the objective of a magnetiza-
tion measurement. As implied by the restriction elf =0,
these formulas are expected to apply to an exceedingly
prolate spheroid which is aligned with the applied field
H().

In the following, we restrict the discussion to sphe-
roids and choose cylindrically symmetric coordinates
with the cylinder (s) axis parallel to the axis of rotation
of the spheroid. In this representation the matrix N is
diagonal with only two distinct nonzero elements n„=—e
and I„=n» (1—ts—)—/2, where ts is the demagnetization
coeScient corresponding to the z axis of the spheroid.

To compute the magnetization for the case where
tsWO according to the relation (10), we replace Hp by H

'At this writing, we have learned that very recently Kulik
has independently proposed the application of Eq. (8) to the
magnetization of type II superconductors without, however, a
detailed examination of the circumstances under which the
procedure is valid. I.0. Kulik, JETP Pis ma v Redaktisyu 3, 395
(1966) LEnglish trsnsl. : JETP Letters 3, 259 (1966)$.

p The n~~ =0 geometry has particular significance in regard to
thermodynamic considerations, as it is only for this case that
S=H=Hp at all points exterior to the specimen. Thus, the volume
integrals describing the free energies may be correctly terminated
at the bounding surface of the specimen in the sense that contribu-
tions of the form

d VIIp2/8m.
yr

from the space outside of the sample may be regarded as sub-
tractive constants. For this reason, it is characteristic of macro-
scopic thermodynamic theories to prescribe M(Hp) for the nI i =0
case (e.g., the Ginzburg-Landau theory of superconductivity),
while the opposite situation LM given as M (8)$ is apt to be given
in a microscopic discussion (e.g., the Lifschitz-Kosevitch theory
for the de Haas —van Alphen effect).

4aM= —Hp

and (b) the mixed state in the vicinity of the transition
field H, 2 where the magnetization is given by the
Abrikosov formula
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Hence
—4orM = (H, s—Hp)/(y+oo) . (18)

Type Z

Hp

Hc( I
—n )

— n=O

——n = I/5

Hc

n=o

——n= (/3

When is=0, Eq. (18) reduces to the familiar Abrikosov
formula as expected. ~ One notes that for supercon-
ductors for which xs is only slightly greater than 1/V2,
i.e., y +0, the effect of ts on the slope of the magnetiza-
tion curve is appreciable and must be taken into account
in order to deduce the correct value of ~2 from the
experimental slope.

The results embodied in Eqs. (16) through (18)
extend immediately to type-I superconductor s by
simply replacing H, 2 by H„and letting p —+ 0. From
(15) we see that H reaches the value H, at Hp=H,
X (1—e), and from (17) H=H, for all values H. (1—or)

&Hp&H, . In other words, we have the well-known
result that the magnetization obeys Eq. (16) for
0& Hp& (1 ti)H—, and then decreases linearly according
to

—4orM = (H, —Hp)/to,

Dntermediate state H, (1—oo)&Hp&H. ]. (19)

Hp
Hce

Fic. 1. The magnetization of a type-I and a type-II super-
conductor for the case of a very long thin rod aligned with the
applied Geld (n=0), and for the case of a sphere (n=-', ). The
curves have been chosen so that the two types of superconductor
have the same thermodynamic critical field H, . For the type-II
superconductor in this case, the Abrikosov-Maki parameter z2
has been chosen so that y —=(2ooo —1)P=1. The slopes of the
straight lines indicated by the long dashes are deduced from the
present simple theory to be 1j(1—e) for the Meissner state, and—1/(y+I) for the intermediate (y=0) and mixed states. The
latter result for the mixed state has been deduced independently
by Maki from the Ginzburg-Landau theory for the case of a sphere.

in Eqs. (11) and (12) obtaining

4~M= —H

for the Meissner state, and

4orM = —[(H,s —H)/7H]H

(13)

(14)

for the mixed state.
We consider first a specimen whose symmetry axis is

aligned parallel to Hp. For this case, the vector notation
may be dropped since M, H, and Hp are parallel.
Combining (8) and (13), one finds easily for the
Meissner state

so that

and

H =Ho 47rtsM =Hp+trH, —

H=Hp/(1 ro)—(15)

4orM = H= —Hp/(1 —e)—(16)

which is the well-known result. (Equation (16) is, of
course, just Eq. (2) with X= —1/4or. ] For the mixed
state, we obtain a generalization of Abrikosov's formula,
Eq. (12), by combining (8) and (14):

H= (yHp+roH, o)/(7+to) . (17)

These results and the corresponding results for a
type-II superconductor for which p=1 are illustrated
in Fig. 1. For the sake of comparison the curves have
been chosen so that H, is the same for both the type-7
and the type-II cases; that is, the areas enclosed by
each of the four curves is the same. ' From the fact that
H, is invariant with geometry, and thus that the
enclosed area is similarly invariant, one can deduce
that the slope of the magnetization curve in the
intermediate state is 1/tr. For the type-II case, however,
Eq. (18) cannot be derived by appealing to conservation
of area.

From the experimental point of view, the usefulness
of the foregoing formulas lies in the fact that they allow
some liberty in the choice of specimen shape. As long as
the specimen shape approximates an ellipsoid an
effective value, ' of e is determ&sed experimentally by the
Meissner-state magnetization. This value may then be
used in. fitting formula (18) to the mixed-state magnet-
ization. In this way, the effect of shape is accounted
for in determining the value of y and hence I(,2.

Torque

When the symmetry axis of the specimen is rot
aligned with H p, one expects in general that the
magnetization will not be parallel with the applied
field. As a result, the sample will experience a torque
which may be expressed by

r = (MrHpr M~~Hpr) V (20)
Maki has derived Eq. {18) for a sphere (e=-',) by direct

calculation from the Ginzburg-Landau theory (private com-
munication).

o The area= J'o"MdH o=H,o/Srr=G„(H=0) —G, '(H—=O), f.e.,
the free-energy density difference between the normal and super-
conducting states in sero field. Hence the area is independent of the
shape.

This is discussed by Brown, Ref. 2, pp. 52, 53, 83, and 84.
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where V is the volume of the spheroid and the subscripts

~~
and J, as before, refer to components parallel and

perpendiculaar to the s axis. For the Meissner state of
spheroidal specimens, the components 3f«and M~
may be found by straightforward simultaneous solution
of the vector equations (8) and (13). One obtains

4rl3/I~i= Hp~i/(1 —ni~) = —Hp cosij//(1 —n),
4rr3/Ii= —Hpi/(1 —ni) = 2Hp si nf/(1+ n) (21)

and
47rr= V[(3n —1)/2(1 —n')]Hpp sin2$, (22)

where iP is the angle between the symmetry axis and
Hp, and V is the volume of the spheroid. For the mixed
state of a type-II (or the intermediate state of a type-I)
superconductor we may obtain a solution as follows.
I et the magnetization M make an angle y with the
symmetry axis of the spheroid. Then the equations for
the components of M may be expressed as

Next we note that Abrikosov's formula (12) and hence
the subsequent analysis is valid only where H, 2

—Hp
is small compared to H, p. In this limit, (28) and (29)
give

sine =
3e—1 H, 2

—Hp

n+1 H. p

(30)

X (31)
[(y+n)h+H, p][[p+ (1 n)/—25h+H„]

Thus since 0(e(1 we see that e is indeed small for all
configurations, so that we may take (26) to be applicable
for all cases of practical interest.

The general expression for the torque follows from
(20) and is given by

Hp' sin2$
4rrr = V(3n —1)

where

and

sinpp—= sin(iP+p) =Hp sining/

{[y+ (1—n)/2]h+H, p }, (25) (Meissner state) 47rr = 2Hp'[(ir/2) —iP]u', (33)

A special case of interest is that of a disk-shaped foil4''M«=h cosy,' 47/My= h slny,
which is thin compared to its lateral dimensions. The
foil is well approximated by an exceedingly oblate
spheroid in which case one Ands"

Using (23) and solving (10) and (14) we obtain
(32)n=1 —irt 2a,

where t is the thickness and a is the "radius" of the
foil. If iP=n. /2, the foil is aligned nearly parallel to Hp
and one finds

cos'ip sin'ip

(y+n)h+H, p [y+ (1—n)/2]h+H„
1

L1+0(")] (26)
Hp

where e is the angle between the magnetization vector
and the applied field vector. Elimination of y between
these equalities leads to a quartic equation for h.
However, a very good approximate solution results from
expanding siny and cosy about &=0. One obtains to
0(p') the quadratic for h:

where we have approximated the area of the foil by
ma'. Therefore, one has the interesting result that the
torque on a type-I superconductor is proportional to a
fictitious volume" V/(1 —n) =2a'.

Since the sample makes a finite angle with Hp, it is
likely that the intermediate state will set in slightly
below H, . The torque at this point charges sage and
becomes

4nr= —4(H, —Hp)Hp(ir. /2 —iP)a'. (34)

If y/0, the foil will undergo a transition to the mixed
phase at an. intermediate field, and in the vicinity of H, p,

Eqs. (13) to (26) give

To see that c is in fact small for cases of practical
interest we combine (24) and (25) to obtain

sine= ~iHp sin2$

V (H„—H p) 'H p(ir/2 —iP)
4m~=

y[(y+1)Hp —H.p]
(35)

h(3n —1)
X (27)

[[p+(1 )n/]2+h— H, ]p[(y+ )nh+H„]

Clearly sine is maximized for y —& 0 and iP=ir/4. For
these values (26) becomes

n[(1—n)/2]h'+ [(1+n)/4][2H, 2
—Hp]h

+H, p(H, p
—Hp) =0 (28)

and (27) takes the form

Note that the denominator of (35) is positive for Hp
near H, 2 because y)0. Since the torque is positive
initially in the Meissner state, the torque on a type-II
superconductor will either exhibit two sign changes or
none at all, depending on whether the value of Hp at
which (35) changes sign is close enough to H, p so that
the Abrikosov formula will apply. Incidently, for the
mixed state, we see that the torque is proportional to
the true volume.

sine= (3n —1)h/[h(1+n)+4H, &7. (29)
' L. D. Landau and E. M. Lifschitz, E/ectrodynamics of Contin-

uous 3leCha (Pergamon Press, Inc. , New York, 1960).
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47rr(/=0)= V(H Ho—) Hog/Ho, (36)

A foil situated almost perpendicular to the applied
field, on the other hand, is expected to enter the
intermediate state at extremely low Gelds. One finds

formula

AC 1
(d—H,/dT)'

Tp 4g
(4o)

(H.s
—Ho)'Hog

4rrr(y/0) = V
(&+1)(vH.+H..) (37)

For a type-I superconductor for which &=0, the
specific-heat jump when measured in a nonzero field
should be

Speci6c Heat

Another case in which the shape of the specimen may
e6ect the interpretation of experimental data is in the
measurement of the specific heat in an applied Geld

near the transition to the normal state. Elementary
thermodynamic considerations lead to the conclusion
that the discontinuity in the specific heat at the
transition point is given by

(C.—C'-)~,n T (He)((xs X )~o.'c(dHar'tldT) r, (Hs)

+ (M, M) ir„;,(d'H„—;,/dT') r, (Ir,) ), (38)

where T,(H )iss the transition temperature in the field

Hp& Hczj1, is either H, 2 or H„M is the magnetization,
and X stands for MdHp. For the transition at H,2,

M —M, =O, so one has

AC„, ~dH, s~' 1

T, (Hp) k dT 3 r, trr &4n'(p+n)
(39)

Thus the jump in the specific heat depends on the shape
of the sample. As is well known, this formula does not
apply when Hp=0 for the fundamental reason that the
penetration depth tends to at the zero-field transition
temperature T,p. One regains instead the Rutgers

"M. J. Zuckerman, Phys. Letters 13, 277 (1964); J. A. Cape
(unpublished)."J.D. Livingston and H. Vil'. Schadler, Progr. Mater. Sci. 12,
185 (1964)."E.J. Sandiford and D. G. Schweitzer, Phys. Letters 13, 98
(1964).

~4 H. J. Fink, Phys. Letters 19, 364 (1965).
"H. J. Fink, Phys. Rev. Letters 16, 447 (1966)."L.J.Barnes and H. J. Pink, Phys. Letters 20, 583 {1966).

We emphasize that these results pertain to a super-
conductor for which there is no superconducting sheath.
It is possible to derive from the Ginzburg-Landau
theory analytic expressions" for M(Hs) for a semi-
infinite foil in the vicinity of H, 3, and thus one might
compute the behavior of the magnetization and torque
of a finite sample in the manner described in the
foregoing. However, the bulk of the evidence thus far
indicates that for real Gnite specimens, the sheath
exhibits characteristics of multiply connected super-
conductors and thus behaves in a characteristically
irreversiMe manner" " unlike the predictions of the
present theory. Our results are probably comparable
with experiment only where the sheath has been
suppressed by some means, e.g., by plating with a
normal metal (Cu, Cr, etc.).

hC
(dH /d T)'r. (~0)

T,(Hs) 4rre

which is the well-known result. "
(41)

SUMMARY AND DISCUSSION

'7Type-I behavior such as predicted by Eq. (40) has been
discussed in detail by D. Shoenberg )Superconductivity (Cambridge
University Press, New York, 1960)g.

We have considered substances whose magnetization
exhibits a well-defined relationship with an applied
magnetic field and described the manner in which a
sample's geometry sects this magnetization. We have
sought to establish with some rigor what minimal
assumptions are required to arrive at the fundamental
relationship, Eq. (8), between M and Hs. Whereas
this relationship has been conventionally deduced by
assuming uniform magnetization, in the present case
we have found that it can be derived from Maxwell's
equation if:

(1) there is a smooth single-valued functional
dependence of the magnetization M on the local Geld 8;

(2) the medium is isotropic and homogeneous so
that the functional dependence is a scalar one; and,
as usual,

(3) macroscopic boundary conditions on B and H
are imposed.

It should be pointed out that assumption (2), which
forces 8, I, and M to be parallel in all cases, can be
generalized to a vector functional dependence and the
present procedure followed in otherwise the same
manner. This would allow for anisotropy as required
for crystalline substances though the analysis would be
quite messy for anything but the simplest cases.

Our deduction that the magnetization is spatially
uniform stems from assumption (1) where we have M
depending only implicitly on position through the local
6eld vector B, thatis, M(r)=M[B(r)j. This would be
the case if a strictly local electrodynamics [i.e.,
j(r)=cV x M~ A(r), where B=V x Aj were employed
in arriving at M (B).On the other hand, a fairly simple
example of an implicitly nonlocal dependence is the
Ginzburg-Landau theory for which j(r) ~

~
tt (r)

~

'A(r).
Here the nonlocality can be seen from the fact that P(r)
is the solution of a differential equation depending on
A(r) and hence is expressible as the solution of an
integral equation involving A(r ). In a case of this kind,
one might expect M to depend explicitly on r as well a,s
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on B(r). It is well known, of course, that the Ginzburg-
Landau theory predicts a nonuniform magnetization
for the mixed state and intermediate state of super-
conductors. Nevertheless, in the present analysis we
have applied the transformation to the mixed-state
magnetization of type-II superconductors and deduced
the same result, Eq. (18), as that derived by much more
tedious means from the Ginzburg-Landau theory by
Maki in the particular case of a sphere. This is possible
because the sample dimensions are large compared to
the penetration depth and hence also to the scale of
the microscopic structure.
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where

H(r) = H, —v d V' R-'v' M(r'),

E= )r—r'f, —

(A1)

and the integration is performed over a region S*which
contains all source points r' in the specimen S.

Suppose, however, that the magnetization M is
known as a single-valued function f(B) of the local
6eld B. Then from the implicit function theorem the
function h(M, H) defined by

APPENDIX: DERIVATION OF THE
TRANSFORMATION

We note that because of Eq. (7), if M is given
explicitly as a function of an arbitrary point x within
the magnetized specimen, then the I 6eld will be
uniquely determined if we specify its value at infinity
to be Ho. This unique field moreover satisfies the usual
integral equation

can be solved for M, say M=g(H), as long as h has
continuous derivatives with respect to both its argu-
ments and Bh/BMWO throughout S. This implies that
the originally selected relation f must be continuously
differentiable and must satisfy f'g1/4n. (f' denoting
differentiation of fwith respect to its single argument).

When these conditions are satisfied, (A1) takes the
form

H(r) =Hp —v dV' R 'v' g[H(r')].
8

(A3)

It is not hard to show that when g'(H) satisfies a
Lipschitz condition over S* [which it will when f'(B)
does], then the integral equation (A3) has a unique
solution H(Hp) in the class of continuously differentiable
vector functions which approach Hp for large r. But
consider the case of uniform H. Then M=g[H(r)]
=g(H) is also uniform and hence

H=H, —v dV'Z-'v' M=H, +(vv Z-'dV') M
8 S

where VV is to be interpreted as a dyadic product and
8 is a unit outward normal. Now if S is an ellipsoid it
can be shown that the configuration matrix N given by

1
N—=——vv R-~d V'

s

is independent of r inside or on S. Thus we find

(A5)

H;= Hp; —4m';;M; (A7)

H=Hp —4z. N M (A6)

which together with the constitutive relation M=g(H)
determines H= H(Hp) and thus M= g[H(Hp)] as
functions of Hp. Since the solution to (A3) is unique,
(A6) must be this solution.

Thus, we conclude that subject only to the stated
smoothness conditions on M = f(B), the fields M and. H
are uniform inside ellipsoidal specimens and satisfy
(A6). The latter may be written in its well-known

component form

h(M, H) =—M —f(H+4m. M) =0 (A2) which we have made use of in the text.


