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of iron has increased after the sample is annealed.
Neither would a change of valence state be detectable.
The fact that the sample was annealed in an iron bomb
makes it possible that additional iron was diRused into
the sample. If we assume that the minimum in the curve
occurs for the condition pe= 1, where p is the relaxation
time of the iron impurity, then concentrations of iron
of the magnitude observed in the sample, approximately
10" ions/cm', couM explain the relaxation times
observed.

Below 1.4'K the temperature dependence of T1
appears to reHect the transition from a Raman to a
direct process for the paramagnetic ions, which cause
the nuclear relaxation. However, we find that the ob-

served nuclear T1 is about 3 orders of magnitude too
small to be explained as being due to isolated manganese
ons, so that here again it is necessary to attribute the
relaxation to other paramagnetic centers.

ACKNOWLEDGMENTS

We wish to thank R, Q. Wittig for the construction
of parts of the equipment used and W. B. Wollet for
his assistance in solving many of the problems associated
with vacuum systems and low temperatures. Special
thanks is also due to B.Wardlaw of the Texas Depart-
ment of Pubhc Health for making a spectroscopic
analysis of the crystals used in this work.

PHYSICAL REVIEW VOLUME 153, NUMBER 2 10 JANUARY 196'I

Electric Field Shift in Electron Paramagnetic Resonance
for Mn'+ in CawO,
A. KIEL AND VV. B. MIMs

Bell Telephone laboratories, Rex York, Rem York

(Received 13 June 1966)

The electric Geld shifts in paramagnetic resonance of Mn'+ in Ca%'04 have been measured and the compo-
nents of the third-rank tensor deGning the change in the spin Hamiltonian have been derived from the
measurement. The theoretical determination of the tensor elements using an "equivalent even Geld" tech-
nique gave values at least a factor of 10 too small. Tvvo possib/e mechanisms for the anomalously large
shifts observed in Mn'+ are discussed, one based on the explicit mixture of odd states into the ground
manifold, the other on ionic motion. The hypothesis that the Grst of these mechanisms is responsible for the
large shifts implies that the normal D term of Mn'+ is Ca%04 depends signiGcantly on the strength of the
odd crystal Geld.

'HK eRects of applied electric 6elds on the para-
magnetic resonance of Ce'+, Nd'+, Er'+, and

Yb'+ ions in a CaW04 lattice have recently been in-

vestigated both experimentally' and theoretically. ' In
all these cases the ground state is an isolated Kramers
doublet separated by &30 cm—' from the next excited

levels, and the electric effect can be adequately de-

scribed in terms of modifications in the g values. Here
we apply similar methods to the study of Mn'+, an 5-
state ion, in which the changes in g can be neglected. , and

the electric eRect manifests itself as a modihcation of the
crystal-held, splittings, i.e., in terms which are of the
second order, and, to a lesser extent, of higher orders in

the spin operators. As in the case of the rare-earth ions
Mn'+ substitutes at the Ca'+ site, which has a point,

symmetry of 54(4), with the crystal c axis as the four-

fold axis. There are two Mn sites, indistinguishable

from one another in the absence of applied electric

fields, which are related by the inversion operator.
The Hamiltonian as given by Hempstead and Bowers3

'%. B.Mims, Phys. Rev. 140, A531 (1965).
~ A. Kiel, Phys. Rev. 148, 247 (1966).
8 C. F. Hempstead and K. D. Bo~ers, Phys. Rev. 118, 131

(1960). X,@=8;8;,I,5,5I„ (2)

lS

&o=g i iW',5.+ gag (II.S.+II„5„)+D(S,o 35/12)—
+AS,I,+B(S,I,+S„I„)
+ (&/6) (5~4—So4+5.4—707/16)
+(7/36)I {5,—(9S/14)5, +81/16),

where

5=1=-',
) gll =1.99987,

g, = 1.99980, D= —413 Mc/sec,
a=13.8 Mc/sec, I"=9.9 Mc/sec,

A = —266.8 Mc/sec, B=—268.6 Mc/sec.

The s axis corresponds to the crystal c axis; the x and

y axes in (1) are taken in the ub plane at an angle of 8'
to the a and b axes. An apphed electric 6eld can, by
reducing the symmetry of the environment, both modify
or add terms to the Harniltonian. We shall here consider
primarily those terms which occur to the second power
in the spin operators and which are linear in the applied
electric field. In the general case these can be written as
a contlibution to the Hamlltonlall
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where E; is the electric field in the ith direction and R.;;~
are coefficients of a third-rank tensor. R,;~ is identical in
form with the piezoelectric tensor. ' In the case of 54
symmetry many of the coeKcients vanish, leaving the
electric-effect tensor

. 0 0 0 Ri4 R15 0
0 0 0 —R~p R&4 0 . (3)

R3i —R31 0 0 0 Rgg

The third, or s axis here is the crystal c axis. The other
two, i.e., the x and y axes, may be located arbitrarily in
the perpendicular plane but will be taken here to
coincide with the u and b axes of the CaWO4 crystal.
For brevity in the description, the Voigt notation has
been adopted, ' i.e., R31——Raise, Ri4 ——R)23——R132, Ri5
=R»p=R&p&, Rpp=Rpip=Rpp&. From (2) and (3) we
therefore have an electric-eRect Hamiltonian

Xr, =E,{Ri4(S„S,+5,5„)+Rip(5,5,+S,S ) )
+Ep{ Rip(SpS +—5 Sp)+Rj4(5 5,+S.S ))

+E,{R„(5,' 5„')+Rpp(S—,S„+5„5,)) . (4)

In performing experiments it is convenient to choose
certain fixed directions for the electric field E, and to
vary the magnetic field Ho in order to explore the angu-
lar dependence of the electric shifts. Only two align-
ments of the electric field need be used here: E along the
u axis to find R14, R15, and E along the c axis to find
Rpi, Rpp. (As might be inferred directly from the S4
symmetry property, the E& term contains the same
parameters as the E, term, and can be reduced to the
same form by setting y —& x, x —+ —y, and changing the
sign of the effect. ) The relation between the electric
shifts, the parameters R;;, and the orientation of the
magnetic field is less readily apparent from (4). We may
note, however, that at our experimental frequency of
9.42 Gc/sec, the Zeeman-field terms will be several
times larger than the other terms in the Hamiltonian.
Under these conditions the variation of the electric
shifts with angle can be most clearly displayed by
taking a representation in which the Zeeman energy is
diagonal. This is easily done by rotating the coordinate
system so as to bring the s axis along the Zeeman field.
In view of the limited accuracy of our electric-shift
measurements it will be sufficient to take a single g
value, to set 3=8, and to discard terms of the fourth
degree in the spin operators, thus deriving from (1) a
Hamiltonian operator

Xp =AH, S,+0.5D{(SP—35/12) (3 cos'8 —1)
+ (S ' —5 ') sin'8 —(S,S,+S,5,) sin'8)

+2{S,I,+S„I„+S,I,) . (5)
4 C. S. Smith, Solid State Phys. 6, 229 (1958).' In the two-subscript form of R, E;;, we have adopted a con-

vention which corresponds to the Hamiltonian H =E,R;;T;, where
the six components of T; are S,', S„',S,', S,S,+S,S„,S S,+S,S,
S,S„+S„S,. This is formally similar to the convention used in
Ref. 1 and eliminates annoying factors of 2 which obscure the
transformation properties of the spin Hamiltonian. Our choice of T
difters from Smith (Ref. 4, p. 224).

In Eq. (3) and below we have omitted the primes
from the rotated fields and spin operators. It is to be
understood that for the rest of this section, the coordi-
nates refer to the appropriate rotated, reference frame. 0
and y are the polar and azimuthal angles of the Zeeman
field referred to the old. axis system, the new system
having been obtained by rotating xys by y about the s
axis and 0 about the new y axis. In terms of the new axis
system the E and E, electric field, terms assume the
forms

X,=E,R,( {1.5 (5,—' —35/12)+0.5 (S,'—5„')) sli128

&& sin(pp —
pp&)

—{5,5,+5,5,) cos28 sin (q —p&)

+{5,5„+5„5,) cos8 cos(pp —pp, )
+{5„5,+5,5„)sin8 cos(pp —

pp&) j, (6)
where

Ri (Ri4 +Rip )'"; pp&
——arctan(R, p/R, 4)

and

X,=E,RpL —Pp{SP—35/12) sin'8 sin2(pp —
ppp)

—{S,'—Sp') (1—ip sin'8) sin2(pp —
ppp)

—{5,5,+5,.5,) cos8 sin8 sin2(pp —
q p)

+{5+„+5„5,) cos8 sin2(pp —
happ)

+{5„5,+5,5„) sin8 cos2(pp —pp) j,
where

Rp ——(RpP+Rpp')' ', yp =-,' arctan(Rp&/Rpp) . (7)

(Since the electric fields cannot be rotated in our ex-
perimental apparatus, we have not attempted. to refer
them to the new axis system. E and E, continue to
refer to components along the a and c crystal axes. )

Equations (5)—(7) allow us to interpret the electric
field shifts in terms of Hamiltonian parameters which
are more familiar in paramagnetic resonance. Setting
8=0 and &p

= yp+rr/4 in (6) we see that an electric field
in the c direction adds an E term of magnitude E,R3
with reference axes at pp+pr/4 to the crystal a and b
axes. Similarly, setting pp= y&+ir/2 and assuming 8 to
be a small angle, we can show that the eRect of applying
an electric field in the a direction is to tilt that axis with
respect to which the axial D term of (1) is defined by an
angle E,R,/D about a line in the ab plane at pp, to the a
axis. ' To derive the electric shifts from Eqs. (S)—(7) we
quantize along the magnetic field and diagonalize the
matrix of the operators Xp+X ol' Xp+X,. Approxi-
mate electric shifts can be found by using only the
diagonal parts X,, and 3C„ i.e., from

X,~1.5E Ri(S.'—35/12) sin28 sin(pp —p,), (8a)

X ~1.5E,Rp(5, '—35/12) sin'8 sin2(pp —
ppp) . (8b)

At high Zeeman fields the operators (8a) and (8b) give
exact values for the electric shift and define its variation
as a function of the angles 0, y between Ho and the
crystal axes. In this limit there are no shifts in the

Terms involving S„are omitted in this derivation. The
reasons for this omission are given in the next paragraph.
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FIG. j..Electric Geld shifts as a function of polar angle 8 for the
3f,=+-,'=+-,' transition of Mn'+ in Ca%04. 8 is along the a
axis, B0 in the ac plane, and the resonant frequency is 9.42 Gc/sec.
From 8=5' to 8=55' the MI =+-,' hfs component has been taken,
and from 8=60' to 85' the 3/II =—', component. It is convenient to
make this change in view of the complexity of the spectrum. Both
components give electric shifts lying on the same curve. The heavy
line shows the computed shift for Rq= 4.4X10' Mcjsec per V/cm.

M, =+s ~ —s trs, llsltlons. At mcdtum ftclds tlM off

diagonal elements of Xs+X„X,+Xs will, of course,
modify these simple angular dependences, and will

introduce sluf'ts 111 thc Ma =+s ~ s tl'a11sttlolls.

These changes in behavior may be understood by con-

sidering some of the simpler perturbation elements
which are involved. First of all we can discard operators
in the small terms K, X, if they do not also occur in 3:0,
i.e., we can discard all terms in S„.These operators
wouM otherwise lead to small "pseudoquadratic" per-
turbations. The major effect of the remaining operators
is to introduce terms having a period of 48. (This may be
seen by multiplying the coeKcicnts of the operators
S,'—S„s or S,S„+S„S,which are common to 5, 6, and

7, and which appear in the second-order perturbations

{n)Xs(P){P)X,)n), etc.) The 48 dependence can of
course, be seen most clearly in the M, =+-',
transitions. The azimuthal dependence is the same in
the medium 6eld as in the high-field case. This can be
seen at once by noting that the operator 3C, or X.occurs

only once in any consideration of linear electric shifts.
The electron nuclear operator A(S,I,+S„I„+S,I,)
occurs only in third-order perturbation, but it can lead
to appreciable differences between the electric shifts for
a given set of hyperline lines, in particular for those in

the M, =+-', ——', set. It is interesting to note that it
introduces an identical perturbation for 3fI= —

2 and
Mr=+-', in the M, =&-', +-', transitions. This is
convenient experimentally since data taken on the
lowest Geld line of the spectrum can be continued on the
highest fieM line after the crossover of resonance lines at
8. 54'. (See Fig. 1.)

Perturbatlon analysis of this kind ls useful for indi-

cating the dependence of the electric shifts on the angle
' Section IIC of Ref. 2.

of the Zeeman 6eld and on the values of the Hamiltonian
parameters, but it would, be tedious to apply it to the
full level scheme of Mn'+. In order to test and to fit our
data we have adopted a method somewhat better suited
for numerical computation. We begin again by rotating
the system of axes about s so as to bring the Zeeman
6eld into the xs plane. This eliminates all the larger
complex elements and allows us to derive a real matrix
one from Xs. LComplex components from the fourth-
degree spin operation in (1) were ignored. ) In the same
coordinate system X& gives a complex matrix OR11+iOR1
so that the total Hamiltonian matrix is

On= Ons+OR11+iORr. (9)

Inserting numerical values we now find the real orthogo-
llal mat11x Q whlcll dlagonallzes ORs and usc 1't to pcl'-
form the similarity transformation

Q-'onQ=Q-'on Q+Q-'on Q+sQ-'on Q. (10)

The electric field shifts are small compared with the
energy separations of the diagonal matrix Q 'OnsQ and
we can ignore off diagonal elements in the last two
terms of (10), taking the diagonal portion Q 'OR11Q as
the electric 6eld shift. This is equivalent to the omission
of pseudoquadratic shifts as mentioned in the previous
paragraph. It leads at once to the azimuthal depend-
enees given earlier, and reduces the computation time
by formulating the entire problem in terms of real
matrices.

Figures 1 and 2 show two curves computed lIi tlils
way for a range of Zeeman fields corresponding to a
Gxed resonance frequency between a selected pair of
levels. The period of 49 arising from the medium-6eld
perturbations can readily be seen in Fig, 2, and is also
evident from the distorted sinusoidal shape in Fig. j.. It
is of some importance to ensure that the 48 component
in the experimental data is fully accounted for by the
perturbations which arise in a medium-Geld diagonaliza-
tion; any excess 40 component would indicate the
presence of electric shifts corresponding to fourth-degree
spin operators. Curves for M, =~—,

' ~~ transitions,
such as that in Fig. 1 merit particularly careful examina-
tion since fourth-degree spin terms would contribute
here in the first order. Wc estimate that our over-all
accuracy in these experiments, which were made by the
spin-echo method, ' is 10%, but much of the error is due
to uncertainties in the alignment of the crystal and in
the measurement of the electric Geld. As may be seen
from the scatter of points in Figs. 1 and 2, it is possible
to achieve a relative accuracy which is considerably
better than this in any particular experimental run.
From the examination of a number of curves we con-
clude that any contribution to the electric shifts by
fourth-degree spin terms is less than 2%. This applies,
strictly speaking, only to the cases when the Zeeman
field is in the ac, ab, and bc planes, since these were the
experimental orientations used, in determining the R;;
coeKcients.
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ALE I. Parameters for the electric Geld shift term 3!g
=E;R;;Q;SI, in the spin Hamiltonian of Mn'+ in CaW04. Voigt
Ilotatlon ls used with 814=~128 +182' +15=~118=~181'+86=~812
=g821, g81——8811.Amplitudea (E14 +8152)'/2, (8812+886')'/ are in
units of Mc/sec for 100 kV/crn, and are accurate to within 10%.
Angles q1 and q 8 are accurate to within 2'. q1 repeats every j.80'
and q8 every 90'. q1=arctan(815/E'14), q8=-', arctan(881/888).
The error in 881, may be large since this depends critically on the
angle q 8.

~1= (%42+~182)'"
E8——(2812+8862)»2 .

%8
814
As
881
886

5.8
12.6
50'
$0

3.7
0.7

12.6

Larger fourth-degree contributions might possibly
have been found in other directions. We are, however„
mainly concerned here with showing that the experi-
mental data does not contain fourth-degree components,
so that the corresponding spin operators can be dis-
carded, and the crystal-Geld harmonics which would

give rise to them can be ignored in the subsequent
theoretical discussion. In view of the closeness of g to
the free-electron value it seems probable that the
electric g shift is exceedingly small. This is consistent
vrith all our observations. However, owing to the size of
the medium-6eld perturbations, in particular those
occurring in the M, =+-', —-,'transitions, it was not
possible to resolve a small g shift in the presence of the
much larger R terms, and we could, not derive a value,
nor a limit which would have any useful significance.
We have attempted to detect an electric shift in the
electron nuclear coupling parameters by comparing
measurements for the M, =+a —s, Mr=+s, and
the M, =+-,' —sr, Mr= ——,'transitions. Here again
the medium-6eld perturbations are the principal source
of difhculty. A cardul analysis was made for E along the
c axis and Ho in the ab plane, in which case a term of the
form E,)Bsr'(S,I, SsI„)+Ass'(S,Iy—+S„I,)$ might
be anticipated in the Hamiltonian. This would give
additional shifts in the two above transitions differing

by up to 5E ((Bs,')s+(Bss')')'". The Es term alone
predicts a shift of 0.154E.Rs sin2(io —its) for the
Mr=+as and 0.204E,Es sin2(q —ps) for the Mr= ——',

transition. Within our experimental accuracy of 10%,
the values of R3 derived from other Mn transitions vrere

suKcient to describe the shifts in the M, =+sr
transitions. Moreover, the peak shifts for the two

hyper6ne bnes were in the ratio of 1:1.35, in close
agreement with the ratio of the coefficients above, and
there was no indication of a difference in phase for the
two experimental sine functions. We are thus able to
set a limit of 0.05 Mc/sec per 100 ltV/cm on the
parameter ((&»')'+ (&ss')s)"'.

The R;; coeKcients and the characteristic angles q1
and cp3 are given in Table I.
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INTERPRETATION OF RESULTS

In Ref. 2 the electric Geld shifts of Kramers doublet
ions in CaWO4 were explained in terms of an equivalent
even field (EEF) arising from products of the applied
electric 6eld and the od.d components of the internal
crystal Geld. A similar approach can be used. in the case
of Mn by 6nding the EEF and using it to derive the 8;;
coeKcients in a vray analogous to that used in the
derivation of the spin-Hamiltonian D parameter from
the even crystal-field terms. We shall show, however,
that this leads to an E. tensor with only two, instead of
four, independ. ent parameters, and that the predicted
values are an order of magnitude too small. Two
possible reasons for this discrepancy will be discussed,
one concerning the applicability of the EEF formalism
to S-state ions, the other relating to ionic motion of
the Mn.

Although the EEF calculation does not appear to
give a satisfactory explanation of the electric Geld,

shifts for Mn'+ in CaWO4, vre shall, nevertheless,
describe it in some detail. Our purpose is to illustrate the
similarities which exist betvreen the calculation of D,
using even-6eld perturbations, and the calculation of
electric shifts, using equivalent even fields. Both types
of Geld are applied solely within the 3d' manifold, , and,
as vre shovr later on, the failure of the one calculation
necessarily compromises the other. Further examination
of the reasons for this failure strongly suggests that odd
6elds, introducing perturbations betvreen manifolds of
opposite parity, play an important role in determining

I I I I I I I I

0 IO 20 30 40 50 60 70 60 90
ANGLE OF MAGNETIC FIELD WITH RESPECT TO C AXIS

FlG. 2. Electric Geld shifts as a function of polar angle 0 for the
3E,=+~1———21 transition of Mn in Ca%04. 3fI= ——,'. 8 is along
the u axis, H0 in the m plane, and the resonant frequency is 9.42
Gc/sec. The approximately 90' period of the shift arises from
pertubation terms which vanish in the high magnetic Geld limit.
The heavy linc shows the computed shift for 814=4.4)&10'
Mc/sec per V/cm.
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X(3
i 2 3 2 1 {dirii)-

F2'(~, ~) (11)
0 0 0 2 i 2E(i)—(d)

The standard 3j and 6j symbolsio are used, in this

expression; /' represents the angular momentum of the

J. 0. Artman and J. Murphy, Phys. Rev. 135, A1622 (1965).' B.R. Judd, Phys. Rev. 127, 750 (1962)."M. Rotenberg, R. Bivens, N. Metropolis, and J.Wooten, The
3; and 6; Symbols (Technology Press, Cambridge, Massachusetts,
3.959).

the D parameter for 5-state ions in noncentrosymmetric
lattice sites.

For an ion in a GeM of 54 symmetry the EEF is
obtained by taking the tensor product over the odd
manifolds of the applied potential er~E (i.e., terms in

F,&) and the internal fields

AP~(FP(8, q)+F2—
2(H, q)}

+A.'+(FP(~ ~-)~F2 '(~, ~)}

E is the applied field in V/cm, and ~E is the magnitude
of the electric Geld seen by the ion. ' If we assume
that the spread of states in the gmund manifold (d') and
in the first excited manifold (d'p) is smaH compared to
the separation of the 3d and 4p manifoids, closure
methods discussed by Judd' may be applied. The
second-degree equivalent field for the product of
e~EFi'(O, q) and AP+FP(8, 22) is

V2o=(—)2 ' ,'(352r)'"eeEAP+—

0.52eE,(r)A P
(F '—F ')/i,

AE(p d)—
and fol E along the x axis

0.52eE,(r)A P
V..= (F2'+ F'2 ')/i,

DE(p —d)

(13a)

A 2 L(A '2+)2+ (2A 2—)2/1/2

It may be noted that there are only two quantities, a
magnitude 33' and an angle of rotation pg, and that the
equivalent operator is that which would be obtained
for D2e symmetry (with the additional condition that
E, and E, electric shifts are dependent on one another).
It should also be pointed out that the rotation of axes in
Kq. (13) is not quite the same as that which is used in
the experimental section. There, we assumed that the
electric fields remained along the crystal u and c axes,
whereas in Eq. (13b) we have substituted a field along
the effective D2e axis (yii to the a axis) for the electric
field along the crystal a axis assumed in Eq. (12b). The
appropriate parameters are, however, easily derived
from the Hamiltonian (4) and are simply related to
those given in the experimental section. The magni-

excited electron (d"d" 'l), E(l)—E(d) is the average
energy separation of the odd and even manifolds, and
(d~ r

~
i)=(r) is the radial integral involved. The full

equivalent Geld requires a sum over the spherical
harmonics of the applied fields I'I', I'I+', and the
Ap+(Fp+F2 '). It may be seen immediately that
third-degree internal-odd-field terms contribute to the
second, -degree equivalent even Geld. Similar expressions
may be derived for the fourth-degree equivalent Gelds
involving both the 23'+ and 2 + coeScients, but these
will not concern us here. From Eq. (11) we have the
equivalent second-degree Geld operators arising from
d'-d'p interaction.
E along the c axis:

0.S2eE,(r)
V,= LAP+(FP+F2 ')

DE(p —d)
+Ap (F22—F2 2)]. (12a)

E along the a axis:

0.S2eE.(r)
V.=— [A P+(F2'- F2-')

AE(p d)—
+AP (F'2'+F2 ')j. (12b)

We have used' a=3.5 in deriving Kqs. (12).The effects
of the d4f manifold may easily be included by taking
the f states as the /manifold in Eq. (11).

The form of the equivalent operators is further
simplified if we rotate the coordinate system in the x-y
plane by an amount pi2=22 tan i(Ap+/iAp ). In the
rotated frame, taking x, y, s as the new axes, we obtain
for E along the s axis (the c axis)
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The equivalent-even-field analysis was based on the
first of the two terms, while the second term, which

we cannot derive the same effective DM axes from both
E and E, experiments. In the E, experiments they
would lie at q~ ——q3 ——3 or 93 to the a and b axes,
whereas in the E, experiments they would have to be
oriented at pic ——oo,/2=25' or —65'. No explanation,
short of partial breakdown of the closure property, can
be found to account for the difference between E, and
E, results. Accounting for the magnitudes is even more
dificult. Under the assumption that the first term in

(14) is dominant, we have already argued that, of the
parameters in Eq. (18), q cannot exceed the calculated
value g~1.7X10—'. Likewise, there is little scope for
adjustment in (r). The value Aoo=15 000 cm ' was

adopted in consideration of the value A3'=7500 cm—'
which gave a good fit for the electric shifts of the Vb'+
ion' in CaWO4. Some further adjustment in A3' might
reasonably be made, but an attempt to fit the shift
parameter E3 would lead to a value A3' ——300 000 cm—'
which seems to be wholly unrealistic.

If we were to question our assumption that the
second term of (14) is smaller than the first by allowing
for the possibility of a large crystal-field component I'&',

we could arrive at a diferent expression for q to replace
Eq. (15).Passing over the details of this calculation we

quote the result that a value of A 2'& 50 000 cm ' would
be needed in order to fit the electric-shift data. This
again is an implausible value and could not be made
consistent with the observed value of a=0.0138 cm—'.

In view of the apparent failure of the EEF model to
account for the observed electric shifts in Mn we return
to first principles and reconsider the perturbation ex-
pansion given in Ref. 2, Eqs. (3) and (4) which states
that the lowest order terms in the electric field eGect as
applied to this case, are

explicitly involved, the mixing of odd states into the
ground. manifoM and contained the even-to-odd energy
denominator twice, was discarded as being generally
smaller than the first. In the case of Mn, however, be-
cause of the S character of the lowest level, we are
forced to go to higher orders of perturbation in order to
obtain nonvanishing matrix elements for the even
crystal fields between states of the ground term 'S. The
over-all order of perturbation is then the fifth [Fig.
3(a)], whereas for the second term of (19) above we
need only go to fourth order [Fig. 3(b)].As applied in
our case this term takes the form (the D terms can be
sextet or quartet)

2L((d"S
I
~ 4'F'4'I d'p 'P&&'P

I bnL S
I
"D))

X((44DIP „L Sl'P)(d'P oPleErld'oS))]/
P,E('P-'S)AE('P-'S)AE('D-'P)]. (20)

Note that this term is very similar to the equivalent-
field terms of Ref. 2 if the interaction terms are each
multiplied by a spin-orbit term. The latter is necessary
because we are considering an S state. [Terms in which
the spin-orbit operator in (20) occur first and last can
also occur but are probably smaller than those given. ]
The reduced matrix elements for the d'p manifold are
not presently tabulated, but we can make a rough
estimate of the terms in (20) by comparing

(d4poFI&, L Slo'D)(o'Dlp „L Sl'P)
(21)

D(F-S)h(D-P)

with g. Since $4„ is likely to be about 3.5 times $&o——400
cm ' and taking the average energy denominator in
d'p as 30000 cm ' we find that g' is approximately
2.5)&10 4, which is more than an order of magnitude
bigger than g. [We have used. Eq. (2—110) of Ref. 12 in

obtaining this estimate. )
Consideration of these terms in connection with the

electric shift also raises the possibility that they may
play an important part in determining parameters such
as D and bg in the absence of applied laboratory fields. "
For example, D is given in this approximation (con-
sidering only interactions with d'p) by

('S
I
pL S

I
'P&('P

I
A 4'F 4'

I
d'p 4G&(4G

I
2 4'Fo'

I
'P)('P

I $L S
I
'S)

(hE ('G-'P) )oDE (4P-4S)
(22)

[Note that the form of Eq. (22) is somewhat different
than (20) and that the Voo potential is required here.
This is one of the many complications inherent in deal-

ing with half-filled —shell, S-state ions. ]While the com-
bined energy denominator in (22) may be (at most)
10—20 times greater than that used in calculating D
[Eq. (14)], the large odd-field potentials Aoo, Aoo

[compared with the product of $ and Zoo in Eq. (14)]

may well compensate for this. This result suggests that
terms like (22), arising from the odd fields, may be at
least as important as those in (14) and is consistent

'2 Brian G. Wybourne, Spectroscopic Properties of Rare Earths
(Interscience Publishers, Inc. , New York, 1965).

'3 The direct mixing term forms the basis of the analysis given
by Artman and Murphy in Ref. 8 who first suggested the impor-
tance of odd fields in a different system.



ELECTRIC FIELD SHIFT IN EPR FOR Mn'+ IN CaWO4

with our observations on the failure of the EEF model
to predict suQiciently large electric shifts.

The unexpectedly large values of the electric-shift
parameters may also arise as a result of ionic motion. It
was not found necessary to introduce this in order to
account for earlier observations on the rare-earth ions,
and it has generally been taken to be less important
than the direct polarization of the electron cloud. Mn'+
in CaWO4 presents an unusual case, however, in that the
Mn'+ ion has a radius of 0.8 A which is 0.2 A less than
that of the Ca'+ it replaces, and it is liable, therefore, to
be particularly susceptible to displacement by applied
electric 6elds. If, for instance, the Ca'+ ions in the
CaWO4 lattice lie in a parabolic potential well and the
lattice is not seriously distorted by the substitution we
might infer that Mn impurities lie in a shallow-bottomed
well, or in a well with more than one minimum. Any
such minima are obviously not deep enough to trap the
ion, since only one site is found in normal paramagnetic
resonance, and the mean position occupied by the ion is
still at the Ca center, but the ion may have a compara-
tively large-amplitude zero-point motion about the
mean position. Such zero-point motion would make very
little difference to the size of the F2' crystal-6eld com-
ponent which determines D. Changes in the mean value
of F2' would be quadratic in the ionic displacement, '4

and this cannot easily exceed 0.2 A. The situation is
different for the crystal-field components which are
introduced by applying an electric field. An applied field
along the c axis causing a movement of the ion in
that direction introduces the crystal-6eld components
A2+'V2+', where the coeKcients A2+' are linear in the
ionic displacement. Similarly, an ionic displacement in
the ab plane introduces linear terms A2+'I"2+'. These
new crystal-field terms lead to linear electric shifts
formally similar to those which have already been dis-
cussed, but there is now no necessary relation between
the values of A2~ and A2+', and no reason to suppose
that the symmetry is equivalent to DM with rotated
axes.

'4 This is a consequence of the reQection symmetry of the S&
point group; for the same reason there is no electric shift in the D
term.

A very rough approximation to the magnitude of the
displacement of the Mn'+ necessary to account for the
electric shifts may be obtained by comparing the E3
coefFicient with D. In terms of the quenching parameter
g introduced earlier, D= gA2, which, in the crystal-field
approximation, gives

(3 cos'8;—1)q,(r')
D=g P -'(+5m)

E13
(23)

(To preserve simplicity in this rough calculation, the
summation has in both cases been taken over groups of
neighboring ions giving effective D2d, symmetry at the
undisplaced site. ) In an electric field of 100 000 V/cm,
we 6nd experimentally that R3—0.03D. Assuming that
the factors in the summations are comparable and
taking the average E.; to correspond to the nearest-
neighbor distance, from Eqs. (23) and (24) we have
that B.=0.06 A for 100 kV/cm. This is more than thirty
times the mean displacement of Ca'+ ions in the same
electric field." If, therefore, the magnitude of the
electric shift for (Ca, MnWO4) is due to ionic motion of
Mn, it follows that the restoring forces acting on the Mn
ion in its lattice site are exceptionally weak.
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"From the dielectric constant of CaWO4 we can deduce that the
mean displacement of Ca'+ ions in relation to WO4~ ions is
&2.10 'A in a Geld of 100 kV/cm.

where 8;, R;, are coordinates of the surrounding ions
responsible for the crystal 6eld. For an electric field
along the c axis we have a displacement 8, which, ac-
cording to the EEF model Lsee Eq. (18a)j, results in an
83 given by

5 sin'8, cos8,q,(r') $ 8, )
(24)
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