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Using Lamb's model, we analyze the eBects of gain saturation by strong traveling-wave fields in dilute
laser media. Using approximate solutions of an integral equation for the population inversion density
(PID), the index of refraction and incremental gain are studied for arbitrarily strong Gelds. KGects of atomic
motion are included for a Maxwellian velocity distribution, but pressure effects are neglected. The case of a
monochromatic Geld leads to the saturation results of Gordon, White, arid Rigden, which are studied as a
function of frequency. For a small ratio of natural to Doppler linewidths, there is a transition from inhorno-
geneous to homogeneous broadening for sufFiciently strong Gelds. An eftect of particular interest is the
generation of waves at 2'» —~~, 2co2 —eu», and higher order sidebands by two strong input signals at co» and cog.
The source of the parametric gain at these frequencies is the time-dependent gain saturation due to the
presence of multiple strong Gelds. For ce» —co2 small compared to the decay rates y, and yb of the laser levels,
the gain at these intermodulation sidebands is computed as a function of the Geld strengths. The limiting
cases of homogeneous and inhomogeneous (due to atomic motion) broadening are studied in detail. These
two cases give essentially the same results, for a given unsaturated gain. Numerical results indicate that a
Grst-order side-band intensity at least 10 j& as large as that of the inducing GeMs can be easily observed in
practice. The integral equation for the PID is converted into an inGlnite set of linear algebraic equations
for a typical solid-state laser. The conditions under which this set of equations can be limited to a Gnite
number is discussed, and the dependence of the sideband gain on a» —~~ is calculated. For large a» —cv2, the
gain at the mth sideband decreases as (eu —

corn)

I. INTRODUCTION

l 'HE characteristics of laser oscillators have been
studied in detail by Lamb."He concentrated on

the case of a stxongly Doppler-broadened gaseous
medium. Other authors' ' have given similar results
with extensions to allow treatment of pressure effects, ' ~

the traveling-wave laser oscillator, ' and the application
of a magnetic held to the medium. '

In this work, we study the behavior of traveling
waves in dilute laser amplifying media, using a formal-
ism essentially the same as that of Lamb. ' ' The index
Of refraction) incremental gMn, and population Invclslon
density (PID) are studied as functions of frequency and
field strength for steady-state conditions with constant
and uniform excitation of the medium. YVC are particu-
larly interested in treating the situation where the Gelds
are strong enough to render a perturbation solution use-
less, especially for the case of interacting waves. The use
of traveling waves helps in identifying the physical
processes occurring as parametric effects with damping.
The powerful concept of "hole burning, " introduced by
Sennett" "for gaseous lasers, is used in discussing and
interpreting the results.

*Present address.' W. E. Lamb, Jr., in Proceedings of the International School of
Physics "Enrico FerrNi, " Course XXXI (Academic Press Inc.,
New York, 1964), p. 78.

2 W. K. Lamb, Jr., Phys. Rev. U4, A1429 (1964).
3 H. Haken and H. Sauermann, Z. Physik 173, 261 (1963).
4 H. Haken and H. Sauermann, Z. Physik 176, 47 (1963).
5 R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).' P. W. Smith, J. Appl. Phys. 37, 2089 (1966).
~ A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963).
8 F. Aronowitz, Phys. Rev. 139, A635 (1965).
9 For example, see W. Culshaw and J. Kannelaud, Phys. Rev.

141, 228 (1966};141, 237 (1966) and references contained therein.
»0 W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962}.
"W. R. Bennett, jr., Appl. Opt. Suppl. 1, 24 (1N2).
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Substitution of (») into the time-dependent Schrodinger
equation and neglect of the small perturbation term
proportional to A' leads to the equations

p.s= (7+t'~o)p. s—+(p- p»)(mo& P—o/&), (2)

V.P- (P.s+—P.s*)(—~o& P./&), (3)
and

pss= —Vspss+(p. s+p.s*)(m4. Ps/&),

where p, ~=ah, p„=au, p~g=bb, coo=co —cog, y= gy

+ps)/2 and y, and ys are the phenomenologically in-
troduced decay rates of the upper and lower levels. A
is the vector potential of the electromagnetic 6eld" and

P,= e(olrlf)—
"The vector potential is used here in the Coulomb gauge /see,

for example, L. L Schiff, Quantum 3Achanics (McGraw-Hill Book
Company, Inc. , New Vor)r, 1955), Chap. X].A better approach
mould be to make the electric dipole approximation and transform
from the Coulomb gauge to a gauge in which the electric field ap-
pears naturally in the perturbation. Using the latter gauge, in
which the coojco factors do not appear, is physically more meaning-
ful Lace, for exampie, E. A. Power and S. Zienau, Phil. Trans.
Roy. Soc. A251, 427 (1959) and their referencesg. Since the factors
coo/co are nearly unity, the present use of the vector potential is
equivalent for the purposes of this paper to Lamb's use of the
electric Geld (Refs. 1 and 2).
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II. THE EQUATIONS OF MOTION

In this section, we derive the equations describing the
electromagnetic 6eld and the active atoms of the lne-
dium. The model and approach are essentially those of
Lamb's two-level theory, "and will therefore not be
discussed in detail.

A partial expansion of the wave function in the two
orthonormal laser states

l a) and
l b) with energies

A~, & ha)p is
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The classical treatment of the electromagnetic 6eld re-
quires p, & for the calculation of the macroscopic polari-
zation of thc medium which ls taken to bc the sum over
all atoms per unit volume of the microscopic dipole
moment

P= (lt I
—«I it) = Po(p.b+p.b*)

Since we wiB be interested here only in 6elds 1inearly
polarized along the same direction, we will take Po to be
paraBel to E. For more general fie1ds, one should ex-
plicitly take into account the several magnetic sublevels
of one or both of the laser levels.

Ke write the electric field as a sum of traveling waves,

E(r,t)=Q cos(k r —rot+ad )„,

where E„,k, and p„are the spatially dependent ampli-
tude; propagation vector and phase of the wave with
frequency m. To be completely general, the summation
in Eq. (7) should be an integral over frequency compo-
nents. However, we wish to approach the problem of an
ampli6er with a signal consisting of a small number of
discrete frequency components incident on it. In writing
Eq. (7) we have assumed that the amplified sign. al still
consists of a set of discrete frequency components, al-
though the number of components may be much larger.
This approach conforms closely with experiments, and
the results are in good agreement with experiments (see
Ref. 13).

From (7) and E= BA/Bt, we —can write the vector
potential as

A(r, t) =P (E„/o&)sin(k r—rot+ad„).

Thus the equations of motion (2) through (4) become

ohio Po'E~
P«= V~p«(p~b+P~b ) E sin(k'r oIt+4'~) ~

A ~ M

uo Po'E~
pb = yp b+—(p. +p.b*) P —sin(k r—rot+ad. )

op

Po K„
P~b ('y+ bros)pub+ (—P«Pbb)

Ob M

Xsin(k r—oIt+4„). (11)

In a medium with specific polarization P(r, t), Max-
welVs equations give the wave equation (in mks units)

1 I)'E(r, t) 1 r)'P(r, t)—7'E(r, t)+— -= — — — . (12)
c2 R2 ac~ Bt2

The E, k, and/ in(7) arefunctions ofr inthemedium.
Second-order spatial derivatives of these quantities can

"D.H. Close, Appl. Phys. Letters 8, 300 (1966).

be neglected if their variation is small enough, requiring

cr(((o/c =10' m-' (13)

for optical frequencies, where o. is the linear exponential
6eld gain due to the medium.

Using the form

P(r, t) =P P„,cos(k r—&vt+y„)+P„,

X»n(k r—~t+@ ) (14)

for the polarization, (12) reduces to the equations

fm(ro) 1+—(c/&o)e. Vp.fE.,= (1/2eo)P. „, (15)

c„VE„;= (Io/2eoc)P„„,

k(bo) =n(ro) roe„/C,

and j denotes the field components transverse to k.
According to Eq. (15) the in-phase component of the
polarization can. be viewed as contributing either to N(&o)

or VQ„. In this work we have arbitrarily assigned to
g(Io) the part which is independent of distance along the
dlrcctloI1 of plopagatloll (except for a11 1nlpllcl't depend-
ence through the field amplitudes), and retamed P„ to
describe a Quctuating phase. Since only the former is
present when the propagation mismatch between in-

duced 6eld and inducing polarization is neglected, the
Quctuating phase will not concern us here. '4

Occasionally (for example, in the oscillator problems
treated by Lamb' '), one wishes to consider fields whose

amplitudes vary with time rather than in space. The
equations for such fields are derived in an identica1 way,
and are given by

1' 1
rb(oI) —1+—

dt 2&p

(dE„;/dt) = (Io/2eo)I'„„.

In order to take into account gaseous media, we note
that an atom moving uniformly with a velocity v, ini-

tially at ro at time to, has the position r= ro+v(t to) at-
time t. We neglect pressure effects, which in many cases
are small.

The quantities p„, pqq, and p, ~ are functions of time,
and for given 6elds the solutions are de6ned by the
initial conditions, The simplest initial condition placed
on a single atom is i.hat it is either in state

I a) or Ib)
at, tp and no other possibilities will be considered here.
We de6ne the excitation process in terms of the number
of atoms excited to the states

I
rb) and

I fi) per unit time,

per unit volume, per unit velocity interval. We assume
that this number is a function only of velocity, and that
the excitation velocity distribution is the same for both
levels. The excitation is thus defined by )i, , bW(v), where

"D. H. Close, Scienti6c Report No. 5 under Air Force Contract
AF49(638)-1322, j.965 (unpublished); Ph.D. thesis, California In-
stitute ol Technology, B65 (unpuhlished).
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l(a, b are the total number of atoms excited to
~
(b),

~
b) per

second per meter', and W(v) is the normalized velocity
distribution.

The required solution at time t is found by summing
over all previous excitation times the solutions due to
individual excitations. For example, if we denote the
solution of (3) for atoms excited to state

~
a) at time tp

and position ro with velocity v as

p„(')(r, t v 1'p tp), (20)

then we can only have contributions to the speciic
quantity p, (r, t,v) for rp and v such that r=rp+v(t tp).
Thus the contribution of solutions (20) to p„(r,t,v) is
given by the integral

p..(a)(r, t,v) =X.W(v)

There are similar contributions to pbb(r, t, v) and
p, b(r, t,v), and other contributions due to excitation to
the lower level. For the field equations we of course need
only p, b(r, t,v), but it is convenient and physically in-
teresting to express this in terms of

p„(r,t,v) pbb—(r, t,v) =X(—r, t,v), (22)

which is the population inversion density at r, t of atoms
with velocity v.

In order to derive an integral equation for N(r, t,v),
let us denote

p ( )(r=rp+v(t tp),—t, v, rp tp)

by p„(t,tp) with similar definitions of pbb(t, tp) and
p b(t, tp). These quantities satisfy the differential equa-
tions (9)—(11), with the initial conditions

Paa( 0& 0) = & Pbb( 0& 0) Pab(&0& 0)dtpp„(a) r=rp v t—tp, t, v, rp tp . 21
Formal integration of these equations gives

(23)

p„(t,t,) = exp(—y, (t—to))—
o&0 Pp' K )dt' exp(p, (t'—t))(p, b(t', to)+p b (t t
Aa 0&

Xsin(k rp+k' v(t' —tp) —opt'+p), (24)

O)0 Pp' Ka&)
p»(t, tp) = dt' exp(yb(t' —t))(p, b(t, tp)+p b*(t tp))—p ~sin(k rp+k'v(t —tp) —o&t'+&t&),

n) 0) )
and

~0 (Po.K.
p b(t, tp) = dt' exp[(p+io&0)(t' —t)](p„(t',to) —pbb(t', tp))—p ~

sin(k rp+k' v(t tp) Mt +&I)).
tp

tweak

(25)

(26)

We can subtract (25) from (24) to obtain an expression for p„(t,tp) —p»(t, tp) in terms of p, b(t tp). Substituting
p b(t tp) from (26) into this expression gives an integral equation. for p„(t tp) pbb(t tp). If we sum over all atoms per
unit volume at rp, we obtain a factor of )(,W(v). Integrating over all possible excitation times tp and using (21), we
6nd

p..('(t, tp) —pbb(') (t, tp) = l(.W(v)/y. —X.W(v) (&pp/2&(t)'

t

dto dt'
tp

dt»(pea O'—t)+ p&b(&'—O)

P() K„P0 K, )X (p(v+&'ao) (&» &')+e(T &'ao) (&»—&'))(p —(o) (t" to)
—

pbb(a) (t" tp)) g
M

X [expi[(k —k') r kv(t t')+k—' v(t —t") o)t'+0)'t—"+&I&—(t&']+c c 7, —(27). .

where we have neglected terms of relative order y/o&0 and used r=rp+v(t —tp).
In the same way, we find a similar integral equation for the contribution to E(r, t,v) due to excitation of the state

~
f&). Adding these two contributions, interchanging the integration order twice, and performing the tp integration,

we obtain

(Po K) Po K.
&(r t «) =l)7'0W(v) —

I

—
I

dt1 dtp(exp( —y.t,)+exl)(—ybt, ))E(r t t, tp v) Z I——
&2~) ) ~')

X [exp[ih+i(&p —0)'—(k—k') v)t1—(y —i(o&0—0&'+k' v))to]+c.c.], (28)

where t1——t—t', tp ——t' —t", l)70 )(a/Ya Xb/y—b—, and—

a= (k k') r—(0)—0)')t+y ——(t'. (29)
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Equation (28) is the integral equation for the population inversion density. We can express p, b(r, t,v) in terms of
N(r, t,v) by starting from (26). In an identical way we find

pg o(r~t~v)
2iA

COp Po E„
dt, N(r, t—t„v)P expLi(k r—&ot+tt) —(y+i(too —~+k v))4].

0 M
(30)

III. SOLUTIONS

The integral equation (28) usually cannot be solved exactly. The zero-field solution, is obviously

N(r, t,v) =NpW(v), (31)

so that N(r, t) =Np. If the fields are weak enough, (28) can be iterated to form a series solution in powers of the
fields. The linear solution is obtained by substituting (31) into (30).The lowest order nonlinear solution is obtained
by inserting (31) into the right-hand side of (28); the resulting second order N(r, t,v) gives a third order p o (hence
polarization) upon substitution into (30). Higher order terms of the solution can be obtained by further iterations.

The iterative solution will be valid if the 6elds are always small compared with a 6eld determined by the system
parameters. This 6eld is given by"

(32)Ep' ——y,y oA'/Pp'.

opo Po'E~l Po'E~'&
N(r, t,v) =NpW(v) 1+P '—

~
~[exp(iA)/(7 i(rop —oi'+k—' v)).

2' ~ )

&& [1/(y, —i(op —to' —(k—k') v))+1/Lyo —i(s&—to' —(k—k') v)]]+c.c.] . (33)

The corresponding intensity, Ip= focEp is the same as the saturation intensity occurring in treatments of laser
saturation. " '~ If two fields comparable to or larger than Eo interact, the results could at best be predicted quali-
tatively from the series solution by consideration of higher order terms of the series. In order to study such a situa-
tion more accurately, we must find other approximate solutions for the integral equation (28).

Examining (28), we see that fields at two different frequencies will induce a variation in N(r, t,v) at their difference
frequency. Also, we see that the solution is characterized by the rate of variation of N(r, t,v) compared to y, and
p&—rates slow compared to p„p& will appear strongly, while rates very rapid compared to p, , p& will have small am-
plitude. However, if N(r, t,v) varies slowly compared to p, po, the integrations will be dominated by the Lexp( —p, t&)

+exp( —gott)] and exp( —yto) factors, and N(r, t,v) may be removed from the integral, giving upon integration,

According to the above discussion, we should neglect terms in the summation for which
~
oi—ip ~))v,yo and keep

the terms for which
~

&o
—oo ~((y„,yo. For intermediate frequency separations, (33) will be only qualitatively correct.

This result shows that the PID will contain all harmonics of each frequency difference co—co which are small com-
pared to y„vo, and will contain higher harmonics to a lesser degree than is indicated by (33).

Since N(r, t,v) is slowly varying compared to y, we may take it outside the integral in (30), giving

Mp Pp E.
p, o(r, t,v)= N(r, t,v)P exp(i(k r pit+ad))—(p+i(pop o&+k v—))

2ZA td CO

(34)

Using (33) in (34) gives an approximate solution, subject to the above restrictions. For our purposes we will limit
it to the simplest and most interesting case of single-polarization waves traveling in the same direction, so that
k—k'= 0.We therefore replace Pp(Pp E„)with E„Pp'/3 in order to get the correct linear result, and (Pp' E ) (Po' E )
with Eo E„E„,for simplicity. This will introduce small errors in the numerical factors which are within the present
approximation, but will allow easier computation and emphasis on the primary sects of interest.

We thus find for the polarization

P(r, t,v) =(Pp(p. o(r, t,v)+p. o*(r,t,v)))=(oopPo'/6i7i)N(r, t,v)g(E„/pi)

where
X Lexp(i(k r—o&t+g))/(y+i(coo —o&+k v))—c.c.], (35)

N(r, t v) =NpW(v) {1+ P (yE„E.-/2Eps) [exP(iA)/(y —i(oio—to"+k" v))+c.c.])-',
n1/I

"K. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers at the Polytechmc Institute of
Brooklyn, 1963 (Polytechnic Press, Brooklyn, New York, 1963), p. 309.

"W. W. Rigrod, J. Appl. Phys. 34, 2602 (1963).
'r A. D. White, E. I. Gordon, and J. D. Rigden, Appl. Phys. Letters 2, 91 (1963).
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and 6= (k' —lr") r—(co' c—o")t+ ck' c—k" E.quations (35)
and (36) form the approximate solution.

Ke will consider only a Maxwellian velocity distribu-
tion of excited atoms, i.e.,

lF(v) = (1/oru')'" exp( —e'/u'), (37)

where u'= 2kT/3f. The special case of stationary atoms
can be obtained by letting e become zero, i.e., by setting
v=0.

.9-

Ld N
U

.5
Ol Q
hJ

O~l

UJ . I

-I 0

b'= ys(1+E'/Eos)/(kou) ',
x= (~o-~)/(kou),

a=y/{k.u),

0.= anom'~',

(40)

where ko ——coo/c, we can write the gain and index from
(15) and (16) in terms of the error function for complex
arguments" (Ref. 19, 14) as

1 dE n Rent(x+sb)
(41)

(1+.Es/E s)its
'

g(co) = 1—(cn/co)imrci(x+ib), (42)

where Re and Im indicate the real and imaginary parts,
respectively.

The parameter a, being the ratio of the natural to the
Doppler linewidths, determines the degree of Doppler
broadening of the line. If the Doppler broadening pre-
dominates sufIiciently, we can expand (41) and (42) to
first order in b«1 (Ref. 19, 14), giving

{1/E)(dE/«) =nLexp( —~')/(1+E'/Eo')"'
—2a/s. "'(1—2' {x))j, (43)

u(co) = 1—(cn/co) [2F(x)/s "'
-2.(1+E/E. ) ts"~(-*s)] (44)

'8 Defined by
~ =2 ce

m (s) =exp( —s') erfc( —is) =—„,exp( —z') exp( —P)dt .

This is essentially the complex conjugate of the "plasma dispersion
function" used by Lamb iRef. 2).

IV. SINGLE-FREQUENCY FIELD

For a single-frequency field we use (37) and obtain,
after integrating over the velocity components perpen-
dicular to k, the sine and cosine components of the
polarization (14)

noEy' " exp( —V'/u')d V
I'.= , (38)

2eoc s'"u y'(1+ E'/ E')+(co —co+kV)'

C aoEy
p

260 7f' ~ I
"

(coo—co+kV)exp( —V'/u')dV
X (39)

ys(1+E'/Eo')+ (coo—co+k V) '

where no ——Po'cVocoo/(6yeock). With the definitions

FIG. 1. Gain saturation and broadening as a
function of frequency for a=0.2.

F(x)=exp( —x') exp(ts)dt (45)

is the Gaussian dispersion function. " Equations (43)
and (44) are consistent with the "hole-burning" de-
scription of an inhomogeneously broadened line. 'o "
Thus the gain comes primarily from those atoms whose
vclocltlcs allow thcIQ to lntcI'act stroDgly with tlM 6cld
while the phase shift (index of refraction) arises pri-
marily because of atoms outside this region. Correspond-
ingly, the primary gain term is saturated, while the
primary index term is not.

It should be noted that the expansion parameter
above is not a but b=a(1+E'/Eos)'t' so that strong
enough 6elds can destroy the predominance of the Dop-
pler broadening. This is consistent with the fact that
the hole or interaction linewidth increases with increas-
ing fields. In fact, the stationary atom (homogeneous)
case can be obtained either by starting from (35) and
(36) with v=0 or by using the asymptotic form of the
complex error function, "

w(s) =i/s'"s

with (41) and (42), giving

4E Hog

E ds y'(1+E'/Eo')+(coo —co)'

no/ (coo
—co)

u(co) =1———
~ V'(1+E'/Eo')+(~o —~)'

(46)

(47)

In Fig 1 (1+E'/Eo')"'/(nE(dE/ds) from (41) for
c=0.2 is plotted as a function of frequency for various
saturation levels. This shows the excess saturation and.
broadening over the "inhomogeneous" case, given by
(43). In Fig. 2 the same quantity is plotted as a function
of E'/Eo' for various values of a, compared to the homo-
geneous case, given by Eq. (47). Here a purely inhomo-
geneous interaction (a= 0) would result in a horizontal

"Handbook of 3fathemuÃca/ Functions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964},- Appl. Math.
Ser. 55, pp. 297-304, 325-328.



STRONG —FIELD SATURATION EFFECTS IN LASER MEDIA

line equal to 1.This indicates how any line with a finite
natural linewidth becomes homogeneously broadened
for sufliciently strong fields.

If the incremental gain functions (43) and (47) are
expressed in terms of the intensity I= GocE fol op=NO,

we obtain Eq. (16) and (15) of Gordon, White, and
Rigden. "These equations can be integrated, " "giving
the net intensity gain of a saturated amplifier, as a
function of the incident intensity. Such a set of curves
is shown in Fig. 3 for the predominantly Doppler-
broadened case, together with some experimental points
for the 3.39-p line in neon due to Hotz "

In all cases, the above results can be expanded to
lowest order in the fields, giving the linear gain and index
functions and their lowest order nonlinear corrections, '
within a small numerical error in the latter case, as
discussed above.

V. MULTIPLE-COMPONENT FIELDS

A. Two Input Components

) I I I I I II I I I I I I I II I I I I I I I II I ) ) I ) I I I

a ~ .Ol
W ll~

~~ ~(l+E /EO)

.6—

I I I I I)II
.OI .I

I I I I I I III I I I I I I III
I.O IO

E iEO

I I I I I III
IOO

FIG. 2. Gain saturation as a function of Geld strength,
compared to homogeneous gain saturation.

2p(1+F2/gi 2)it 2 (53)

If we examine these expressions as functions of velocity,
we find that (52) shows a hole whose width in frequency
units is

@2/g 2

1+82/EO2
(54)

~1 +R +2+1+2 cos~12
N(r, t,v) =NpW(v) 1+

Eo This hole of course appears superimposed on the distri-
bution W(v). Correspondingly, the two-frequency case
with Ace))y„yb shows two similar holes in the velocity
distribution of the PID, so long as her remains large
compared to the sum of the two-ho)e widths, i.e., the
holes do not overlap. Finally, when Dpi«p„po (49)
shows that in the limiting case where the two holes com-

pletejy overlap there is again a single hole in the PID,
whose width and depth vary harmonically at the fre-

quency h~. The maximum and minimum widths are

X, (49)
y2+(pio —oo+k v)'

where AM=
~

ppi —p12~ has been neglected compared to
y, ~=~1+(p~2—~1)/2, k=ki+(k2 —ki)/2, and

~12 (kl k2) 'r (poi oo2)t+41 II2 ~ (5O)

If hop»y„yo, according to the discussion of (33) we can
to a good approximation neglect the modulation terms,
and find 27L1+ (E,+82)'/Eo f't

»&1+(~1—+2)'/~"i"'
E2 ~2

N(r, t,v) =NpW(v) 1+
Ep Y +(pip N1+kl'V)

and

For the case of two waves traveling io the same direc- and w ose eP, re a ive o uni y, is

tion (36) gives for Dpi«y„yo,

E2'

Eo 'r + (pop
—oo2+k2' v)

(51)
4000

0 ~ EXPERIMENTAL POINT

E2 72

N(r, t,v)=NOW(v) 1+
Zp 7 +(pop —M+k'V)

"D.F. Hotz (private communication}.

(52)

In the latter case, study of the gain and index at each
frequency shows the effects of saturation due to one
wave on the other, for the homogeneous and inhomo-

geneous lines. ' Here, we will only note that considera-
tions of hole burning predict the saturation interaction
for the inhomogeneously broadened line, and proceed
to consider the former case, where the modulation
terms are not neglected.

First, we compare (49) to the PID for a single wave
from (36)

IOOO

I 00

IO
C

I

.OOOI .OOI .Ol 10

E /E
FIG. 3. Integrated gain saturation, compared with experiment.



DONALD H. CLOSE

and the corresponding depths are

(El+E2) 2/EO2

1+(EI+E2)'/Eo'

(E1 E2)2/EO2
and (56)

1+(EI—E2) '/Eo'

This fluctuating hole shows how the PID follows the
beating of the two incident fields, for her«y„y~. The
PID is modulated at all harmonics of her, the modula-
tion taking the form of waves traveling through the

medium. It is the parametric interaction of the fields
with these modulation waves which generates new fields
at the various "intermodulation" or "combination tone"
frequencies, the higher modulation harmonics giving
rise to higher order combination tones, as we shall now
see.

Substituting (49) into (35), we obtain the polariza-
tion for a Maxwellian velocity distribution of excited
atoms,

OIP(r, t) n
exp( —y')dy]

26pc 7l

E1 +E2 +2EIE2 cos+12
a' 1+ +(z+y)2

Ep2

XHEI sin(ki r—o/It+&I) —(xi+y)EI cos(ki r—oiit+$1)

+aE2 Sin(ko r—ooot+&2) —(Z2+y)E2 COS(kp. r—Ioot+&2)], (57)

where the two velocity integrations perpendicular to k, have been carried out, x= (Iop—Io)/(kpu) and y= V/2c. This
can be expressed in terms of the complex error function, but we will study only two limiting cases, first, stationary
atoms or the homogeneous line and second, the inhomogeneous line.

For stationary atoms, we find either from the limiting form of the complex error function or from starting with
v=0

IOP(r, t)

26pc

Ei +E2 +2E1E2 COSA12
v' 1+ + (Mp

—oo)
Ep2

XHEI sin(kl 'r colt+41) (pip o11)EI cos(k1 r o/it+41)

+YE2 slil(k2 ' r M2t+Q2) (oio M2)E2 cos(k2 ' r cd2t+$2)] . (58)

The polarization thus contains the frequencies Ioi&2/2AIO These results, with (15) and (16) give
for integral ns. The Fourier analysis in the Appendix
gives the polarization at each frequency. We find 1

=~p ~i~p (66)
IdP, (OII)/(2 poc) =noLEICO+ E2CI/2], (59)

P,(,)/(2 c)= ,(, )//y[E Co—+EC /—2], (60)

with a similar expression for P(co2), and at oo+~=coi&m
X (oii oi2) Wooi, ooo the magnitude of the polarization due
to E~ and E2 is

npc (pip —MI) // EOCI
i

Cp+
2Ej,

N(oui) =1—

with similar expressions at ~2', and at or~ A~j.,~2

(67)

OOP, '(Ioy~)/(2 poc) =no(1+ Il ) LEIC~+E2C~yi] 2, (61) dEy~

where

(1+g2) I/2

=np Ep„CO+ (EIC +E2C„gi), (68)
2

C =
2 80~ —L(1—ao') "'—1]"

(62)
1+$2+(E 2+E 2)/E 2 a m(1 a 2)1/2

cno (Mo ooym)
22(pi~„) = 1— Co, (69)

and

2EIE2/Eo'

1+~'+ (EI'+E2')/Eo'

~ = (pop —o/)/'Y.

(63)

IOP, (co~„)/(2 poc) =noCoE(pi+m), (64)

&OP, (pi~ )/(2ppc) = —no(orp —Io)COE(co~ )/y. (65)

8p =1 if m=0 and zero otherwise.
The polarization (61) will give rise to fields at Ip+,

and these fields will induce a saturated polarization
given by

where in (68) and (69) we have assumed that the in-
duced waves never get out of phase with the polariza-
tion (61), since AIO«y„y p.

The above results hold so long as mdtro«y, ,y~ and the
induced fields remain small compared to Ep. Some of
the coefficients C are plotted in Fig. 4 for 8~= E2——E
and 8=0. In this case, the polarization at co~ due to
Ei and E~ is determined by the sum of two successive
C, and this sum is given by the vertical distance be-
tween the corresponding curves, taking into account the
log scale. Thus we can see directly from Fig. 4 how the
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gain at various frequencies changes with increasing 6eld
strength.

H Ei/Eo and E~/Eo are small compared to unity, the
above results can be expanded to give the linear and
lowest order nonlinear results as before. ' Another in-
teresting limiting case is Ei =E2 Ean——d E'/Eo'))1. We
6nd

2Cp+Ci Ep'/E'

and for m, m —I/O,

.OI

.OOI
.Ol 10 IOO IOOO

+C ~~( 1)mE 2/E2

The polarization due to Ej and E2 at each frequency is
thus of order Eo'/E'«1 compared to the linear polari-
zation. This is the case of extreme saturation, with the
PID driven essentiajly to zero.

Fro. 4. Fourier gain modulation coe%cients
for the homogeneous line.

For the inhomogeneous line, a[1+(Ei+E2)'/E//']' '
«1, we find, analogous to (43) and (44),

26pC

coP(r, t) Ei'+E2'+2EiE& cosh»y —' '
=u exp( —x') 1+ —(2a/m'")(1 —2xF(x)) [Ei sin(k, r—co,t+y, )

gp i
Ei'+Eg'+2EiE2 cosh»

+E2 sin(k& r—(opt+&2)]—2F(x)/m'/' —2a 1+ x exp( —x')
g 2

XjEi cos(ki r ~it+41)+E2 cos(k2'r ~2t+Q2)] ~ (70)

Since for this case the cosine terms of (70) are not ap-
preciably changed by saturation, we shall deal only with
the sine terms and assume that the index of refraction is
given by its linear value,

e(co) = 1—(co/(a) 2F(x)/7ri/',

where x= (s&o
—~)/(Sou) as before. In the Appendix (70)

is expanded into its Fourier components, with the result,
using (15) and (16),

dEi/ds=n[exp( x) (EiCp +E2—Ci /2)
2aEi(1—2xF(x))/s. '/a] (72)

We can obtain an estimate of the induced fields ex-
pected by fixing the coefficients at their a=0 values.
Thus for 2E'/E '= 5 we find from Fig. 4

Cp' 0.5; C&'~—0.3; C3'~—0.05; C4'~0.03.

If we take a moderate value of n= 2/m and an amplifmr
—,'m long, we find at line center 8+~=0.2E; 8+2=0.058;
8+3=0.01K. For the 3.39-p, line with a saturation powel-
of about 2 mW/cm', (Ref. 14) this means that for 6
mW/cm' input at ~i and ra2, we would expect an output
of roughly 0.2 mW/cm' a,t 2s» —

&u2, 20 /iW/cm' at

with a similar expression for dE2/ds, and for the fields
at 07ym+GOi)G02)

dE~ /ds =nlexp( —x')(E~„CO'+EiC„'/2+ETC„~i/2)
—2aE~ [1—2xF(x)]/n'/2) (73)

~gg
~e+

-Cir
r~

where again we have assumed that the E+ fields re-
main in phase with their driving polarizations, and the
C ' are given in the Appendix.

Some of the C„' coefficients are plotted in Fig. 5 for
E~=E~=E, along with the corresponding C coeffi-
cients from Fig. 3 for comparison. The induced gains
can be seen to be very similar, within a factor avr' '. As
before, these results hold for mdtro(&y„y~ and only as
long as none of the induced field become appreciable
compared to Ep. Here, we have the added restriction
a[1+ (E 2+E 2)/E 2]1/2«1

/
.Ol y

.OOI
.Ol . I I

2E /E
10

FIG. 5. Fourier gain modulation coefFicients
for the inhomogeneous line.
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3'~—2or2. It should be emphasized that these fields are B. More Than Two Input Components
all produced directly by the interaction of the fields at

For more than two incident ffelds with

process, which would give much smaller higher order &&v„ys we can generalize the above results to find the

fields. polarization

coP(r, t) n

26pC 7l

" exp( —y')dy[E, a sin(k; r—~;t+it~) —E,(x;+ y)cos(k; r—a&;t+P&)]

a'[1++ E'/Eo +2 ErEI/Eo' cosA, I]+(x,+y)'
(&4)

~i
Rew(x~+ ib),

(1+2~ E~'/Eo') "' (75)

where b=a(1++ E'/E ')'t' or in terms of the rela-

We see that (74) contains the saturation effects of all

waves, with the PID being modulated at all possible
combinations of the difference frequencies co;—cd If
there are a large number of waves within a frequency
range p which have random phases and nearly equal
amplitudes, the coshjI, summation will give zero and
(74) gives

tive intensities I;=E,2/Eo'

2aIi
Rew(x+ib),

ds (1++,I,)"' (76)

2AItotg].
Rew(x+ib) .

(1+Itdto, l)
(77)

where we have taken an average value x for the fre-
quency, which is essentia)ly constant over the range of
interest. Summing over all i we find

-IO—

uL *2

Equation ('77) is the same as the monochromatic field
result (41). We can thus approximately describe the
saturated amplification of a relatively broad, incoherent
input, in particular the "super-radiant" emission of a
high-gain amplifier. Thus the amplifier measurements of
Gordon, White, and Rigden" using a super-radiant
source, should approximately give the parameters for
a single-frequency amplifier.

K
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C. Numerical Results for Two Components

The differential equations (66), (68), (72), (73), for
the input and sideband fields were numerically inte-
grated to obtain the relative sideband powers at the
amplifier output. As an example, Fig. 6 shows the rela-
tive powers for the first three sidebands for nL=2 and
8=0 for a homogeneous line, as a function of the input
power Er2/E02=E~'/Eo'. The computer integrations
show that the relative sideband power at a fixed sub-
stantial input, e.g. , Ei'/Eo'=E&'/Eo' 1 increases ap-——
proximately as (nL)', neglecting the saturation due to
the sideband fields, where L is the amplifier length.

VI. THE RUBY LASER; FREQUENCY DEPEND-
ENCE OF THE POLARIZATION

COEFFICIENTS

-50
.Ol

Ein / Eo

FIG. 6. Relative output sideband power as a
function of field strength.

IO.

The ruby laser" "can be treated in the above model
if we assume that the lower (ground) level is pumped
directly into the upper level with a "pumping time" r„,
i.e., neglecting the fast transition from the pump bands.

21 T. H. Maiman, Nature 187, 493 (j.960)."R.J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G.
B. Garrett, and W. Kaiser, Phys. Rev. Letters 5, 303 (j.960).
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where T~ is the fluorescence decay time and T2 is the
thermally shortened cross-relaxation time. A popula-
tion inversion is obtained whenever v„g Ti. For steady-
state conditions we will have 7 „=Ti, since

1Vp X(1——2,/T—i)/(1+ r„/Ti),
where S is the density of chromium atoms.

The integral equation (28) becomes

(79)

cttp exp( —(t—tp)/Ti) pop(r, tp)/r„— dtp exp( (t —tp)/—r „)p..(r,tp)/T,

dti ctt2(exp( —ti/Ti)+ exp( —ti/r„))$(r, t—ti—t2) p (Pp E ) (Pp E„)/(cpcp')

X {ezp[(id+i(co—co')ti —[1/T2 —i(cop—cp')]t2)]+C.C.), (80)

where X(r,t)= p„(r„t)—pop(r, t) as before. The t, integrals make (80) rather cumbersome. In order to study the
same e6ects as previously, we will neglect the small effect of modulation on these excitation terms and replace them
by a steady-state inversion. We note that in the zero-Geld case these terms return the Xp of (19), and for Ti= ro
they return the saturated value, CO%0. Kith this in mind, we replace these terms by Eo. This neglect of modulation
in the excitation process was implicitly done in the previous cases as weH.

Ke are therefore left with the same integral equation as before. Since T~ is a few milliseconds for ruby, the conch-
tion &coT1«1 previously used in studying field interactions is now diflicult to realize in practice. For this case (and
for the previous cases) we would like to study the solutions for arbitrary Dco. In order to do this, we recall that for
two incident fields, X(r, t) contains all harmonics of hcp, i.e., is of the form

E(r, t) =Ep Q„C„cosph+S„sinph, (81)

where 4= (ki —k2) r—(cpi—cd2)t+4» —$2. If we substitute (81) into both sides of the integral equation and equate
coeB.cients of C„and S„on both sides, we obtain the set of linear equations

-E12+E22 E1E2
C0+ Cl

P2 g2

El +E2 C1+Sl+coT1 ElE2 2C0+C2++cpT1S2
+

Ep' 1+(AcpT1)2 Ep' 1+(hcpT1)2

Ei +E2 C'+j AcpT1S E1E2 (Cj 1+C'j+1)+j—kcpT1(S'—1+Sj+1)

E02 1+(jacpT1)' E02 1+(i~~T1)'

EP+E2' Si &c-dT1C1 E1E2—S2—&coT1(2Co+C2)
Sg=

Ep' 1+(DcpT1) ' Ep' 1+(DcpT1) '

Ei'+E2' S1—g~cpT1C~ E1E2 (S~-1+St+1)—a~cpT1(C~'-1+Ct+1)

E,' 1y(ja~T,)' Ep' 1+(jhcoT1)2
(82)

for j)2, where
Ep'= F22/(T1T2P02)

It ls evident that the set can also be truncated if A~Tj
(83) is large enough. For the case

and we assume (coo—cp1,2) T2«1, i.e., that we remain near
line center. This in6nite set of linear, algebraic equations
cam be solved for part of the coeKcients provided the
set of equations can be truncated, and this is possible if
the values of the coeKcients drop o8 rapidly enough for
higher orders. This wiH certainly happen if (Ei'+E2')/
Eo', the saturation parameter, is small compared to one.

(E12+E22)//acdT1E02«1 (84)

the set can be truncated after the erst order, giving

Co= [1+(E12+E22)/E027 ',
Ci ———2E1E2/(Ephcp Ti)2,

Si——2E1E2/(EpphcpT1[1+(E12+E22)/E02]), (85)
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FIG. 7. Fourier gain modulation coefficients as a function
of frequency spacing of inducing fields.

with higher order coefficients negligible compared with
Sg.

A set of nine equations, i.e., terminated at the fourth
order, was solved by computer for different values of the
saturation parameter and AcoTi, the resulting solutions
were good for suKciently small (EP+Eo')/Eo' and up to
(EP+Eoo)//(ha&T&Eoo) equal to about unity, for E&=E&

The dependence of the net polarization coeKcients
(CP+S, ')'~' on D&o is shown in Fig. 7 for EP/Eo'
=Eo /Eoo'=0. 25. Note that the slope of the falloff for
large h~T~ is equal to the sideband order. For a fixed

~~T~, the coeKcients increase with increasing E~ and

E&, until (EP+Eoo)/Eoo= AcuT&, after which they prob-
ably behave similarly to the large field limit for small

her, i.e., all becoming smaller but more nearly equal.
Unfortunately, for this range of parameters the set of
equations cannot be truncated at a reasonably low

order.
These results on the frequency dependence of the

polarization coeKcients should apply qualitatively to
the earlier situations studied, taking into account the
unequal decay rates y, and y~ of the two laser levels,
and the smaller relative linewidth y.

conclusion that the effect was extremely small and re-
quired pulsed operation to be observed at their experi-
mental Aco/2s. of 30 Mc/sec. Since for this case D~T~
=10' (where Tq is the spin-lattice relaxation time) and
P/P„~&104, the effect should indeed be small, and the
perturbation analysis" should be completely adequate.
However, the conclusion that the short spin-spin re-
laxation time T2 causes the small magnitude of the
intermodulation effect in the ruby maser does not seem
to be accurate, except to the extent that a small T2 gives
a large saturation power. For a given power, the amount
of gain modulation is determined by how well the popu-
lations can follow the beating fields, i.e., by Tj, while

T. determines the linewidth (and, with Tq, the satura-
tion. power). The maser results were determined pri-
marily by the large A~T~, a smaller Aor would have cor-
respondingly increased the effect, as was indicated else-

where in the discussion. "
A small T~ occurs for most solid state lasers (e.g., for

ruby T&=3X10 ' sec), so that again a large AcoT~ will

be the rule. Again it is possible to use large signals and
pulsed operation"'4 to obtain a situation where fairly
large amounts of intermodulation could be observed.
Thus in a giant-pulse laser one typically has A~T&=4
X10' and P/P„~ 10r, a ca——se where a perturbation
analysis would not be adequate.

Preliminary experimental results" with the helium-

neon gas laser at 3.39 p are in good agreement with the
above theory.
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APPENDIX: EVALUATION OF THE
FOURIER COEFFICIENTS

For the homogeneous coeKcients we have

VII. CONCLUSION AND DISCUSSION

Following Lamb's model, an analysis of strong-field
effects in laser media was made. In particular, the
"intermodulation" effect was considered, and inter-
preted as a time-dependent saturation leading to para-
metric gain modulation. The frequency dependence of
the interaction was studied for a typical solid-state
laser.

Schulz-DuBois" and Tabor, Chen and Schulz-
DuBois'4 previously studied the same effect for micro-

wave masers, using a perturbation approach, with the

(2—8. )/m
C =-

1+~'+ (R'+Eo')/Eo'

where

" cos mudN

1+Go coss

2EgEo/Eo'
Cp=

1+~'+ (R'+Eoo)/Eo'

The integral in (A1) is tabulated, "giving

(-1)"(2—& ) I:1-(1- ')'"3"

1+)2+(E 2+E 2)/E 2 g tn(1 g 2)1/2

(A1)

(A2)

23 E. O. Schulz-DuBois, Proc. IEEE 52, 644 (1964).
"W. J. Tabor, F. S. Chen, and E. O. Schulz-DuBois, Proc.

IEEE 52, 656 (1964).
"H. B.Dwight, Tables of Integral s and Other Mathematica/ Data

(MacMillan Publishers, New York, 1961), p. 2j.9, No. 858.536.
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For the inhomogeneous coeScients, we have

cosfÃNdN
/2

L1+(Q 2++ 2)/E 2jl/2
( 1)m(2m 1) t/g ~m

(A9)where 2m1nt.
28182/Eo'

Go =
1+(&1'+R')/&o'

(A5) The coeKcient of cos(m —2p)u in the expansion of
(cosl)" is "

C '. An alternative expression is obtained by expanding
(1+«' cosu) '/' by the binomial theorem, where the
coeKcient of (cos22)~ is

(1+«' cosu)1/2

With the substitution V= exp(iN), the integral in (A4)
becomes

except for p= m/2 an integer, when it is

(A10)

Vm —c/cd V

(
i/~y

Re—
«' 2, (V—V1)"'(V—V2) '" (A6)

where the C„are the binomial coefFicients. Combining
these coefFicients, we And an infinite series for the C ',

«" 2'(4P+2m —1)!!
(A12)

2-o 16 p!(m+ p)!(2 g )( 1) (S//2 ~)1/2 d (d2 P na—1/2dg

CN = )
, (AS)

(o2+ /2) 1/2 which converges absolutely for 11o'(1. In (A12) we de-
fine (4p+2m —1)!!= 1 for m= p= 0.

where d'= —V~, c'=V~—V~ are greater than zero.
Equation (AS) can be used to explicitly evaluate the "Reference 25, p. 82, No. 404.

—V1= (1+(1—«")'/2/«',
—V.= (1—(1—«")"'/«', (A7)

I
and the contour c is the upper half unit circle in the l-y l rg q l g qi /g gay/q

complex V plane. Evaluating (A6) by standard methods
gives

X


