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Low-Lying Superfiuid States in a Rotating Annulus*

ALEXANDER L. FETTER

Inststnte of Tlteoretscai Phystcs, DePartment of Pttysscs, Stanford Unsoerssty, Stamford, Calefornsa

(Received 24 March 1966; revised manuscript received 8 August 1966)

The low-lying states of rotating liquid He zr in an annulus (R«r (R2) are studied with the model of a
classical inviscid Quid. An exact hydrodynamic solution is obtained with the method of images for a system
consisting of rectilinear vortices with circulation a combined with circulation I'& about the inner cylinder.
The energy and angular momentum are calculated, both for an arbitrary configuration of vortices and for
the particular configuration of a symmetric ring of l vortices. If j. & is treated as a variational parameter, the
critical angular velocity fto for the appearance of vortices in a narrow annulus is (e/vd')ln (2d/va), where d is
the width of the annulus and u is the radius of the vortex core. For Q (Qo, the equilibrium state is an irrota-
tional (vortex-free) Qow with quantized circulation e~(N =1, 2 ~ ); these levels are equally spaced, and a
given quantum state represents the lowest free energy only in a narrow angular-velocity interval of ~/2~R',
where R is the mean radius of the annulus. The maximum quantum number of irrotational circulation is
2wR2QO/z =2 (R/d)'ln(2d/m. a)&&1. For Q&QO, the vortices lie on the circumference of a ring midway between
the walls, and the number of vortices increases rapidly with Q. If Fi. is constrained to vanish identically, the
critical angular velocity D, for the appearance of vortices in a narrow annulus is of order e/2vRd; this is
equivalent to Feynman s critical velocity s, =O(tt/md) for singly quantized vortices with e=h/m. In the
opposite limit of a wide annulus (R&«R2), the equilibrium state is shown to agree with Vinen s earlier
calculations.

I. INTRODUCTION

~ 'HE classical theory of vortices was rejuvenated

by the suggestion of quantized circulation in
liquid He II.' ' Since the superQuid Qow is necessarily
irrotational, ' the circulation around a contour C can be
nonzero only if C encloses either an internal boundary
or a singularity in the Qow pattern. In liquid He II,
such a singularity represents a vortex with circulation
tt =h/ttt, where h is Planck's constant and ttt is the mass
of a helium atom. ' The only allowed states in a simply
connected domain are various configurations of vor-
tices. In a multiply connected domain, additional states
are possible, consisting of circulation about the internal
boundaries combined with vortices in the bulk of the
Quid. The circulation I' about the nth boundary is also
quantized in units of Jt/nt;e in contrast to the vortices
in the fluid, the quantum number rt = I' nt/h can be
much larger than one. '

Rectilinear vortices in liquid He II are usually as-
sociated with rotation of the superQuid. At a Axed

angular velocity 0, the equilibrium con6guration of
vortices and circulation can be found only from a de-
tailed calculation for the particular container geometry

* Work supported in part by the U. S. Air Force through the
Air Force OKce of Scientific Research Contract AF 49(638)-1389.

' L. Onsager, Nuovo Cimento 6, Suppl. 2, 249 (1949).' R. P. Feynman, Progress zrI, Lom Temperature Physics, edited
by C. J.Gorter (North-Holland Publishing Company, Amsterdam,
1955), Vol. I, p. 17.

'Although multiply quantized physical vortices are possible
in principle, they require appreciably higher energy and have
never been observed.

4 Detailed experiments have been carried out for a wide annulus
consisting of a cylinder containing a fine wire a1ong its axis. Only
the quantum state r1,=1 was detected in the original experiment of
K. F. Vinen, Proc. Roy. Soc. (London) A260, 218 (1961);in more
recent studies, S. C. Whitmore and W. Zimmerman, Jr., Phys.
Rev. Letters 15, 389 (1965), have also observed the values m=2
and 3.' P. J. Bendt, Phys. Rev. 127, 1441 (1962), has reported ir-
rotational Qow in a narrow annulus with circulation much larger
than h/m.

in question. The simplest example is a cylinder of
radius R, where the critical angular velocity for the
appearance of vortices with circulation tt is (tc/2+8')
Xln(E/u), tt being the radius of the vortex core. s A
related problem of interest is the equilibrium state in an
annular region E1&r&E2. Experiments~ indicate that
rotating He II in a narrow annulus remains free of
vortices for much higher angular velocities than in a
simply connected cylinder; furthermore, the Quid Qow
at these angular velocities appears to be irrotational
with a large circulation I'&)tt=h/nt about the inner
cylinder. ' In order to show that these experimental
results are natural consequences of the Onsager-
Feynman vortex hypothesis, we here present a hydro-
dynamic calculation of the possible low-lying states of
liquid He II in an annulus. The results depend on the
presence or absence of circulation I'» about the inner
cylinder. If Ft can change with the external angular
velocity, then the critical angular velocity 00 for the
appearance of vortices in a narrow annulus (Es—Rt
&&Es+Rr) is given by Qo=(z/srd')In(2d/sra), where
d=R2 —E1 is the width of the annulus. At this angular
velocity, the equilibrium value of the circulation about

6 See, for example, G. B. Hess and W. M. Fairbank, in I.os
TemPerature Physics LT9, edited by J. G. Daunt, D. O. Edwards,
F. J. Milford, and M. Yaqub (Plenum Press, ¹w York, 1965),
Part A, p. 188.

'D. S. Tsakadze, Zh. Eksperim. i Teor. Fiz. 46, 505 (1964)
)English transl. : Soviet Phys. —JETP 19, 343 (1964)j, has re-
ported irrotational (vortex-free) Qow in an annulus R~=0.5 cm,
R2=0.8 cm up to angular velocities the order of 1 rad/sec. This
experiment is cited as evidence that the He II in the annulus
forms an inner irrotational region surrounded by a dense array of
vortices. Since the outer region was not observed directly, however,
it appears possible to interpret the above experiment as a measure-
ment of the critical angular velocity for creation of vortices in an
annulus. Preliminary findings of D. J. Tanner, 3. E. Springett,
and R. J. Donnelly, in Low TemPerature Physics LT9, edited by
J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub
(Plenum Press, New York, 1965), Part A, p. 346, seem to confirm
the absence of vortices in a narrow annulus at angular velocities
the order of 1 rad/sec.
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Fzo. 1. Distribu-
tion of images for an
infinite row of vor-
tices in a channel.

mation. The vortices in Fig. I are a distance 2P apart,
while the separation between the boundaries is n. The
complex plane illustrated in Fig. 1 will be called the zv

plane, so that the boundaries are specified by Rem=0
and Rem= —n. If xo is the distance from the row of
vortices to the right boundary, the doubly infinite set
of images is specified by the following set of points:

the inner cylinder is 2sRt'Qs ——2s(Rt/d)' ln(2d/m. a),
which is much larger than II:. On the other hand, if F~

is constrained to vanish, then the critical angular

velocity 0, for the appearance of vortices in a narrow

annulus is given by 0,=O(s/2xRtd), which is equivalent

to Feynman's critical velocity' s,=0(A/md) with

K =h/m. For a wide annulus (Rt«Rs), our expressions

reproduce Vinen's calculations4 for the same geometry.
In the limit Ej—& 0, we recover the standard results

for a simply connected cylinder of radius E&.~

The complex potential for a system of rectilinear

vortices in an annulus is derived in Sec. II with the

method of images. Section III contains the calculation of

various physical quantities: the Quid velocity v, the
'circulation I'(r) about a circle of radius r, the angular

momentum L, arid the energy E of the total system. The
low-lying states are then computed by minimizing the

free energy F=E— The circulation F& may be

treated .as continuous for a narrow annulus, and it is

necessary to consider both unrestricted variations with

respect to I't (Sec. IV) and restricted variations, where
F''t vanishes (Sec. V); for a wide annulus, Ft is discrete

arid each quantum state must be treated separately

(Sec. VI).

II. METHOD OF IMAGES APPLIED
TO AK ANNULUS

A system of rectilinear vortices in an incompressible

quid:confined to a 6nite region forms one:, of the standard

boundary-value problems of classical mathematical

physics. The essential difhculty lies in satisfying the

condition that the normal. component of Quid velocity

vanish at the boundary'; a convenient approach in:such

problems is the method of images. For a voitex inside

a cylinder, only a single image is required. In an

annulus, however, an infinite series of images in needed,

since there are two boundaries. It is simplest to solve

this problem in two stages: we first consider a line of

equally spaced vortices between parallel boundaries,

shown in Fig. 1. The solution for the annulus can then

be obtained with an elementary conformal transfor-

8 C. C. Lin $0n the Motion of Vortices in Taboo Dimensions

(University of Toronto Press, Toronto, Canada, 1943)j has
devised an elegant solution for this problem, based on. Green's

functions. Lin's formalism is most useful for general proofs and

has been used ta study the equilibrium con6guration of many
rectilinear vortices in an arbitrary container PA. L. Fetter, Phys.
Rev. 152, 183 (1966)j. For simplicity, the present paper starts
from first principles, but it can also be considered as a special ap-
plication of Lin's theory; the relevant Green's function for an

annular region is easily derived from our Eq. (12).

w =7rm+xrts, (2)

where r is a complex number with positive imaginary
part. Thus the function

6t[( /2n)(w+xp) i sP/n5

d' [( /2 )(w —xo) I@/ 3

has a simple zero at the position of each positive vortex
and a simple pole at the position of each negative vortex.
The complex potential fs(w) is proportional to the loga-
rithm of this function

6t[(vr/2n) (w+ xs)]
f,(w) =—ln

2a- el,[(s./2n)(w —xs)$

here and subsequently, the dependence on the. parame-
ter r will be omitted whenever r=iP/n.

The transformation to an annular region in the s
plane may be performed with the substitution

w = ln(s/R, ),
where a=re'&; the lines Rem=const correspond to the
circles in(r/Rs) =const. The constant n must be taken
as n=ln(Rs/Rt), while P is determined from the
periodicity in the angle q. If we consider a ring of l
vortices symmetrically spaced at a radius r& (Fig. 2),
thenP =rr/1, and xs=ln(Rs/r~). Substitution of Kq. (5)
into Eq. (4) yields

a,[p ln(s/rt)
~
r/t]

f,(s) =—ln
2n- tits ln(srr/Rss).

~
r/l j (6)

'The basic method used here is that of P. M. Morse and H.
Feshbach, Methods of Theoretica/ Physics (McGraw-Hill 'Book
Company, Inc. , New York, 1953), Part II, pp. 1238—1243. Their
complex potential di8e'rs from that derived here' and appears to
reduce to an incorrect limit as n ~~, p and xo remaining finite.

' L. Rosenhead, Phil. Trans. Roy. Soc. .(London) A228, 275
(1929), has' treated the similar problem of the Kj,rman vortex
street in a finite channel.

"All the relevant properties of the theta functions may be
found in K. T, Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, Cambridge, England, 1962), 4th
ed., Chap. XXI.

positive vortices at —xe+2nm+2iPts,

negative vortices at xs+2nm+2ipn. ,

where m and e take alj integral values
The complex potential in the m plane may be con-

structed with the theta function ttt(w~ r)."" This is an
integral function of m with a doubly periodic array of
simple zeros at the points
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where

p =-',s.[ln(Rs/Ri)f-',
r = is.[ln(Rs/Rt) j—'= 2i7.

(7)

f(&)= ft(s)+fs(s) (9)

A slightly different system is an array of identical
vortices at arbitrary positions specified by the set
fr, ) = (r, , to, ); a straightforward generalization of Eq.
(9) shows that the complex potential in this case is

ZK In(Rs/r;)
f(s) = In(s/Rs)+ —In(s/Rs)Q;

2' 2' In(Rs/Ri)

i. d, [p ln(s/r, e' ) ~.7+—P;In (10)
2' ttt[y ln(sr /Rsse'"&)

~

rj
where r is given in Eq. (7), and the sums run over all
vortices. It can be shown by direct manipulation of the
theta functions that Eq. (10) reduces to Eq. (9) when
the array is a symmetric ring of / vortices. "These two
equations represent exact solutions of the hydrodynamic
boundary-value problem of vortices in an annulus and
will now be used to compute the physical properties of
the system.

III. PROPERTIES OF VORTICES IN
AN ANNULUS

The following calculations will be based on the stream
function f(r, p) defined as

P(r, p) = Irnf(re'&) . (11)

For most physical quantities, the ring of / vortices is
merely a particular case of the system of many vortices
and need not be treated separately. The one exception
is the energy of a symmetric ring, which assumes an

M. Milne- Thomson, Theoretical IIydrodynamics (Mac-
millan and Company, London, 1960), 4th ed. , p. 362."It is necessary to use the infinite product representation of
the theta function, Ref. 11, -p. 469.

Equation (6) cannot be the complete complex po-
tential since, as shown in Sec. III, it implies a finite
circulation about the inner cylinder. It is obvious physi-
cally that such a circulation cannot be induced merely
by the presence of vortices in the annulus, so that a
further image vortex must be placed at the center of
the cylinder. In the simple case of a vortex outside of a
cylinder (Rs~oo), this effect is well known. " The
additional complex potential will be written as

i In(s/Rs) In(Rs/rt)—
f (s)= Fi+k . (8)

2s- ln(Rs/Ri)

Here, the first term in square brackets represents the
physical circulatio~ F& about the inner cylinder, and the
second term represents the image vortex at the center.
The total complex potential f(s) for a ring of I vortices
is the sum of the contributions from all the vortices
including images,

FIG. 2. Geometry of a
ring of l vortices in an
annulus, where l is taken
as 6 for definiteness.

especially elegant form;, this result is most simply de-
rived directly from Eq. (9).

The stream function for a system of vortices in an
annulus is obtained from Eqs. (10) and (11) as

r, ln(Rs/r;)
P(r, &p)

=—ln(r/Rs)+ —In(r/Rs) P,
2~ 2m ln(Rs!Rt)

d' [v»(rlr~)+it(~ —~ )lK

+—Q;Rein
2~

(12)
~1[7»(«r/Rs')+it(p A)]-

Given P, the fluid velocity at the point (r, &p) may be
calculated with the relations

e,= r'8$/8&p, e—„=BP/Br . (13)

We shall first verify that Eq, (10) represents the correct
solution of the boundary-value problem by showing
that the radial component of velocity vanishes at the
boundary. When r=R2, the stream function vanishes
identically for all p since 8& is an, odd function of its
function of its argument; it follows immediately that

o„(Rp,&p) = Rs 'BP(R—g)(p)/By= 0.

F(r) = d~ ~,(;v), (16)

"This tnay be proved by repeated nse of the relation e, (s+-', s.l=a &~), Ref. 11, p. 464.

When r=Ri, the 6rst two terms of Eq. (12) are con-
stant, while the last term vanishes. "Hence f(Rt, y) is
independent of io and e,(Rt, y) =0.

The tangential component of the velocity in the
bulk of the Quid is important in calculating the circu-
lation and the angular momentum. Differentiation of
Eq. (I2) yields

Fi x I (nR sr/, )
e,(r ~)= +

27rr 2' r ln(Rs/Ri)

&i'Lv In(r/r, )+sp(p p;)j-+ Q, Re
2trr tits In(r/r )+iy(p p;)]-

~i'[v»(rr /Rs')+iv(~ —pJ)j
(15)

at[7 In(rr/Rs')+iy(p v;)j-
where the prime on 0q denotes differentiation with
respect to its 'argument. The circulation' F(r) about a
circle of radius r is delned as
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contribution to the energy from the core of each vortex.
With the models of uniform vorticity, the integral is
easily computed as'

d2r gp2=~2(22r) '». (27)

A combination of Eqs. (21), (22), (26), and (27)
leads to the final form for the energy of the system

p 1n(R2/Rr) ln(R2/r;) 2 p»2
E= rry» P; +—7;2'

4x ln(R2/Rr) 42r

82Ly 1n(r, r2/R2')+iy(222 —22;)j p»'
XRe ln +—Z;

~2Lv»(r2/rr)+2m(~2 ~r)l
a2L2y ln(R2/r;)g r;

X ln —+-', (28)
82'(0) ya

where the primed sum means that we omit the terms
j=k. In the limiting case of a wide annulus (Rz ~ 0),
the Quid becomes simply connected, and the circulation
I'2 must vanish. Equation (28) then reduces to"
Z= (42r) 'p»' p;~ ln(a 'LR22 —2r,r2 cos(y;—222)

+(r rk/R2) 2)1/2} (42r) lp»2 Q—,
2

X1 (n~r ~ r&~ —/a)+( 4m') ~p»2+ & (29)

which is the correct expression for the energy of a
system of vortices in a cylinder of radius 82."Equation
(29) has a simple interpretation as the interaction
energy between pairs of real vortices in the cylinder
plus the interaction energy between each real vortex
and all of the images including its own.

A special conhguration of particular interest is l
vortices symmetrically placed in a ring of radius r&.

The stream function is the imaginary part of Eq. (9),
and the calculation of the energy E& is essentially the
same as for a general array of vortices. The final ex-
pression is

p ln(R2/r2)
- '

E(=—ln(R2/Rr) I'2+1»
4m ln(R2/R2)

p»2l PqL2y ln(R2/r2)
~
r/l j r2 p» l

+ ln —+, (30)
42r 82'(0

i r/l) ya 162r

pK2/ E2l yl2lg2 l-

4x tgy
"The details of this standard calulation may be found in E. S.

Raja Gopal, Ann. Phys. (N. Y.) 25, 196 (1963).
"Since r-+0 when RI —+0, it is necessary to use Jacobi's

imaginary transformation for the theta functions, Ref. 11, p.
474."See, for example, A. L. Fetter, Phys. Rev. 138, A429 (1965).

(3&)

where the parameter r/l appearing in the theta function
has been made explicit. Equation (30) becomes simple
in two important limiting cases. When Rr/R2-+ 0, the
circulation I'q must vanish, . and Eq. (30) reduces to

which is the correct expression for the energy of a sym-
metric ring of / vortices in a cylinder of radius E2."In
the opposite limit when t(R2—R&)(((R2+R&), Eq. (30)
becomes

p (g2—gg g2 —y)
I'2+1»

42r k R2 R2—Rr

p»'l 2(R2—Rr) 2r(R2 —r~)
+ — ln sin + ~2 . (32)

4m xu R2 Rf

The erst term, which represents the residual eGect of
the multiply-connected annulus, may become important
if I'~ or / is large, while the second term is l times the
energy of a single vortex in a channel of width E2—R~."
Equations (30) and (31) may also be obtained directly
from Eqs. (28) and (29) by a sequence of algebraic
manipulations. "

IV. NARROW ANNULUS: UNRESTMCTED
FREE-ENERGY VARIATION

The equilibrium state of an arbitrary system rotating
with angular velocity Q is obtained by minimizing the
free energy F=E—QL. In the special case of an inviscid
Quid containing vortices, it can be shown that each
vortex in an equilibrium configuration must remain
stationary in the rotating coordinate system. & An equi-
valent form of this condition is obtained by transform-
ing to the laboratory coordinate system, where the
only possible equilibrium configurations are those in
which the vortex array rotates rigidly with an angular
velocity Q. Such behavior occurs only for symmetric
vortex arrangements, and the present work will be
restricted to a ring of / vortices equally spaced on the
circumference of a ring of radius r&. The free energy Ii

&

for this system is easily derived from Eqs. (20) and (30),
and it is convenient to introduce a dimensionless free
energy f&= 42rF&/p»2= (42r/p»') (E&—Ql &), which is given
explicitly as

I'2 1n(R2/rg)
r2 ——1n(R2/R2) —+l

» ln(R, /R, )
erL2y ln(R2/r&)

~
r/l j r2

+I ln
82'(0

~
r/l) ya

2&Q r, 2xQ
——(R22- R22) ——l(R22—r22) (33)

K K K

In Eq. (33), the small corrections associated with the
core structure have been neglected; equivalently, these
terms can be absorbed in a redefinition of the core
radius a.

"See, for example, A. L. Fetter and R. J. Donnelly, Phys.
Fluids 9, 619 (1966)."See, for example, Ref. 16, Eq. (3.7) for the energy of a vortex
pair symmetrically placed in a channel. The energy of a single
vortex in a channel of width a is just $ that of the pair in a channel
of width 20t., since the total system of images is the same.
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We shall assume temporarily that the quantum
number of circulation I'2/~ about the inner cylinder is
large; .this assumption will be verified below. in the
case of a narrow annulus, but it is not permissible for
a wide annulus (Sec. VI). Thus I'i/1~ in a narrow annulus

may be treated as a continuous variable, and 5& must
be minimized with respect to the two independent
parameters ri and I'2/~. In contrast, the number of
vortices need not be lar'ge, so that the equilibrium value
of f& must be calculated separately for each /. The
actual number of vortices present for a axed angular
velocity 0 is given by the integer l corresponding to the
lowest free energy.

The minimum value of F& is determined by the follow-

ing equations:
(34)a@i/a(r, /x) =0,

aSi/ari= 0, (35)

which must be solved simultaneously for the equilibrium
values of r& and F&, These conditions may be evaluated
explicitly with Eq. (33),

1
2

2zQr)2 Fy

ln(R2/ri) prf/(R2' —Ri')
7

ln(R2/Ri) ~ ln(R2/Ri)

ln(R2/r i)
7,

ln(R2/Ri)

(36)

il'2'[2y ln(R2/ri)
I r//]

v — — —(37)
62[2y ln(R2/r2)

I r//5

Substitution of Eq. (36) into Eq. (37) provides a some-

what simpler equation

22rQ«2 prQ(R22 —Ri')
1+

ip ip ln(R2/RI)
&92'[2y ln(R2/r i) I r//]

v —,(38)
82[2y ln(R2/ri) I r//5

which is independent of I'i. The solution to Eq. (38)
yields the equilibrium radius r& for a 6xed 0 and l;
the corresponding equilibrium circulation I"2 is then
obtained directly from Eq. (36). It can be verified with

Eq. (37) that each vortex in the ring rotates about the
center of the annulus with angular velocity Q.

The equilibrium value of the free energy is given by a
combination of Eqs. (33) and (36).:

82[2y ln(R2/ri) I r//] ri

82'(0
I r//) yu

22r&/ (R2'—Ri')ln(R2/ri)
R2'—r)'—

K ln(R, /R, )

[8:&—Fp]~= / ln

, (41)

which vanishes if /=0. The square bracket in Eq. (41)
is positive" for R~(r~(R2, and the free energy as-
sociated with the formation of vortices necessarily
becomes negative for su%.ciently large angular veloci-
ties. The critical angular velocity for the formation of
vortices is the smallest value of 0 for which [fi 5'p] p

vanishes.
Equations (36), (38), and (39) provide an exact

description of the equilibrium configuration of l vortices
symmetrically placed in an annulus. If the ratio R2/Ri
is unrestricted, the equilibrium state can be determined

orally with numerical computation. Explicit results may
be obtained in limiting cases, .however, and we shall
now examine one of them: a narrow annulus. More
precisely, the quantity

gP=exp( i2 2rr/)/=exp[ —22r'//ln(R2/Ri)] (42)

is assumed to be small. This condition is sat.is6ed if

22r) / ln(R2/Ri), (43)

since q&' is then bounded by e =0.043. In the limit of
a narrow annulus, the width d=R2 —R~ becomes much
smaller than the mean radius R=2(R2+Ri) and Eq.
(43) reduces to

2xR& 7d. (44)

Equation (44) requires that the distance between
vortices (22rR//) be larger than the width of the annulus.

The analysis of the equilibrium con6guration for
small q~' is straightforward. We assume that the radius
of the ring r& may be written as

where ri is the solution of Eq. (38). The first term in
Eq. : (39) is the free energy [5'p],p associated with pure
equilibrium circulation

pr 0(R22—R,')
[I'2]"= (40)

ln(R2/Ri)

about the inner cylinder in the absence of vortices
(/=0), while the second and third terms represent
additional contributions from the vortices. It is useful
to isolate the free energy of the vortices by considering
the quantity

[&2]..=—2@2(R~2 R 2)2

i~' lri(R2/Ri)

~1[27»(R2/«) I r//] «
+/ ln

62'(0
I r//) ya

22rQ/ (R2p
2—R22)ln(R2/ri)

R2
ln(R2/Ri)

(39)

«= rp[I+0(8')], (4S)

where ro is independent of /. The theta function has an
expansion" in ascending powers of q&' and substitution

'~ It is easy to prove that the function f(x) = (1—x)Pln(1/x) g
'

has a positive 6rst derivative in the range 0&x(1 Lsee, for
example, F. Reif, FNndamentals of Statistical and Therma/ Physics
(McGraw-Hill Book Company, Inc., New York, 1965), p. 618j;
hence f(x) is an increasing function and f(r/'/E22) —f(EI'/E2') )0.

"Reference. li p 464



SU PERP LUI D STATES IN ROTATING ANNULUS 29i

(n+ ,')» ln(Ro/R-i)
Q(n+-,') =

ir(Ro' —Ri')
(51)

of Eq. (45) into Eq. (38) yields a zero —order equation
for rp

2m-ro'Q irQ(Roo —Rip)
—',+ = +y cot[2y 1n(Ro/ro)] . . (46)

» ln(Ro/Ri)

Equation (46) is independent of I; which justifies the
form assumed in Eq. (45). A similar expansion of Eq.
(41) leads to

[Fi—5'p]eo= 1 ln{ (rp/pa)sin[27 ln(Ro/rp)]} —2irQl»

)({Ro—rp —(Ro Ri )in(Ro/rp)[ln(Rp/Ri)] i}' (47)

This equation represents the zero-order approximation
to the free energy associated with the creation of a ring
of / vortices in the annulus. Apart from the linear de-
pendence on the number of vortices, Eq. (47) is inde-
pendent of /. Thus the mathematical assumption of
small q~' is equivalent to the physical assumption of
negligible interaction between diferent vortices in the
ring. If the condition (44) is satisfied, the energy of
each vortex arises solely from its interaction with the
infinite sequence of self-images in the two walls. The
zero-order approximation to the critical angular velocity
Qp for the appearance of vortices is easily found from
Eq. (47) to be

ln{ (rp/ya) sin[2y In(Ro/rp)]}
Op=

2m» '{R,'—rp' —(R, '—Ri')ln(Ro/ro)[ln(Ro/Ri)] —'}
(48)

Equation (48) is independent of /; hence the number of
vortices in the ring is irideterminate in this zero-order
approximation, which arises from neglecting the inter-
action energy between vortices. Inclusion of the small
correction terms of order q&' removes this unphysical
feature, as is shown below.

If Q(Qp, the equilibrium state of the Quid is pure
irrotational Qow with circulation I'~ about the inner
cylinder. I'& would be continuous in the absence of a
quantization condition, and the equilibrium circulation
at an angular velocity 0 would then be given by Eq.
(40). In fact, Fi is restricted to integral multiples of
»=h/ni, and we must examine the free energy Sp(n)
describing irrotational (vortex-free) flow with n units
of quantized circulation

Pp(n) =n' ln(Rp/Ri) —2x.Qn» '(Ro' —Rio) . (49)

The transition from a state with circulation m to one
with circulation (n+1)» occurs at an angular velocity
Q(n+-,'), obtained as the solution of

eo(n+1) = ro(n).

An elementary calculation shows tha, t

(Fi/») .„=2n.QpR'/»
=2(R/d)' 1n(2d/wa) . (56)

With the same numerical values as above, the lowest
circulation state (n=1) in liquid He II appears a't
Q(-,') =8X10 ' rad sec ', while the maximum quantum
number of irrotational circulation is (Fi/») =3.1
&10'. This large circulation agrees qualitatively with
that reported in Ref. 5.

The above results for the low-lying states in a narrow
annulus can also be obtained with the following ele-

"Quantized Aux in a thin superconducting ring exhibits similar
behavior, which has been examined by N. Byers and C. N. Yang, :

Phys. Rev. Letters 7, 46 (1961).

An irrotational state with circulation m is energetically
favorable only in the range Q(n ——,')(Q&Q(n+-', ) A. s
0 increases continuously from 0 to Qp, the equilibrium
state passes through a discrete sequence, in which the
circulation changes successively by one unit. 23 In the
limit of large quantum numbers, the additive term ~

becomes negligible, and Eq. (51) reduces to Eq. (40).
The maximum quantum number obtainable in purely
irrotational Qow is

(I'i/») = irQp»-'(Ro' —Ri') [ln(Ro/Ri)] ', (52)

which is much larger than one in most cases of interest.
The above expressions may be simplified in the limit

of a narrow annulus (d«R). If {(=Ro—rp) is the dis-
tance from the ring to the outer wall, then the explicit
solution of Eq. (46) is

,'d[1+-0(d/R)] (53)

Hence the equilibrium position for the ring of vortices
is midway between the walls. The critical angular
velocity for the appearance of vortices in a narrow
annulus is

Qp ——(»/hard')ln(2d/ira), (54)

apart from corrections which vanish as d/R ~ 0.
Typical values for liquid He II (»=h/no=10 ' cm'
sec ', R=1 cm, d=0 1cm,. a=10 cm) lead to Qo=-',

rad sec ', which agrees in order of magnitude with the
values reported in Ref. 7. This high value of Qp can
be understood by considering the critical angular
velocity (»/27rR')ln(R/a) for vortex creation in a
cylinder of radius R; Eq. (54) is essentially the critical
angular velocity for a cylinder of radius d/&2, which is
the approximate width of a vortex in the annulus. If
0(Qp, the equilibrium state is an irrotational Qow, and
the transition from a circulation n» to (n+1)» occurs at

Q(n+-', )= (n+ ', )»/2irR-' (55)

In the limit of large quantum numbers, the equilibrium
circulation about the inner cylinder is 2m.E.'0, which is
also the value that would occur if the inner cylinder
were filled with a uniform density of vortices 2Q/».
The maximum circulation associated with the ir-
rotational Qow occurs at 0= Qp and is given by
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mentary arguments: The lowest state at a given
angular velocity is that most closely approximating
solid-body rotation. 2 6 This condition Ineans that the
Quid is essentially stationary in the rotating frame of
reference, vrith deviations arising only from the quanti-
zation of circulation. Equivalently, the equihbrium con-
6guration minimizes the relative velocity between the
Quid and the walls. Thus I'j changes by one unit
vrhenever

i (r,/2~a) —

Qadi

& -', (»/2~x), (57)

which immediately reproduces Eq. {55). Purely irro-
tational flow, in which v(r) = r~/2v. r, cannot persist at
arbltl Rrlly 1Rrgc RnguIRr vclocltlcs since the Quid

moves faster at the inner wall than at the outer vrall.

Such a Qow pattern becomes unstable when a singly
quantized vortex in the middle of the annulus can just
compensate for the velocity difference:

r,/2 (z+-,'d)+(./ d) = r,/2 (z——,'d) —(»/~d). (58)

The erst vortex appears in the Quid at Q~, which pro-
vides a more. exact expression for the critical angular

velocity. Each time 0 passes through one of the values

Q~, the number of vortices in the ring increases by one.
For small /, the change in angular velocity associated
with the addition of one vortex is extremely small.

Equation (59) is valid only for 2v.E~& ld, so that our

analysis breaks down when the distance between
vortices becomes equal to d. Presumably a second ring

then starts to appear. The total increase in the angular

velocity DQ corresponding to the change from a state

Equation (58) suggests that the maximum quantum
number of irrotational {vortex-free) circulation is of
order (R/d)', which agrees with Eq. (56), apart from
the logarithmic factor. Furthermore, the critical angular
for the appearance of vortices is of order»/d', as in

Eq. (54). The equlllbllum condltlon that the vortices
remain stationary in the rotating frame of reference6

is here satisfied by placing the vortices at the midpoint
of the channel, equidistant from the set of images in
either vrall. In the laboratory coordinate system, each
vortex moves in the large circulating velocity field as-
sociated with r~, the equilibrium condition (40) ensures

that the vortices rotate with angular velocity Q.

The precise equilibrium configuration for Q& Qo can
be determined only by including the interaction energy
between vortices. For this purpose, it is necessary to
expand Eqs. (38) and (41) through fIrst order in qP.
The calculation is not dificult in the limit of a narrovr

annulus (d((R), and we find a discrete sequence of

states in which the number of vortices in the ring
increases monotonica11y from unity. The transition
from R ring of l—1 vortices to a ring of / vortices occurs
at an angular velocity

Qg ——00+4»q(/v. d'

= (»/v d') Pln(2d/v u)+4exp( —2v%//d) $. (59)

with no vortices to one with 2vE/d vortices is given by

An= (4»/hard')s ' (60)

this value represents only a small fractional change in 0:
an/Q, =4c--Lln(2d/~o)$-&, (61)

which is the order of 1% for the numerical values used
below Eq. (54). In this narrow range of angular velocity,
the equilibrium circulation about the inner cylinder
and the total angular momentum remain approxi-
mately constant at Lrg~=2vnaR' and Ll j~=prod
=2v pnoR'd; this last value is just that associated with
classical solid-body rotation. Hence a direct measure-
ment of the angular momentum6 cannot detect the
appearance of vortices in a narrow annulus, and other
experimental methods, such as attentuation of second
sound'4 or ion trapping, "must be used to measure Qo.

V. NARROW ANNULUS: RESTRICTED
FREE-ENERGY VAjRIATION

~'H. E. Hall and W. F. Vinen, Proc. Roy. Soc. {London)
A238, 204 (1956).

"G. Careri, W. D. McCormick, and F. Scaramuzzi, Phys.
Letters 1, 61 (1962); R. L. Douglass, Phys. Rev. Letters D, 791
(1964); B. E. Springett, D. J. Tanner, and R. J. Donnelly, ibid.
14, 585 (1965).

'6 J. B. Mehl and W. Zimmerman, Jr., Bull. Am. Phys. Soc.
11, 479 (1966); and private communication.

» Vf, F. Vinen, Progress irl, I.om Temperature I'hys~cs, edited
by C. J. Gorter (North-Holland Publishing Company, Amster-
dam, 1961), Vol. III, p. 1; J. C. Fineman and C. E. Chase, Phys.
Rev. 129, 1 (1963); A. L. Fetter, Phys. Rev. Letters 10, 507
(1963).

"The experimental relevance of these calculations is discussed
in greater detail by R. J. Donnelly and A. L. Fetter, Phys. Rev.
Letters 17, 747 (1966).

It has been assumed in Sec. IV that' the Quid always
attains the state of lowest free energy. In certain cir-
cumstances, however, this assumption fails to provide
a realistic description of liquid He II, and vre shall novr
consider the effect of a restricted variation of the free
energy, in vrhich the circulation I'~ is constrained to
vanish. Such a situation occurs vrhen annulus containirig
superQuid He II is accelerated from rest at a tempera-
ture T4&Tq. In this case, experiments'~ indicate that the
Quid remains stationary until the relative velocity
betvreen the Quid and the waHs exceeds the critical
velocity e,. The same restriction of vanishing circu-
lation also describes superQuid Qow in a straight pipe,
where states of quantized circulation are meaningless.
Various calculations involving creation of vortex pairs
or vortex rings' "have suggested that v, =O(A/md) for
Qow In R channel of width d. A slITlllar result ls ob-
tained in this section with the restricted variation of
the free energy in a large annulus. "

The free energy for a ring of / vortices in the absence
of circulation is easily obtained from Eq. (33) by setting
r&=0. In addition, if Eqs. (43) and (45) are satisimd,
then the theta functions may be simplified and F~ is
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given explicitly as

&~——l[ln(Rp/rp) j'[ln(Rp/R~)] '

+I ln{ (rp/pa) sin[2& ln(Rp/rp) ))
—2s Q« 'l(RpP —rp'), (62)

which is to be compared with Eq. (47). In the limit of
a narrow annulus, Eq. (62) becomes

S~——1 In[(2d/era)sin(pf/d)) —4n. lQRl/», (63)

where terms that vanish as E~~ have been neglected.
The lowest value of F& is obtained by placing the vor-
tices near the inner wall, so that

Fro. 3. Geometry of
a vortex pair in an
annulus.

substitution of Eq. (71) into Eq. (70) leads to
d—Ca,

cot(n-p/d) = (p/prR),
where C is a constant of order unity. A combination
of Eqs. (63) and (64) yields with the solution

(72)

P(——l ln(2C) —4s lQRd/«. (65) p =-,'d[I+0(d/R)]. (73)

=n —1

rp= R+-,' p.
(67)

Neglecting terms that vanish as E. becomes infinite,
we find

6= (d/R) (I'~/«)'+2(p/R)(I'&/»)+2 ln

sin(harp/d)

+2 In(d/sa) 4s.QI'~« 'R—d 4~Q« 'Rp —(68).
The equilibrium state predicted by Eq. (68) depends

on the assumed value of the circulation I'1. If F~ is
al.lowed to vary freely, then the equilibrium conditions
are

The stationary fluid represents the zero of free energy,
and a ring of vortices is energetically favorable only at
a critical angular velocity

Q, = («/4s Rd) ln(2C), (66)

when F~ becomes negative. As in Sec. IV, this zero-
order calculation cannot determine the number of
vortices.

A slightly different configuration of interest is a
vortex pair, consisting of two oppositely directed
vortices (Fig. 3). If the vortices (with circulation
Kg= K Kp= «) are placed at r& and r.. (r&(r&), the exact
free energy may be obtained with a straightforward
generalization of Eqs. (20) and (28). For a narrow
annulus, the reduction of the free energy is very similar
to the analysis of Sec. IV, and only the final formulas
will be given here. In the limit d«E, the pair must be
symmetrically placed in the channel, with coordinates

Thus each vortex is equidistant from the wall and the
center of the channel, which is physically obvious be-
cause the vortices must be stationary in the rotating
coordinate system. ~ The free energy associated with
vortex-free equilibrium circulation is

[5:rj = 4s &QPRPd«— (74)

5=2 ln(C') —4sQ» %d. (78)

while the free energy for equilibrium circulation com-
bined with a vortex pair is

[Sr g = —4s'Q'R'd» '+2 1n(d/~a) . (75)

Comparison of Eq. (75) with Eq. (74) shows that a
vortex pair never represents the equilibrium state in
the limit R —+~. This conclusion is confirmed by a
detailed calculation, which shows that the critical
angular velocity for the creation of a vortex pair is
of order «R/d' if the circulation I"q is treated as a
variational parameter.

The other possibility considered here is that of
vanishing circulation (I'i=0); the corresponding free
energy for a vortex pair is obtained from Eq. (68):

P= 2 ln sin(s p/d)+2 in(d/pra) —4~Q» 'R p. (76)

Except for the unphysical limit of p=0, Eq. (76) is a
decreasing function of e and attains its lowest value
when the vortices are near the outer walls,

C8~ (77)

where C' is a constant of order unity. A combination
of Eqs. (76) and (77) yields

BF/B(1',/ )=«(2di', /R«)+(2p/R) —(4mQRd/«) =0,
BF/Bp=27rd ' cot(~p/d)

+(21' /«R) —(4 QR/«) =0.
Equation (69) yields the equilibrium circulation

(69) The vortex pair becomes energetically favorable when
its free energy [Eq. (78)] is lower than that of the

(70) stationary Quid (F=0). This condition leads to the
critical angular velocity 0,

„

for creation of a vortex
pair under the restriction of vanishing circulation

[I'~]~= 2m.QR' —«p/d; (71) Q,„=(«/2sRd) ln(C'). (79)
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Equation (79) is approximately twice that found in
Eq. (66) for creation of a ring of identical vortices.

The critical linear velocities associated with Eqs.
(66) and (79) are

r,= (A/2md) ln(2C),

s,„=(0/md) ln(C'), (80)

where the quantum of circulation (x=h/m) has been
made explicit. These values are only approximate be-
cause of the unknown logarithmic constants. Never-
theless, they agree in order of magnitude with the
Feynman calculation of e„'and with estimates based
on the Landau criterion" applied to vortex creation. '7

In a strict sense, Eq. (80) only describes a6nite annulus,
'but it is possible -to consider a sequence of systems in
which R becomes large while d remains finite. Since
the expression for e, is independent of E, the calculation
applies equally well to superQuid Qow in a long straight

,channel of width d.
. , The present formulation has one important new
feature: the total volume of Quid is 6nite, so that the
energy and angular momentum are well de6ned. Thus
we avoid the ambiguity associated with the de6nition
of linear momentum in an in6nite system. Previous
calculations" have assumed that the correct procedure
is to calculate e, using the impulse, which remains
finite even for an infinite system. It is easy to see that
the approach used here partially justi6es this assump-
tion. Equation (20) shows that the angular momentum
of, a vortex pair in an annulus is given exactly as
os(roo —rjo). In the limit R —+oo, this value reduces to
Epee, which ls E. tirncs thc impUlse I of a vortex pair
a distance e apart. ' Hence the free energy for a vortex
pair in a large annulus (with I'~——0) is approximately
E—nI', where e= jt!Q is the linear velocity of the walls.
The critical velocity is obtained by comparison with
the stationary fluid (F=0), which immediately repro-
duces the Landau criterion v, =(E/E)mi~ for creation
of a vor'tcx .pair.

Equation (80) provides an interesting comparison
with the linear velocity eo 'corresponding to vortex
creation with the unrestricted variation of the free
eriergy. If the circulation about the inner cylinder is
allowed to change with the external angular velocity,
then vortices cannot appear until thc free energy of the
vortices plus circulation is lower than that of solid-body
rotation. This criterion leads to the critical velocity

eo——Rno= (M/md')ln(2d/s a),

subject to the constraint of fixed angular momentum;
the parameter Q is a Lagrange multiplier which is
eventually identi6ed with the angular velocity of the
container. The superQuid automatically adjusts the
circulation about thc inner cylinder to achieve the
most favorable value.

It must be emphasized that irrotational vortex-free
circulation always has a lower free energy than any
con6guration of vortices as long as Q&QO. Hence re-
stricted variation of thc free energy can never lead to
absolute equilibrium. The absence of circulation (I'q= 0)
also means that the vortices no longer move with the
cxterna1 angular velocity Q; such vortices in liquid He II
would therefore be subject to viscous normal-Quid
forces. This lack of self-consistency also a6ects the
Landau criterion, which merely answers the kinematical
question: How fast must the superQuid Qow between
stationary walls before it becomes energetica1ly favor-
able to create a quasiparticle?

VL WIDE ANNULUS

The limiting case of a wide annulus (R~((Ro) presents
a problem of experimental interest, since the 6rst evi-
dence for quantized circulation4 in liquid He II was
obtained with a rotating cylinder (Ro=0.2 cm) con-
taining a one wire (R~=10 ' cm) along its axis. A
6nite circulation F~ about the wire removes the de-

generacy of its transverse vibrational modes, allowing
a direct measurement of I ~. Only the first quantum
state (v=1) was observed in the original experiment,
but higher states (m=2, 3) have been found in more
recent work. ' It is clearly not permissible to treat I'g as
a continuous variable, and the free energy must be
calculated separately for each integral value of I'~/x.

, We therefore consider the problem of Quid in a wide
annulus containing l vortices placed in a ring of radius

r~ and a circulation e~ about the inner cylinder. The
dimensionless free energy F„~for this system may be
obtained directly from Eq. (33). Unfortunately, this
form is inconvenient in the limit E~((R2, and it is
necessary to use the transformation properties of the
theta functions'~ to rewrite the free energy as

r„(——I' 1n(Ro/Rg)+2nl in(Ro/r()

28ggil ln(Ro/rg)
~

r'Ij rg

+l ln
il8g'(0

~

r'I) a

G(I[1 (RP/R—oo)]+I(—1 (rg'/Ro') j), —(82)

which is larger than Eq. (80) by a factor R/d. The
critical velocity vo should be relevant to experiments in
which the superfluid is created in a state of rotation.
In this case, the unrestricted variation of the free

energy E—. QI. is equivalent to minimizing the. energy

r'= —r-'= Ar
—' ln(Ro/Rg),

G=2+QE2'x '

(83)

2' L. Landau, J; Phys. (USSR} 5, 71 (1941}.
80H. Lamb, IIydrodynumics (Dover Publications, Inc. , New

York, 1945},6th ed., p. 229..
is a dimensionless angular velocity. Equation (82) must
bc minimized with respect to r~ for each value of l and
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Rg((r )(&E2 (86)

is satisfied. The form of 8 ~ can be greatly simplified
in this limit, "and we Gnd

r„t=—',I' ln(1/y)+ ', t(2e-+ f 1)l—n(1/g)+ l 1 (nR /as&)

+ 1 in[1—g' —(y/g)'j —G[rs(1 —y)+f(1—g)j. (8'i)

Here, the abbreviations

y=(Rt/Rs)s, g=(r(/Rs)s (88)

have been introduced, and corrections of order y' have
been neglected. The equilibrium condition for 6xed l and
e is

BP„t/Bg=0, (89)

which leads to an equation for x:

2Gg+ 1=2ts+ f+2 f(gs& y&) (gt —gst yt—) t —(90)

In the limit m=0, y~ 0, it can be veri6ed that Eqs.
(87) and (90) reduce to the known equations for the
low-energy states of a simply connected cylinder. "

Equations (8'/) and (90) are particularly suitable for
numerical evaluation, and it is straightforward to
compute the equilibrium free energy 5 ~ as a function
of the angular velocity G. The detailed results are es-
sentially identical with Vinen's calculations (Fig. 8 of
Ref. 4): The Quid remains stationary for small angular
velocities. At a critical value G = —,

' in(1/y) [0=x(2~Rs') '
Xin(Rs/Rt)], irrotational flow with a single quantum of
circulation about the inner cylinder becomes the equi-
librium state. Two quanta of circulation appear at the
higher value G = as in(1/y) [0=3'�(2s Rss) '1n(Rs/Rr)).
Further increase in 0 leads to vortex formation in the
bulk of the Quid, and the precise sequence of states
depends on the core radius a; Vinen' has studied this
this question in detail.

VII. BISCUSSION

The present paper has analyzed the low-lying states
of an inviscid Quid in a rotating annulus. Equilibrium
arrays of vortices necessarily have a high degree of

"It is convenient to nse the transformation 8&(s+ssr(r}
=iM '84(s~r} where %=exp(-,'isr}exp(is} [Ref. 11, p. 464]."G.B. Bess (private communication).

e; comparison of P„~for diGerent l and e then yields
the physical state of lowest free energy.

The analysis of the equilibrium con6guration is
similar to that of Sec. IV, and most of the details will
be omitted. The theta function in Eq. (82) has a rapidly
converging expansion" in ascending powers of the
parameter

qt'= exp(is-r'l) = (Rr/Rs) ', (8S)

which is very small for the experiments of interest
(Rr/Rs=5X10 '). Detailed examination of the free
energy shows that the minimum occurs when the ring
is far from either wall, so that the inequality

symmetry, and only a single ring of equally spaced
vortices is considered here. In the limit of a narrow
annulus, the lowest levels represent irrotational Qow
with quantized circulation about the inner cylinder.
These states form an equally spaced sequence, and each
level is stable in a small interval of angular velocity with
a width x/2rrR'. Vortices appear in the fiuid only at a
much larger angular velocity 0s——(x/7rd')ln(2d/rra), at
which point the quantum number of circulation is
given by 2(R/d) sin(2d/rra)»1. The vortices are formed
midway between the walls, and the number of vortices
grows rapidly as 0 increases beyond Qo. In certain
situations, however, the circulation about the inner
cylinder is not free to change and remains equal to
zero; the corresponding critical angular velocity for
vortex creation is the order of x/2n. Rd. This calculation
leads to a critical linear velocity v, for the destruction
of superfluidity of order A/md, in agreement with
previous estimates. ' '

The equilibrium states are quite different in a wide
annulus. Vortices appear at much lower angular veloci-
ties, and the maximum quantum number for irrotational
Qow is a small integer. These relations cannot be ex-
pressed by simple formulas like those for a narrow an-
nulus, but the numerical values are easily computed
in any specific situation. The theoretical predictions
agree qualitatively with the rather meager experi-
mental data, both for a narrow annulus' '-and for a
wide annulus. 4

SuperQuid Qow in an annulus reveals several striking
analogies to superconductivity. The irrotational Quid
motion in a narrow annulus is quantized in precisely
the same way as the persistent current in a supercon-
ducting ring. "At an angular velocity 00, it becomes
favorable for vortices to form in the bulk of the Quid,
and the number of vortices increases rapidly with Q.
An identical effect occurs in a type-II superconductor"
at a magnetic 6eld H, j when the magnetic Qux enters
the sample in the form of quantized Qux lines or vortices.
In both systems, the phenomena depend nonanalyti. cally
on the number of vortices [~ exp(-const/l)]. The only
essentially new feature in the charged system is the
existence of a second characteristic length X, the London
penetration depth. Supercurrents are conhned to a
thickness X, which acts as the natural large-distance
cutoff in a bulk type-II superconductor. Thus the
properties of a type-II superconductor are generally
insensitive to the size or shape of the sample. In con-
trast, a neutral superQuid has no corresponding shield-
ing length, so that the behavior of liquid He II depends
explicitly on the size of the container. In particular,
the critical magnetic field H.r is of order (gs/X')
Xin(X/&), where ys ——hc/2e is the quantum of magnetic
flux and $ is the coherence length (or core radius). This
expression is obviously similar to that for 0s [Eq. (54)$
or 0. [Eq. (66)].It would be interesting to study a thin

"A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
LEnglish transl. : Soviet Phys. —JETP 5, 1174 (1957)g.
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cylinder made of type-II superconductor, or a thin
superconducting 61m in the shape of a narrow annulus,
These superconducting systems should exhibit the
essential features of superQuid He II in a narrow an-
nulus, while the difFicult experimental problem of ob-
serving the Qow states would be greatly simplified by
the electromagnetic effects associated with the changed
supercurrents.

I n(r r'/R&)+I year::

In(rr'/R2)-Iyvr

Irn z

In(r/r 1)+ Iy~

—Rez

FIG. 4. Integra-
tion contour for Kq.
(A2).

APPENDIX

This Appendix contains the evaluation of the follow-

ing integral

I(r,r') =y Re
8r'Ly 1n(r/r')+iy (q y')]—
e,Lp in(r/r')+6 (p —p')]

~&'Ev»(«'/R2')+i'r(v —
v ')]

(A1)
Organ ln(rr'/R2 )+iy((p q')]—

Since the physical properties of the system are un-

changed by a change of coordinate axis, it is clear that
Eq. (A1) is independent of q', which may be set equal
to zero for convenience. The integral is most simply
evaluated by exploiting the periodicity of the theta
functions in the complex plane. We shall therefore con-

sider the following contour integral

«L~r'(s)/~r(s)] (A2)

taken over a rectangular path shown in Fig. 4, where

the corners are given by the points s=y in(r/r')&iys.
and s=yln(rr'/R22)+ibis. The value of the contour
integral is 2si times the number of zeros of 6r(s)
enclosed, because 8r(s) is an integral function. '4 The
only relevant zero of 8&(s) is at the origin, which lies

inside the contour if r&r' and otherwise lies outside.

'4 Reference 11, pp. 119 and 465.
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Hence Kq. (A2) may be written. as

dsPr'(s)/Or(s)] = 2s.ig(r —r'), (A3)

where g is the step function defined below Eq. (17).
The integral along the horizontal portions of the

contour is

where

er'(x iy~) Or'—(x+iy7r)
dx

ar(x iyvr—) er(x+iys)

xo——y 1n(rr'/Rg'),

x~= y ln(r/r') .

(A4)

(A5)

6r'(x —iyrr) 8r'(x ips+s—r)
=22

Pr(x iyn)8, (x —iy7r+ .mr)—- (A6)

where the right side follows from the periodicity of the
theta function. " Substitution of Eq. (A6) into Eq.
(A4) shows that the contribution from the horizontal

sides of the rectangle is 2i(xr —xo) =4' ln(Rs/r'). The
integral along the vertical portion of the contour is

just iI(r, r'), and Eq. (A3) thus becomes

iI(r, r')+4iy ln(R2/r') =2s ig(r —r') . (A7)

Substitution of Eq. (7) yields

I(r,r') = 2s-q(r —r') —2s. ln(R2/r') Dn(R2/Rr)] '. (A8)

The evaluation of the circulation t Kqs. (16) and (17)]
is straightforward using Eq. (A8).

"Reference 11, p. 465.

Equation (7) shows that i&7r= ~s7rr, and the integrand
of Eq. (A4) may be rewritten as


