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Using Lamb’s model, we analyze the effects of gain saturation by strong traveling-wave fields in dilute
laser media. Using approximate solutions of an integral equation for the population inversion density
(PID), the index of refraction and incremental gain are studied for arbitrarily strong fields. Effects of atomic
motion are included for a Maxwellian velocity distribution, but pressure effects are neglected. The case of a
monochromatic field leads to the saturation results of Gordon, White, and Rigden, which are studied as a
function of frequency. For a small ratio of natural to Doppler linewidths, there is a transition from inhomo-
geneous to homogeneous broadening for sufficiently strong fields. An effect of particular interest is the
generation of waves at 2w; —wy, 2wz —w1, and higher order sidebands by two strong input signals at w; and ws.
The source of the parametric gain at these frequencies is the time-dependent gain saturation due to the
presence of multiple strong fields. For w1 —w; small compared to the decay rates v, and +; of the laser levels,
the gain at these intermodulation sidebands is computed as a function of the field strengths. The limiting
cases of homogeneous and inhomogeneous (due to atomic motion) broadening are studied in detail. These
two cases give essentially the same results, for a given unsaturated gain. Numerical results indicate that a
first-order side-band intensity at least 109, as large as that of the inducing fields can be easily observed in
practice. The integral equation for the PID is converted into an infinite set of linear algebraic equations
for a typical solid-state laser. The conditions under which this set of equations can be limited to a finite
number is discussed, and the dependence of the sideband gain on w;—w; is calculated. For large w;—ws, the
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gain at the mth sideband decreases as (w;—ws)™™.

I. INTRODUCTION

HE characteristics of laser oscillators have been

studied in detail by Lamb.!? He concentrated on

the case of a strongly Doppler-broadened gaseous

medium. Other authors®™® have given similar results

with extensions to allow treatment of pressure effects,5~7

the traveling-wave laser oscillator,® and the application
of a magnetic field to the medium.?

In this work, we study the behavior of traveling
waves in dilute laser amplifying media, using a formal-
ism essentially the same as that of Lamb.!'? The index
of refraction, incremental gain, and population inversion
density (PID) are studied as functions of frequency and
field strength for steady-state conditions with constant
and uniform excitation of the medium. We are particu-
larly interested in treating the situation where the fields
are strong enough to render a perturbation solution use-
less, especially for the case of interacting waves. The use
of traveling waves helps in identifying the physical
processes occurring as parametric effects with damping.
The powerful concept of “hole burning,” introduced by
Bennett!%!! for gaseous lasers, is used in discussing and
interpreting the results.
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II. THE EQUATIONS OF MOTION

In this section, we derive the equations describing the
electromagnetic field and the active atoms of the me-
dium. The model and approach are essentially those of
Lamb’s two-level theory,!2 and will therefore not be
discussed in detail.

A partial expansion of the wave function in the two
orthonormal laser states |a¢) and |b) with energies
hwa> hw;, is

v=a(®|a)+5(1)|8). )

Substitution of (1) into the time-dependent Schrodinger
equation and neglect of the small perturbation term
proportional to 4% leads to the equations

pab= - (’Y+iw0)l)ab+ (Pua—pbb) (woA' PO/h) ) (2)
Isaa:‘" —~%YaPaa™ (Pa b+ﬁab*) (wOA' Po/ﬁ) ) (3)

p5s=—"ops5F (Par+par*) (wod - Po/7) , 4)

and

- where pap=20b*, pso=aa*, pps=>0b*, wo=w,—ws, Y=

+173)/2 and v, and v are the phenomenologically in-
troduced decay rates of the upper and lower levels. A
is the vector potential of the electromagnetic field!? and

Po=—ce(a|r|d). ©)

12 The vector potential is used here in the Coulomb gauge [see,
for example, L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, Inc., New York, 1955), Chap. X]]. A better approach
would be to make the electric dipole approximation and transform
from the Coulomb gauge to a gauge in which the electric field ap-
pears naturally in the perturbation. Using the latter gauge, in
which the wo/w factors do not appear, is physically more meaning-
ful [see, for example, E. A. Power and S. Zienau, Phil. Trans.
Roy. Soc. A251, 427 (1959) and their references]. Since the factors
wo/w are nearly unity, the present use of the vector potential is
equivalent for the purposes of this paper to Lamb’s use of the
electric field (Refs. 1 and 2).
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The classical treatment of the electromagnetic field re-
quires pqp for the calculation of the macroscopic polari-
zation of the medium, which is taken to be the sum over
all atoms per unit volume of the microscopic dipole

moment
P= (‘/’! —erl‘//)=P0(Pab+Pab*)° (6)

Since we will be interested here only in fields linearly
polarized along the same direction, we will take Py to be
parallel to E. For more general fields, one should ex-
plicitly take into account the several magnetic sublevels
of one or both of the laser levels.

We write the electric field as a sum of traveling waves,

E@r )= cos(k-r—wi+¢.),
v O

where E,, k, and ¢, are the spatially dependent ampli-
tude, propagation vector and phase of the wave with
frequency w. To be completely general, the summation
in Eq. (7) should be an integral over frequency compo-
nents. However, we wish to approach the problem of an
amplifier with a signal consisting of a small number of
discrete frequency components incident on it. In writing
Eq. (7) we have assumed that the amplified signal still
consists of a set of discrete frequency components, al-
though the number of components may be much larger.
This approach conforms closely with experiments, and
the results are in good agreement with experiments (see
Ref. 13).

From (7) and E=—0A/d¢, we can write the vector
potential as

A, )=> (Eo/w)sin(k-r—owi+¢a). €)]

Thus the equations of motion (2) through (4) become

wWo P() Ea, .
Pau=—"YaPaa— (pab"l"Pab*)‘;L‘ Z Sln(k‘r—wt+¢w) s
© W
&
Wo Po E(,, .
Pro=—"eprot (Pab+Pab*)_h‘ 2 sin(k-r—wi+d.),
PENS)
10
and (10
. wo Po' Ew
pav=— (y+1w0)past (paa— pos)— 2
oo w
Xsin(k-r—wi+¢,). (11)

In a medium with specific polarization P(r,f), Max-
well’s equations give the wave equation (in mks units)

1 02E(r,¢ 1 9%P(ry
—VE(r, t)+———a-(;—)~—— D).
!

6062 012

(12)

The E,, k, and ¢, in (7) are functions of r in the medium.
Second-order spatial derivatives of these quantities can

13 D. H. Close,”Appl. Phys. Letters 8, 300 (1966).
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be neglected if their variation is small enough, requiring
alw/c=108 m~! (13)

for optical frequencies, where « is the linear exponential
field gain due to the medium.
Using the form

P(r,) =% Puo cos(k-r—ci+u)+Pas
Xsin(k-r—wt+¢.) (14)

for the polarization, (12) reduces to the equations

[n(w)—1+(c/w)eq Voo |Eoj= (1/2€0)Puci (15)
and J
€, VE ;= (w/ZEOC)PwsJ y (16)
where
k(w) =n(w)we.,/c, an

and j denotes the field components transverse to k.
According to Eq. (15) the in-phase component of the
polarization can be viewed as contributing either to 7(w)
or Vé.. In this work we have arbitrarily assigned to
n(w) the part which is independent of distance along the
direction of propagation (except for an implicit depend-
ence through the field amplitudes), and retained ¢, to
describe a fluctuating phase. Since only the former is
present when the propagation mismatch between in-
duced field and inducing polarization is neglected, the
fluctuating phase will not concern us here.!

Occasionally (for example, in the oscillator problems
treated by Lamb!:2), one wishes to consider fields whose
amplitudes vary with time rather than in space. The
equations for such fields are derived in an identical way,
and are given by

b1
[n(w) 14— —J sy P (19

and
(dE.j/dt)= (w/2€0)Pusi. (19)

In order to take into account gaseous media, we note
that an atom moving uniformly with a velocity v, ini-
tially at ro at time #, has the position r=ro+v(t—1to) at
time £. We neglect pressure effects, which in many cases
are small.

The quantities paa, pss, and pqs are functions of time,
and for given fields the solutions are defined by the
initial conditions. The simplest initial condition placed
on a single atom is that it is either in state |a) or |b)
at ¢, and no other possibilities will be considered here.
We define the excitation process in terms of the number
of atoms excited to the states |a) and |) per unit time,
per unit volume, per unit velocity interval. We assume
that this number is a function only of velocity, and that
the excitation velocity distribution is the same for both
levels. The excitation is thus defined by A,,sW (v), where

14 D, H. Close, Scientific Report No. 5 under Air Force Contract
AF49(638)- 1322 1965 (unpublished); Ph.D. thesis, California In-
stitute of Technology, 1965 (unpublished).
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Aa,b are the total number of atoms excited to | a), | ) per
second per meter?, and W (v) is the normalized velocity
distribution.

The required solution at time £ is found by summing
over all previous excitation times the solutions due to
individual excitations. For example, if we denote the
solution of (3) for atoms excited to state |a) at time #
and position r, with velocity v as

Paa (@ (l',t,v,ro,lo) b (20)

then we can only have contributions to the specific
quantity paq(r,,v) for ro and v such that r=ro-+v({t—1).
Thus the contribution of solutions (20) to pa(r,t,v) is
given by the integral

Paa'® (r,t,v) = )\aW(V)

t
X / dtopa,,(“)(r=ro+v(t— to), t, v, I, t()). (21)

v —00

¢ wo Pg . E‘.,
Paa(tyte) = exp(—a(i—to))— / dt’ exp(ya(t'— t))(pab(t’,to)+pab*(t’,to))—h— z ( )

to

ool le) = / ar expm(t'—t»(pab(t',to)+pab*(z',to>>%’ >

and
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There are similar contributions to pss(r,f,v) and
pas(r,t,v), and other contributions due to excitation to
the lower level. For the field equations we of course need
only pas(r,4,v), but it is convenient and physically in-
teresting to express this in terms of

(22)

which is the population inversion density at r, of atoms
with velocity v.

In order to derive an integral equation for N(r,t,v),
let us denote

Paa(a)(r=r0+v(t_10); t; v, Xo, tO)

by paa(tito) with similar definitions of psy(ft) and
pas(Lto). These quantities satisfy the differential equa-
tions (9)—(11), with the initial conditions

paa(r,t,V) —pbb(r,t,V)EN(r,l,V) )

Paalto,0) =1,  pysto,to) =pas(ro,te) =0. (23)
Formal integration of these equations gives
w
Xsin(k-ro+k-v('—t)) —wt’'+¢), (24)
PO * Ew
)sin(k-ro—}—k-v(t’—to)_wt'+¢), (25)
@ w
PO' Ew
)sin(k rot+k-v(l —tg) —wt’+¢). (26)
w

pas(tto)= / dt’ exp[ (y+iwo) (t’—t)](paa(t',to)—pbb(t',to))%Z (

We can subtract (25) from (24) to obtain an expression for pua(f,te)— pss(tto) in terms of pas(t,f). Substituting
pas(t',lo) from (26) into this expression gives an integral equation for p,e(tte) — pss(t,to). If we sum over all atoms per
unit volume at ro, we obtain a factor of \,J¥ (v). Integrating over all possible excitation times ¢, and using (21), we
find

t t t’
Paa’® (116) = o5 @ (4 16) = NV (V)/Ya— AW (v) (c00/ 275) / diy / ar / b (Ve =04 gTo(e'=D)
—00 to to

) Py-E,\ /Py-E,
><<e<v+wo><~'-~>+e<v—f~o><t"—t'>><paa<°>(t",to>—pbb<a>a",to>>Z( )( )

w,0’ w w’

X[expil (k—K') - r—k-v(i— )+ K -v@i—t")—wl'+o't"+¢—¢ ]4+cc], (27)

where we have neglected terms of relative order v/wo and used r=ro+v(t—1).

In the same way, we find a similar integral equation for the contribution to N(r,z,v) due to excitation of the state
[0). Adding these two contributions, interchanging the integration order twice, and performing the ¢, integration,
we obtain

w0’ w o

ot o o  (PrE(PoEy
N(t,t,v)=NW (v)— (2_ﬁ—) / dtl/ di(exp(—vah1)+exp(—yst))N (1 t—t1—1ty, v) 2 ( )( )
0 0
X [exp[iA+i(w—w'— (k—K') - v)ti— (y—i(wo—o'+ k" v))te]+c.c.], (28)
where ty=t—1t, ta=1'—1", No=No/ya—No/7s, and

A= (k—k') - r— (w—o")i+¢—¢'. (29)



153 STRONG-FIELD SATURATION EFFECTS IN LASER MEDIA 363

Equation (28) is the integral equation for the population inversion density. We can express pqs(t,f,v) in terms of
N(r,t,v) by starting from (26). In an identical way we find

PO'Ew

)exp[:i(k -r—wi+¢) — (v+i(we—w+k-v))H]. (30)

(% w

i o
Pnb(l‘,t,v)=——0'/ dth(l‘, =1, V)Z(
2ih J o @

III. SOLUTIONS
The integral equation (28) usually cannot be solved exactly. The zero-field solution is obviously
N(l',t,V) =NOW(V) ’ (31)

so that N(r,f)=N,. If the fields are weak enough, (28) can be iterated to form a series solution in powers of the
fields. The linear solution is obtained by substituting (31) into (30). The lowest order nonlinear solution is obtained
by inserting (31) into the right-hand side of (28); the resulting second order N(r,t,v) gives a third order p,s (hence
polarization) upon substitution into (30). Higher order terms of the solution can be obtained by further iterations.
The iterative solution will be valid if the fields are always small compared with a field determined by the system

parameters. This field is given by
El=~gy:h?/Po?. (32)

The corresponding intensity, Io=eicEq? is the same as the saturation intensity occurring in treatments of laser
saturation.’®=7 If two fields comparable to or larger than E, interact, the results could at best be predicted quali-
tatively from the series solution by consideration of higher order terms of the series. In order to study such a situa-
tion more accurately, we must find other approximate solutions for the integral equation (28).

Examining (28), we see that fields at two different frequencies will induce a variation in N(r,,v) at their difference
frequency. Also, we see that the solution is characterized by the rate of variation of N(r,t,v) compared to v, and
ve-rates slow compared to «v,, v, will appear strongly, while rates very rapid compared to v, v» will have small am-
plitude. However, if N (z,t,v) varies slowly compared to v, 7vs, the integrations will be dominated by the [exp(—~at1)
+exp(—vst1)] and exp(—+t,;) factors, and N (r,t,v) may be removed from the integral, giving upon integration,

N(r,t,v)=N0W(v){1+ z(%) 2(P°;E‘°)<P°' ,E“')[exp(m)/(y—i(wo-w'+kf.v))

(&)

X [1/(ve—i(w—0o'— (k=k)-v))+1/[vi—i(w—o'— (k—K')-v)] ]+C-C-]}_ . (33)

According to the above discussion, we should neglect terms in the summation for which |w—w’|>>v.,7» and keep
the terms for which |w—'|<Ky4,7s. For intermediate frequency separations, (33) will be only qualitatively correct.
This result shows that the PID will contain all harmonics of each frequency difference w—w’ which are small com-
pared to v, vs, and will contain higher harmonics to a lesser degree than is indicated by (33).

Since N(r,t,v) is slowly varying compared to vy, we may take it outside the integral in (30), giving

Py-E,

w

pap(tl,v) = %N (V)2 exp(i(k-r—wi+¢)) (v+i(wo—wt+k-v))™ . (34)

Using (33) in (34) gives an approximate solution, subject to the above restrictions. For our purposes we will limit
it to the simplest and most interesting case of single-polarization waves traveling in the same direction, so that
k—k’~0. We therefore replace Po(Py- E,) with E,P%/3 in order to get the correct linear result, and (Po- E,,) (Po- E.r)
with Po*E,E,, for simplicity. This will introduce small errors in the numerical factors which are within the present
approximation, but will allow easier computation and emphasis on the primary effects of interest.

We thus find for the polarization

P(r,t,v) = (Poloas (1,4,V) +pas* (1,8,v)))= (w0 Po*/6i7) N (1,,v) 2 (Eu/ )

X [exp(i(k-r—wt+¢))/(v+ilwo—w+k-v))—c.c.], (35)
N(r,t,v)=NW(v){1+ Z”('yEero,n/ZEoz)[exp(iA)/('y—i(wo— o’+k"-v)+cc ], (36)

15 E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers at the Polytechnic Institute of
Brooklyn, 1963 (Polytechnic Press, Brooklyn, New York, 1963), p. 309.

16 W, W. Rigrod, J. Appl. Phys. 34, 2602 (1963).

17 A. D. White, E. I. Gordon, and J. D. Rigden, Appl. Phys. Letters 2, 91 (1963).

where
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and A= (k'— k") -r— (0'—o"")i+¢'—¢". Equations (35)
and (36) form the approximate solution.

We will consider only a Maxwellian velocity distribu-
tion of excited atoms, i.e.,

W (v)=(1/mu?)** exp(—2*/u?), @37

where #2=2kT/M. The special case of stationary atoms
can be obtained by letting # become zero, i.e., by setting
v=0.

IV. SINGLE-FREQUENCY FIELD

For a single-frequency field we use (37) and obtain,
after integrating over the velocity components perpen-
dicular to k, the sine and cosine components of the
polarization (14)

w aoEy? exp(— V2/u?)dV
& p / P , (39)
2eqC 7% ) _ y2(1+E2/ Ep®)+ (wo—w+kV)?
1 c OZQE'Y
2€ T
/‘” (wo—w+EV)exp(— V2/u?)dV (39)
o V(14 B2 ER)+ (0o—w+EV)?
where ag=P¢Nqwo/(6veics). With the definitions
b*=v*(1+E*/E)/(kou)?,
&= (wo—w)/ (kott) , (40)
a=v/(ku),
and
o= (ZOZ()7I'1/2 y

where ko=wo/c, we can write the gain and index from
(15) and (16) in terms of the error function for complex
arguments'® (Ref. 19, 14) as

1 dE o Rew(x+1id)

Edi (1+E/E@)?’
n(w)=1—(ca/w)Imw(x-+1b), (42)

where Re and Im indicate the real and imaginary parts,
respectively.

The parameter ¢, being the ratio of the natural to the
Doppler linewidths, determines the degree of Doppler
broadening of the line. If the Doppler broadening pre-
dominates sufficiently, we can expand (41) and (42) to
first order in 61 (Ref. 19, 14), giving

(1/E)(dE/dz)=alexp(—2?)/ (1+E*/E*) '/

(41)

—2a/m2(1—2xF (x))], (43)
n(w)=1— (co/w)[2F () /x1/?
—2a(14+E*/ E®)Vx exp(—a?)], (44)

18 Defined by
w(z) =exp(—z2)erfc(—1i2) =;-‘_12—12exp( —zz)/ exp(—i2)dt .
This is essentially the complex conjugate of the “plasma dispersion
function” used by Lamb (Ref. 2).
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Fi1c. 1. Gain saturation and broadening as a
function of frequency for a=0.2.

where

F(x)=exp(—x?) / ’ exp(i?)di (45)

is the Gaussian dispersion function.? Equations (43)
and (44) are consistent with the “hole-burning” de-
scription of an inhomogeneously broadened line.!%:!1
Thus the gain comes primarily from those atoms whose
velocities allow them to interact strongly with the field,
while the phase shift (index of refraction) arises pri-
marily because of atoms outside this region. Correspond-
ingly, the primary gain term is saturated, while the
primary index term is not.

It should be noted that the expansion parameter
above is not @ but b=a(14+E*/E?)'? so that strong
enough fields can destroy the predominance of the Dop-
pler broadening. This is consistent with the fact that
the hole or interaction linewidth increases with increas-
ing fields. In fact, the stationary atom (homogeneous)
case can be obtained either by starting from (35) and
(36) with v=0 or by using the asymptotic form of the
complex error function,®

w(z) ~i/ml/2% (46)
with (41) and (42), giving
1 dE agy?
— = ’ (47)
E dz  y*(1+E* E¥)+(wo—w)*
n)=1— S cTm) 48)

0 (1 B/ E?)+ (or—0)?

In Fig. 1, (1+E2/E®)'?/(aE(dE/dz) from (41) for
a=0.2 is plotted as a function of frequency for various
saturation levels. This shows the excess saturation and
broadening over the “inhomogeneous” case, given by
(43). In Fig. 2 the same quantity is plotted as a function
of E*/Ey? for various values of @, compared to the homo-
geneous case, given by Eq. (47). Here a purely inhomo-
geneous interaction (¢=0) would result in a horizontal

19 Handbook of M athematical Functions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55, pp. 297-304, 325-328.
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line equal to 1. This indicates how any line with a finite
natural linewidth becomes homogeneously broadened
for sufficiently strong fields.

If the incremental gain functions (43) and (47) are
expressed in terms of the intensity /= e}cE? for w=wo,
we obtain Eq. (16) and (15) of Gordon, White, and
Rigden.?s These equations can be integrated,'~7 giving
the net intensity gain of a saturated amplifier, as a
function of the incident intensity. Such a set of curves
is shown in Fig. 3 for the predominantly Doppler-
broadened case, together with some experimental points
for the 3.39-u line in neon due to Hotz.20

In all cases, the above results can be expanded to
lowest order in the fields, giving the linear gain and index
functions and their lowest order nonlinear corrections,*
within a small numerical error in the latter case, as
discussed above.

V. MULTIPLE-COMPONENT FIELDS
A. Two Input Components

For the case of two waves traveling in the same direc-
tion (36) gives for AwKya,Ys,

E12+ E22+ 2E1E2 COSAje

Ey?

,YZ —1
X ] . (49)
Y2+ (wo—w+k-v)?2

where Aw= |w;—ws| has been neglected compared to

Y, W= w1—|— (w2—w1)/2, k= k1+ (kz-k;)/z, and
A12= (kl—kz) r— (wl—wg)t+¢1——¢>2. (50)

If Aw>>v4,vs, according to the discussion of (33) we can
to a good approximation neglect the modulation terms,
and find

E 2 ;YZ

1
N(x,i,v)=NoW [1+-—
(1,5,v)=NW (v) F o (or—art B’

N(r,tv)= NOW(V)[H—

Ey? y? —1
| ] o
Eg® v2+ (wo—wat ke v)2

In the latter case, study of the gain and index at each
frequency shows the effects of saturation due to one
wave on the other, for the homogeneous and inhomo-
geneous lines.! Here, we will only note that considera-
tions of hole burning predict the saturation interaction
for the inhomogeneously broadened line, and proceed
to consider the former case, where the modulation
terms are not neglected.

First, we compare (49) to the PID for a single wave
from (36)

EZ 72
N(r,tv)= NOW(v)I:I +

—1
. (52
Eg® v+ (wo——w—{—k-v)Z] ( )

20 D. F. Hotz (private communication).
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Fi1c. 2. Gain saturation as a function of field strength,
compared to homogeneous gain saturation.

If we examine these expressions as functions of velocity,
we find that (52) shows a hole whose width in frequency
units is

w(1+E2/ ER)V2, (53)
and whose depth, relative to unity, is
E2/Eg?
T (54)
14 E2/Ey?

This hole of course appears superimposed on the distri-
bution W (v). Correspondingly, the two-frequency case
with Aw>v,,vs shows two similar holes in the velocity
distribution of the PID, so long as Aw remains large
compared to the sum of the two-hole widths, i.e., the
holes do not overlap. Finally, when Aw<ya,vs (49)
shows that in the limiting case where the two holes com-
pletely overlap there is again a single hole in the PID,
whose width and depth vary harmonically at the fre-
quency Aw. The maximum and minimum widths are

2y[ 1+ (Bt Eq)2/ Eg*] V2

and
2y[ 14 (Br— Ex)Y/ E*]V2, (55)
o = EXPERIMENTAL POINT
4000
:)-O\O\
S,
1000
\ \
\\
G 100 \Q\
10 k o\io\
|
.0001 .00 .0l A ] 10
E°/E,

Fic. 3. Integrated gain saturation, compared with experiment.
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and the corresponding depths are
(ErtE2)*/Eq? (Ex— E»)*/Eo?
1+ (Es+Es)Y/ Eg? 14 (By— E)Y/Et
This fluctuating hole shows how the PID follows the
beating of the two incident fields, for Aw<<vyq,vs. The

PID is modulated at all harmonics of Aw, the modula-
tion taking the form of waves traveling through the

(56)
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medium. It is the parametric interaction of the fields
with these modulation waves which generates new fields
at the various “intermodulation” or “combination tone”
frequencies, the higher modulation harmonics giving
rise to higher order combination tones, as we shall now
see.

Substituting (49) into (35), we obtain the polariza-
tion for a Maxwellian velocity distribution of excited
atoms,

O)P(l',t) a [*° E12+E22+2E1E2 COSAje
== [ tow-y1 /o] 1+ o]

2¢c T Eqy?

X [(I,E1 sin(k1 . r—w1t+¢1)— (x1+y)E1 COS(k1' r—w1t+¢1)

+aE; sin(ky- r—wat~-¢o) — (w24-¥) Ey cos(ka-r—wat-+2)], (57)

where the two velocity integrations perpendicular to k; have been carried out, x= (wo—w)/ (ko) and y=V/u. This
can be expressed in terms of the complex error function, but we will study only two limiting cases, first, stationary
atoms or the homogeneous line and second, the inhomogeneous line.

For stationary atoms, we find either from the limiting form of the complex error function or from starting with

v=0

wP(r,t) E12+E22+2E1E2 COSAlz
=aoY 72 14

2600 E02

oo

X [’YE;[ sin(k1 ‘r— w1t+¢1) - (wo‘— w1>E1 COS(k1 . r—wlt-l—d);)

+’)’E2 Sin(kz' r— w2t+¢2)— (wo—' w2)E2 COS(kz' r— w2t+¢2)] . (58)
The polarization thus contains the frequencies wit=mAw  These results, with (15) and (16) give
for integral m. The Fourier analysis in the Appendix iE BC
1 1 1 1 2L 1
gives the polarization at each frequency. We find __~=a0< ECot ) ’ (66)
WP (w1)/ (2ec) = E:Cot+EsC1/2], (59) dz 2
ch(wl)/(Zé()C) = —ao(wo—w)/‘y[E1Co+Ezcl/2:l , (60) ( ) 1 +112 (wo_wl)/c . E2C1) (67)
nwy)=1——- y
with a similar expression for P(ws), and at wy,=witm wr Y \ 2E,;

X (w1—ws) #Z w1,02 the magnitude of the polarization due
to E; and E, is

WP (@0gm)/ (2€0c) =ato(1482) VL EyCrt- EsCrnpa V2, (61)

where

2—8om [(1—ag)2—1]"
Cn= , (62)
14 8%+ (B2 Eq?) [ Ey? ao’”(l—ao2)1/2
2E\Ey/Ey?
A= , (63)
14624 (E>+ Es?) / Eq?
and
§=(wo—w)/v.

dom=1 if m=0 and zero otherwise.

The polarization (61) will give rise to fields at w.ym,
and these fields will induce a saturated polarization
given by

is(wd:m)/ (2 EOC) =aCoFl (w:i:m) ’
WP (wim)/(2€0c) = —ao(wo— ) CoE(wim) /7 -

(64)
(65)

with similar expressions at we, and at wi,7wi,ws

dE;i;m (1_|_52)1/2
d Zao[EimCQ-l-——(El m+E2ij:1)]’ (68)
2
Ci - m
eogn)=1— __‘iO_ (Wo—wim) ., (69)

w;{:m Y

where in (68) and (69) we have assumed that the in-
duced waves never get out of phase with the polariza-
tion (61), since AwKya,Vp-

The above results hold so long as mAw<Ky4,vs and the
induced fields remain small compared to Eo Some of
the coefficients C,, are plotted in Fig. 4 for Ey=FE,=E
and 6=0. In this case, the polarization at wy,, due to
E; and E, is determined by the sum of two successive
Cwm, and this sum is given by the vertical distance be-
tween the corresponding curves, taking into account the
log scale. Thus we can see directly from Fig. 4 how the
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gain at various frequencies changes with increasing field
strength.

If Ei/Ey and E,/E, are small compared to unity, the
above results can be expanded to give the linear and
lowest order nonlinear results as before.* Another in-
teresting limiting case is E;= E,=E and E*/ E:>>1. We
find

2C0+ C12E02/E2

and for m, m—15%0,
Cnt-Crpr2t(—1)"E2/E2.

The polarization due to E; and E, at each frequency is
thus of order E¢?/E*X1 compared to the linear polari-
zation. This is the case of extreme saturation, with the
PID driven essentially to zero.

wP(r,t) E12+E22—|—2E1E2 COSAn
=ail| exp(—x?)| 1+

2606 E02

+ E, sin(ky r— wat+¢2) ]— I:ZF(x)/rW— 2a<1+
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Fi1G. 4. Fourier gain modulation coefficients
for the homogeneous line.

10 100 1000

For the inhomogeneous line, a[ 14 (E1+ Eq)%/ Ey]!2
K1, we find, analogous to (43) and (44),

—1/2
> —(2a/7r”2)(1—2xF(x)):’[:E1 sin(k; - r—wit4¢1)

E12+E22+ 2E1E2 COSAlg 1/2
> x exp(— x2):l
Ey?

X[E: cos(ky - r—wit+¢1)+E, cos(kg-r—wgt—{—qsg)]] . (70)

Since for this case the cosine terms of (70) are not ap-
preciably changed by saturation, we shall deal only with
the sine terms and assume that the index of refraction is
given by its linear value,

n(w)=1—(co/w)2F (x) /12, 71)
where = (wo—w)/(kott) as before. In the Appendix (70)
is expanded into its Fourier components, with the result,
using (15) and (16),

dEy/dz=a[ exp(—x2) (E:Cy'+ EsCy'/2)

—2aE,(1—2xF (x))/7%], (72)
with a similar expression for dE,/dz, and for the fields
at wimw1,ws,

AEym/dz=c{exp(—x%) (E1nCo+ EiCn’ /24 EsCrny1/2)
—2aE ,[1—2xF (x)]/x%}, (73)

where again we have assumed that the E,,, fields re-
main in phase with their driving polarizations, and the
C»' are given in the Appendix.

Some of the C,’ coefficients are plotted in Fig. 5 for
E,=E;=E, along with the corresponding C, coeffi-
cients from Fig. 3 for comparison. The induced gains
can be seen to be very similar, within a factor ar'/2. As
before, these results hold for mAw<Xy,,vs and only as
long as none of the induced field become appreciable
compared to Eo Here, we have the added restriction
a[1+(E*+ Ex?) / Eo*]V2K1.

We can obtain an estimate of the induced fields ex-
pected by fixing the coefficients at their =0 values.
Thus for 2E?/E¢*=35 we find from Fig. 4

Co'ﬁo.s; 01/&—0.3; Cs’z-—OOS, C4l_~_003

If we take a moderate value of @=2/m and an amplifier
2m long, we find at line center E;1=~0.2E; E;2~0.05E;
E,3~=0.01E. For the 3.39-u line with a saturation power
of about 2 mW/cm?, (Ref. 14) this means that for 6
mW/cm? input at w; and ws, we would expect an output
of roughly 0.2 mW/cm? at 2w;—ws; 20 uW/cm? at

.0l

.00I

2 2
2E/ E,

F16. 5. Fourier gain modulation coefficients
for the inhomogeneous line.



368

3wi— 2ws. It should be emphasized that these fields are
all produced directly by the interaction of the fields at
w; and we with the medium, and not by an iterative
process, which would give much smaller higher order
fields.
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B. More Than Two Input Components

For more than two incident fields with |w;—w;]
<va,Ys We can generalize the above results to find the
polarization

2e¢c T i J_w

We see that (74) contains the saturation effects of all
waves, with the PID being modulated at all possible
combinations of the difference frequencies w;—w;. If
there are a large number of waves within a frequency
range v which have random phases and nearly equal
amplitudes, the cosA;; summation will give zero and
(74) gives

dE; aE;
dz - (143, E2/ER)V?

where b=a(1+X; E2/E¢®)'2, or in terms of the rela-

Rew(x;+1b) , (75)

o T T

alL =2

-20 SECOND

THIRD

RELATIVE SIDEBAND OUTPUT POWER (db)

Ex/E3

Fi1c. 6. Relative output sideband power as a
function of field strength.

wP(r,t) a 5 /‘” exp(—y2)dy[Eqa sin(k;- r—wi+¢;) — Ei(xi+y)cos(k; r—wit+;) ]

(74)
(14X B/ Ei+ 3 EiEi/E? cosAj ]+ (xi+y)?
j ik
tive intensities I;= E;2/Ey?
dI; 2al;
Rew(x+1bd), (76)

. A+ 1)

where we have taken an average value x for the fre-
quency, which is essentially constant over the range of
interest. Summing over all ¢ we find

al total 2al total
dz (1+Itdtal)1/2

Rew(x+1b). 77

Equation (77) is the same as the monochromatic field
result (41). We can thus approximately describe the
saturated amplification of a relatively broad, incoherent
input, in particular the ‘“super-radiant” emission of a
high-gain amplifier. Thus the amplifier measurements of
Gordon, White, and Rigden'® using a super-radiant
source, should approximately give the parameters for
a single-frequency amplifier.

C. Numerical Results for Two Components

The differential equations (66), (68), (72), (73), for
the input and sideband fields were numerically inte-
grated to obtain the relative sideband powers at the
amplifier output. As an example, Fig. 6 shows the rela-
tive powers for the first three sidebands for aL=2 and
8=0 for a homogeneous line, as a function of the input
power E:2/Eg2=E,2/E2. The computer integrations
show that the relative sideband power at a fixed sub-
stantial input, e.g., E3/Eg?=E,?/Es>=1 increases ap-
proximately as (eL)? neglecting the saturation due to
the sideband fields, where L is the amplifier length.

VI. THE RUBY LASER; FREQUENCY DEPEND-
ENCE OF THE POLARIZATION
COEFFICIENTS

The ruby laser?::22 can be treated in the above model
if we assume that the lower (ground) level is pumped
directly into the upper level with a “pumping time” 7,
i.e., neglecting the fast transition from the pump bands.

21T, H. Maiman, Nature 187, 493 (1960).
22 R, J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G.
B. Garrett, and W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
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The required changes are where T’ is the fluorescence decay time and T, is the
thermally shortened cross-relaxation- time. A popula-

Aa = pou(t,1)/ 75, tion inversion is obtained whenever r,< T4. For steady-
Yo— 1/T1, state conditions we will have 7,=~ T, since

Ao = paa(t,t)/ T, No=N1—7,/Ty)/(14+7,/Ty), (79)
Vo= 1/75, where &V is the density of chromium atoms.

vy—1/T,, (78) The integral equation (28) becomes

t

N(r)= [ dto exp(— (t—10)/ T1)pvs(r,to)/Tp— / dty exp(— (t—10) /7 p)paa(t,to) /T

—00

- (5‘2) /0 ) dh /0 ) dtx(exp(—t1/ T1)+exp(— /7 ) )N (x,i— tl—tz)gl(Po. E.)(Po-E..)/ ()

X {exp[(zA+¢(w—w')t1— [l/Tg—“ i(wo——w')]tg):]—l-c.c.} y (80)

where N(t,0) = pao(t,f)— pss(t,t) as before. The f, integrals make (80) rather cumbersome. In order to study the
same effects as previously, we will neglect the small effect of modulation on these excitation terms and replace them
by a steady-state inversion. We note that in the zero-field case these terms return the Ny of (79), and for Ty=7,
they return the saturated value, ColVo. With this in mind, we replace these terms by N,. This neglect of modulation
in the excitation process was implicitly done in the previous cases as well.

We are therefore left with the same integral equation as before. Since T' is a few milliseconds for ruby, the condi-
tion AwT'1<K1 previously used in studying field interactions is now difficult to realize in practice. For this case (and
for the previous cases) we would like to study the solutions for arbitrary Aw. In order to do this, we recall that for
two incident fields, N(r,f) contains all harmonics of Aw, i.e., is of the form

N()=No> ,CpcospA+S, sinpA, (81)

where A= (k;—ks) - r— (w1—ws)t+d1— ¢». If we substitute (81) into both sides of the integral equation and equate
coefficients of C;, and S, on both sides, we obtain the set of linear equations :

FEC+E?  EiE,
Co=1— Co-4 C 1:| ,
L Ey? Ey?
Com — B2 Ee? Ci+S14A0T } E\E, 2C0+C2+AwT1Sg] ,
L E@ 14+(AeTy)?  E?  14(AeTy)?
e — B+ Ey? Ci jAwT 1S } E.E, (C '_1+Cj+1)+jAwT1(Sj—1+Sj+1):l ’
L E?  14+(jAwTy)?  Eé? 14 (jAwT)*
Si= — 24 Ey? Sl—AwT1C1+E1E2 S2_AwT1(ZCO+C2):I
L E@ 14Ty B¢ 14+(AeT)?
= — T E - Ey? Sf_jAWTICj+E1E2 (S '—1+Sj+1)—]'Ale(Cj—ri-Cm)} ’ 52)
| ER 14(AeT)?  E 14 (jAwTy)?
for 7>2, where It is evident that the set can also be truncated if AwT;
E?=#2/(T1T2P?) (83) is large enough. For the case
and we assume (wo—wy,2) T2<<1, i.e., that we remain near (B2 E2?) /AT Eg’<1 (84)

line center. This infinite set of linear, algebraic equations ..
can be solved for part of the coefficients provided the the set can be truncated after the first order, giving

set of equations can be truncated, and this is possible if Co=[14(Er>+ E?)/E&T,
the values of the coefficients drop off rapidly enough for — _BE R
higher orders. This will certainly happen if (E.24 E.?)/ Ci=—2E.Ey/ (BoAwTy)?,

E¢?, the saturation parameter, is small compared to one. S1=2EEs/(EAwT 14 (E>+ E2?)/Es*]), (85)
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Fi1c. 7. Fourier gain modulation coefficients as a function
of frequency spacing of inducing fields.

with higher order coefficients negligible compared with
S1.

A set of nine equations, i.e., terminated at the fourth
order, was solved by computer for different values of the
saturation parameter and AwT'; the resulting solutions
were good for sufficiently small (E12+ E,?)/Eo? and up to
(E24+E2%)/(AwT1Eo?) equal to about unity, for Ey=F,.
The dependence of the net polarization coefficients
(C24-S;0)V2 on Aw is shown in Fig. 7 for E*/Eq*
= E,?/E¢2=0.25. Note that the slope of the falloff for
large AwT} is equal to the sideband order. For a fixed
AwT;, the coefficients increase with increasing E; and
E,, until (E2+ E»?)/E¢*~ AwT4, after which they prob-
ably behave similarly to the large field limit for small
Aw, i.e., all becoming smaller but more nearly equal.
Unfortunately, for this range of parameters the set of
equations cannot be truncated at a reasonably low
order.

These results on the frequency dependence of the
polarization coefficients should apply qualitatively to
the earlier situations studied, taking into account the
unequal decay rates v, and v, of the two laser levels,
and the smaller relative linewidth «.

VII. CONCLUSION AND DISCUSSION

Following Lamb’s model, an analysis of strong-field
effects in laser media was made. In particular, the
“intermodulation” effect was considered, and inter-
preted as a time-dependent saturation leading to para-
metric gain modulation. The frequency dependence of
the interaction was studied for a typical solid-state
laser.

Schulz-DuBois?® and Tabor, Chen and Schulz-
DuBois2 previously studied the same effect for micro-
wave masers, using a perturbation approach, with the

28 F. O. Schulz-DuBois, Proc. IEEE 52, 644 (1964).
2¢W. J. Tabor, F. S. Chen, and E. O. Schulz-DuBois, Proc.
IEEE 52, 656 (1964).
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conclusion that the effect was extremely small and re-
quired pulsed operation to be observed at their experi-
mental Aw/2r of 30 Mc/sec. Since for this case AwTy
=107 (where T is the spin-lattice relaxation time) and
P/Pg,; 2104 the effect should indeed be small, and the
perturbation analysis?® should be completely adequate.
However, the conclusion that the short spin-spin re-
laxation time T causes the small magnitude of the
intermodulation effect in the ruby maser does not seem
to be accurate, except to the extent that a small T, gives
a large saturation power. For a given power, the amount
of gain modulation is determined by how well the popu-
lations can follow the beating fields, i.e., by T, while
T, determines the linewidth (and, with T, the satura-
tion power). The maser results were determined pri-
marily by the large AwT}; a smaller Aw would have cor-
respondingly increased the effect, as was indicated else-
where in the discussion.?

A small T occurs for most solid state lasers (e.g., for
ruby T1~3X 1073 sec), so that again a large AwT; will
be the rule. Again it is possible to use large signals and
pulsed operation?®:?4 to obtain a situation where fairly
large amounts of intermodulation could be observed.
Thus in a giant-pulse laser one typically has AwT1=4
X108 and P/P.;=107, a case where a perturbation
analysis would not be adequate.

Preliminary experimental results!® with the helium-
neon gas laser at 3.39 u are in good agreement with the
above theory.
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APPENDIX: EVALUATION OF THE
FOURIER COEFFICIENTS

For the homogeneous coefficients we have

2—8,m)/7 T cos mudu
= / . ()
1482+ (E2+E?)/E? Jo 14ao cosu
where
2E\Ey/Eq?
ao= . (AZ)
1482+ (B4 E,?)/Eq?
The integral in (A1) is tabulated,? giving
(=1)™(2—8om) [1_(1_002)1/2]”5
(A3)

" 1+52+ (E12+E22)/E02 do"‘(l _a02)1/2

25 H. B. Dwight, T'ables of Integrals and Other Mathematical Data
(MacMillan Publishers, New York, 1961), p. 219, No. 858.536.
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For the inhomogeneous coefficients, we have

(2—8om)/m T cosmudu
Col= [ , (A%)
[1+(E12+E22)/E02:|1/2 Jo (1+(Iol COS%)I/2
where
2E\Ey/Eq?
(AS)

ay = )
A (ErtED/Ee

With the substitution V=exp(iu), the integral in (A4)
becomes

2\ 1/21 Vr-li2qy
Re(——) - , (A6)
aol i . (V— Vl)1/2(V_ V2)1/2
where
—V,=(1 g 212/ g !
1 ( +(1 (22} ) /ao ) (A7)

—Vo=(1—(1—a'?)"*/ay,

and the contour ¢ is the upper half unit circle in the
complex V plane. Evaluating (A6) by standard methods
gives

) (2—607,,)(—1)’”(8/(10')1/2 d (dz_ t2)m—1/2dt
" —1r[1+(E12+E22)/E02]1/2 /0 (62—|—i2)1/2

where d*=—V,, ¢*=V,—V, are greater than zero.
Equation (A8) can be used to explicitly evaluate the

, (A8)
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C»’. An alternative expression is obtained by expanding
(14-ay’ cosu)~1/2 by the binomial theorem, where the
coefficient of (cosu)™ is

(—1)™(2m—1)lay'™

2mp !

(A9)

The coefficient of cos(m—2p)u in the expansion of
(cosu)™ is 28

27mHIC,m, (A10)
except for p=m/2 an integer, when it is
2-mCym (A11)

where the C,™ are the binomial coefficients. Combining
these coefficients, we find an infinite series for the C,/,

. (2—8om)(—ad' /)™
" [1+(E12+E22)/E02]1/2

[ ao/2 1’(4p+2m—1)”
Xz (——) Pl(m+p)!

16
which converges absolutely for ao’<1. In (A12) we de-
fine (4p+2m—1)!1=1 for m=p=0.

26 Reference 25, p. 82, No. 404.

, (A12)

»=0



