28 H.

photon ionization occurs with reasonably low prob-
ability and thus contributes significantly only to the
initiation stage (at least at moderate pressures—say,
around one atmosphere). At lower pressures, N-photon
ionization should contribute in increasing amounts to
the growth of the discharge due to its relative weak
pressure dependence compared to cascade ionization
processes (see, for example, Fig. 20 of Ref. 6).

The photon flux F (photons cm™2 sec™!) required to
produce a given transition rate W (transitions cm™3
sec™!) is given by

F=N0’“1/N(W/5(N))1/N, (13)

where Ny is the atomic number density (roughly pro-
portional to pressure) and w®™=§MF¥ ig the transi-
tion rate per atom. For low-order processes—say, N =2
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or 3 (as appropriate for photo-ionization of the alkali
gases with ruby laser light)—the flux required to pro-
duce a substantial transition rate W is significantly
lower than for the higher order processes appropriate
to the rare gases. Also, the pressure dependence for
the lower order processes is much stronger, in accordance
with Eq. (13). Hence, multiple-photon ionization should
play a more dominate role (over appreciable pressure
ranges) in the growth of gas discharges in the alkali
gases than in the rare gases. The alkali gases thus seem
to be interesting candidates for gas-breakdown experi-
ments as well as for direct photo-ionization experiments.
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Cross sections have been determined for the photodetachment of an electron from the negative atomic-
oxygen ion. Calculations are made for the three transitions O~ 2P to O3P, O1D, and O 1S with photon
energies from threshold to 13.6 eV. A method is used wherein wave functions for both bound-state and
continuum electrons are obtained through a modified version of Slater’s approximation to the Hartree-Fock
equations. Correlation effects are included through a polarization potential obtained from an application
of first-order perturbation theory to the Hartree-Fock atomic system. Results are compared with the experi-
ments of Smith and of Branscomb, Smith, and Tisone, giving very good low-energy agreement. In addition,
the elastic-scattering cross section for neutral oxygen, the dipole polarizability, the attachment cross section,
and attachment coefficient for electron capture were also determined. Agreement is quite good between these

observables and available experimental data.

I. INTRODUCTION

ECAUSE of their importance in terrestrial and
stellar atmospheres, the cross sections for photo-
detachment of the negative atomic-oxygen ion and cross
sections for low-energy electron scattering by atomic
oxygen have been studied by a number of investigators
both experimentally and theoretically.! In treating
either of these problems theoretically there is the usual
difficulty of adequately describing the continuum so-
lutions at low energies, the ordinary Hartree-Fock
treatment being inadequate because of correlation
effects. In the case of the negative ion there is the added
* Present address: Health Physics Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee.
1See review by L. M. Branscomb, in Aflomic and Molecular

Processes, edited by D. R. Bates (Academic Press Inc., New York,
1962), p. 100.

problem of obtaining acceptable wave functions for
the initial negative-ion state since, again because of
neglect of correlation, Hartree-Fock solutions are not
particularly accurate.

In the present treatment of these problems, a method
is utilized wherein the bound-state system is described
through a modification of the Hartree-Fock-Slater
(HFS) technique and correlation effects are determined
by a polarization potential obtained from the pertur-
bation of the bound-state system by the detached (or
scattered) electron. The latter has been applied with
some success in low-energy electron scattering from
alkali atoms? where polarization terms in the interaction
potential are quite large.

2 W. R. Garrett, Phys. Rev. 140, A705 (1965); hereafter referred
to as I.
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II. PHOTODETACHMENT CROSS SECTION:
FORMULATION

In the present analysis we are interested in the cross
section for the process

O+ — O+4e

with photon energies ranging from threshold to about
1 Ry. For these energies we need only consider ioni-
zation from the outer 2p shell where the removal of
a 2p electron from an O~ ion in its normal 1s22522p5(2P)
state leaves an oxygen atom in its normal ?P state or in
either of the D or 1S exicted states. The threshold
energies for excitation from O~ to each of these states
of O are 1.465, 3.432, and 5.66 eV, respectively.® If we
denote by ¢; the wave function for the initial ion nor-
malized to a unit cloud, and by ¥ the wave function
for the final system normalized to represent a unit core
with an outgoing wave of unit amplitude, then the
usual dipole formula for the absorption cross section
has the form*

32mime? sy

3% (2LiA1)(2Si+1)

oa(v)=

2

X2 X | (;2;1 tydr - drsl . (1)

mL; m[,/’msf

Here » is the frequency of the incident radiation, and v is
the velocity of the detached electron. For the initial
O—(2P) state we have L;=1 and S;=%. In the sum-
mation over magnetic quantum numbers, use has been
made of the selection rule that the integrals vanish
unless .S;=S; and mg,=mg,. Finally, £ is the overlap
integral for the core electrons arising from the slight
relaxation of the inner electrons when detachment oc-
curs. If we represent wave functions for the core by
&(c), then £,= | S ¢:*(c)ps(c)dr.|2, which is very nearly
equal to 1. If we adopt atomic units, write mv= 7k, and
carry out the angular integrals in the matrix elements
for a given final-state multiplet, Eq. (1) can be written
in the form

Ud(V) = f§~7rafa02/e ([f;b"l"'Ee) Eusp
X (CroaM 1+ CrpaiM 1412) cm?,  (2)

where a; is the fine-structure constant and @, the Bohr
radius (which is introduced in order to express the cross
section in ¢cm?). F; and E, are the binding energy and
outgoing energy, respectively, of the detached electron
in rydbergs. The dipole matrix elements My, for the
final-state multiplet are of the form

Mlﬂ:l:/ Rnl(f)f'Rk,H:]_(f’)72d7’ ) (3)
0

# L. Branscomb, D. S. Burch, S. J. Smith, and S. Geltman,
Phys. Rev. 111, 504 (1958).

4D. R. Bates, Monthly Notices Roy. Astron. Soc. 106, 432
(1946).
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TABLE 1. Values of Cp and C: for each final state of O.

Transition Co C,
O~(2P) — O(3P)+e 1 2
O0~(2P) — O(*D)+-¢~ 5/9 10/9
O~ (2P) — O(LS)+e~ 1/9 2/9

where Rni(r) and Rg,i.1(r) are the radial parts of the
bound and continuum wave functions of the electron
in its initial and final states with normalization:

"0

/ R (r)rdr=1 @)
Jo '
and

R () = (fr)~t sin(kr+6,—31Ix). (5)

The constants Ciy; result from the angular integra-
tion in Eq. (1) and depend on the final-state multiplet
of the residual neutral atom. These have been tabu-
lated by Bates* for the transitions of interest here.
Finally, £, is the overlap integral for the outer electrons
which are in the same state both before and after
detachment. In the present context we have

2\ 4

Ep=< ) )

where R,;* is the initial 2p radial function for O—, and
Ry is the final 2p radial function for O.

Since a p electron (/=1) is being removed in the O~
detachment, the matrix elements M., are M, and M,
corresponding to outgoing s and d waves in the con-
tinuum. The constants Cy and C, depend on the final-
state multiplet of the neutral atom. These are tabulated
in Table I for the P, D, and 1S states of the ground
configuration of O.

The determination of o4(v) is dependent on an ade-
quate knowledge of the bound-state O~ wave function
and of the continuum functions for the detached
clectron.

0

/ RnliR"lfTZd?'
0

III. THE POLARIZATION POTENTIAL

In both the problem of photodetachment of an elec-
tron from a negative ion and in the scattering of a free
electron by an atomic system, one needs to know the
wave function for the free electron in the field of the
neutral atom. As is well known, both the photodetach-
ment cross section and the low-energy elastic-scattering
cross section are extremely sensitive to the potential
function describing the interaction between the free
electron and the atomic system. At low energies ex-
change effects as well as effects due to the distortion
of the neutral atom by the electric field of the free
electron are very important. In the present problem
we describe the interaction by a perturbed Hartree-
Fock potential wherein the perturbation by the free
electron is used to calculate a polarization potential in
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the adiabatic approximation. This method has been
used effectively in low-energy electron scattering by
alkali atoms where the polarization term is quite large.?

Under the influence of an incident or outgoing free
electron, the Hartree-Fock (HF) one-electron orbitals
and the HF energy depend on the coordinates of the
free electron. The perturbed orbitals ¢; of the HF de-
terminant for the atomic system satisfy the following
equation® (in atomic units) which depends on the free-
electron coordinate 7;:

2
[ — V24 V(rry)—A4 (rl,rf)—f——]
T1f

Xy(r,ry) = e;(x)¥u(rn,rs),  (6)

where
27 2
V(?’],?’/‘)"——' _M+E / !\0,’(]‘2,1‘/){ 2.—dr2y (7)
71 J 712
and
A(ry,xs)g(ts,1y)
g 2
=2 / ( ¥i*(rors)g (l‘z,rf)—dr2>¢j(rl,rf) - (8
J 712

Here the coordinates r; and rq are those of bound elec-
trons and r; that of the free electron. In order to simplify
the perturbed HF equations, we utilize first-order
perturbation theory and write the perturbed orbital
Yi(ry,rs) in the form

Yir,rs) = ¢i(r) +Xi(rs,ry) , )

where ¢;(r;) is the unperturbed HF orbital, assumed
known. In order to make the calculations feasible, we
treat both the perturbed HF equations [Eq. (1)] and
the equations for the unperturbed set ¢:(r;) in a modi-
fied version of the Slater exchange approximation to the
HF equations. In Slater’s free-electron-exchange ap-
proximation to the HF equations an exchange term
proportional to p'/3, where p is the electron density, is
used in place of the exchange integrals.® A recent deri-
vation,” wherein a different average over electron
momenta is taken, yields an exchange potential which
is 2 as great as that of Slater. Since both techniques are
only approximations, we have written the exchange
term A(r;) in the form

3 1/3
Aeed=no| —Zorwe@] o)

where A, is a variable coefficient. A ;=1 corresponds to

Slater’s potential and A\,=% corresponds to that of

Kohn and Sham.” In the present calculations the co-

efficient A\, was varied over a small range below 1.0 in

several self-consistent calculations. Thus, with this

technique one may calculate HFS wave functions yield-
5 J. Callaway, Phys. Rev. 106, 868 (1957).

6 J. C. Slater, Phys. Rev. 81, 385 (1951).
7W. Kohn and L. J. Sham, Phys Rev. 140, A1133 (1965).
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ing orbital energies which can be made to match a pre-
determined criterion of a “good” wave function simply
by varying A, in several successive calculations. The
criterion used herein will be discussed below.

The unperturbed solutions ¢i(r;) were taken as
solutions to the HFS’ equation,

[—=V2+V(r)—Aw(r)]p:r) =€), (11)
with
27 2
V(r)= -‘7'}‘2/ [i(xe)| Zr—dl’z (12)

and A« (r1) given by Eq. (10).

Our objective is to determine the ﬁrst-orde1 per-
turbations X;(ri,r;) of the single electron orbitals ¢..
The term 2/r15 of Eq. (6) is treated as a perturbation on
the HF system and the perturbations X; are obtained
as solutions to a set of integro-differential equations.
Substituting (9) into (6) and making use of (11), one
obtains a set of equations for X; which are excessively
complicated due to perturbed Coulomb and exchange
integrals.® These terms are, however, small as compared
to the direct terms® and will be dropped, leaving an
equation for the perturbation X; of the ¢th orbital of the
form?

[—= V24V (r1)— Ao (1)~ e Xi(t1,1y)

- / !¢,(n)l2-—dn—i:|f1> (). (13)

12 T1s

In this equation we expand the perturbation term
2/r1s in the multipole expansion

2 2 2rc 2r<?
—=—— LOSH—{—————(3 cos?0—1)+- -,

(14)
iy > S 2r52

where 7. is the lesser and 7 is the greater of 7; and 7,
and 6 is the angle between 7, and r;. We make the di-
pole approximation in (13) and drop all quadrupole and
higher-order terms of (14), leaving a set of inhomo-
geneous differential equations? for the perturbation X;
of an atomic orbital ¢;:

[= V24V (r)— Ay (r1)— 21X (r1,1y)

27’1
=—— cosf ¢s(11), (ry>r1) (15a)

7s
[—= V24V (r1)— Ao (r)— e”JXi(r1,17)

27’f
= ——— cosf ¢;(11).
1’12

(ry<r1) (15b)

These equations must be solved in the two regions—
r1<r; and 7;>r;,—and matched at the boundary r1=7;.

With the solutions for the perturbations X, of the
HF orbitals, the polarization potential is determined
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from the expression?
2r <
Volrp)=2 / 5" (11)— cosb X;(ry,x)dry,  (16)
j 7>

where the sum extends over all occupied orbitals ¢;.

Equations (15a), (15b) may be reduced to radial equa-
tions and the integrals in (16) to integrations over
radial coordinates by writing

¢i(t) =[Pri(r))/r ]V m(6,9), an
and
Xi(ry,x7)= 2° [Unisv(ryrs)/r1]
v,m’
XCnisr™ ™YV p™(0,9). (18)

Substituting (18) into (15) gives the radial equations
I: az ri'+1)

7’12 71

- V(r1)+As'(71)+e¢°] Un,twrv(r17s)

27’1
=—Pu(r), (r/>r) (19a)
ffz

[ @ rr+1)

7’12 d7’1

—V(r)+4 s’(rl)+€i0] Un,isv(ryry)

27’;
=—Pu(r), (rs<r) (19b)
1’12

which must be solved and matched at r;=7; The
constants Cp, ;™™ are determined from the Clebsch-
Gordan coefficients which occur from the angular
integrals and are zero unless //=/21. These values are
tabulated by Sternheimer.® The polarization potential
can be written in terms of the solutions to Eq. (19).
Thus,

Vo(rs)= %; Vapsu(ry), (20)

where

”

2 rrr
Vansrv(rs)=Kanior I:—/ Pou(r)niUan, v (ry,rs)dr,
7’/2 0

+2”f/ Pnz(ﬁ)Un,z»z'(71,1‘/)71‘2d71:|. (21)
vy

The constants K,,;.» are numbers which depend on
! and on the number of electrons in an %! shell, and have
been given by Sternheimer for complete shells.!? We
note that in the case of an atomic system which is not
spherically symmetric, the distortion of the atom de-
pends on its orientation. Thus, the polarization po-
tential is conveniently taken as the average over all
orientations of the atomic system.

8 R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 115, 1198
(1959).
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Fic. 1. Total polarization potential for neutral oxygen from
the (25)2(2p)4 orbitals. [—3Vp(r) X7.]

IV. APPLICATION TO OXYGEN.

The determination of the polarization potential
for oxygen requires solutions of the perturbation
equations (19a), (19b) for s and p electrons. The 1s
contribution to ¥V, was found to be negligible, thus
solutions are required for the 2s? states which undergo
s— p perturbations, Us,o-1, and for the 2p* electrons
which undergo p — s and p — d excitations requiring
the solutions Us,1,0 and Usg,1.,2. The notation Us,i.u
for the radial part of the perturbation of an #/ orbital
is that of Sternheimer.?

The solutions to Egs. (19a), (19b) for the appropriate
U, 1.v functions were obtained by the method described
in I. The unperturbed functions ¢i(r1) were obtained by
the modified HFS’ method described in Sec. III. Here
the Slater exchange term was varied in successive
calculations until solutions were obtained which yielded
an ionization energy in agreement with experimental
values for the weighted average of the ground-state
configuration of oxygen. The resultant value of the
coefficient of Eq. (10) was found to be A\,=1.118. Since
oxygen is not a closed-shell system, the polarization
potential was calculated as the average over all orien-
tations of the atomic system. As a check on the accuracy
of the potential function, the asymptotic value of V,
was compared with V,~a/r* and the resultant value
of the polarizability « was obtained as a=17V ,(r;) at
rs=25a,. The results converted to A3 are

a=0.767 A (calculated),
a=0.7740.01 A (experiment).?®

Thus, the agreement with experiment is very good. The
polarization potential multiplied by —7/2 is shown in
Fig. 1.

V. CONTINUUM FUNCTIONS

Having obtained the polarization potential experi-
enced by a free electron in the field of the neutral atom,
the continuum functions were obtained by a straight-

? R. A. Alpher and D. R. White, Phys. Fluids 2, 153 (1959).
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Fi16. 2. 2p bound-state radial wave function for neutral oxygen
and for the negative ion.

forward integration of the Schrédinger equation for
the Ith partial-wave Pyi(r):

a2 I(1+1)
[S-vo-r0-——+e]pun=0, @)
dar? 72

where Pri(r) =7Ru(r), which is normalized so that
asymptotically
Pyi(r) e ELsin(kr—3in+-6;).

->00

(23)

Here the potential V(r) is the total HFS’ potential,
including the exchange term as in Eq. (11), and V,(r)
is the polarization potential of Sec. IV. The equation
for Py(r) was solved by the Numerov process for various
values of k2. The numerical integration was carried out
to a point R, where the ratio | Vy/k2| <10~% Here Vr
is the total interaction potential V4V ,. At this point
the solutions were normalized and the phase shifts &;
determined by matching the functions of a linear com-
bination of the regular and irregular spherical Bessel
functions. The distance R, varied from about 35a, to as
much as 500 g, for the various values of %%

VI. BOUND-STATE FUNCTION OF O~

The bound-state functions for the oxygen negative
ion were obtained by the modification of the HFS
method outlined in Sec. III. Here, however, the
“self-energy” was subtracted out of the interaction
potential for each electron; thus the calculation
made was effectively a modification of the Hartree
method wherein a variable exchange term of the Slater
form [Eq. (10] is added in the self-consistent calcu-
lation. The procedure was repeated with different co-
efficients X, on the exchange part of the potential until
an eigenvalue of the 2p electron was obtained which
corresponded to the experimental ionization energy of
0—(1.465 eV).
~ This method differs from that used by Klein and
Brueckner!® or Cooper -and Martin!! in that a self-

10 M, M. Klein and K. A. Brueckner, Phys. Rev. 111, 115
(1958); hereafter referred to as KB.

11 J,'W. Cooper and J. B. Martin, Phys. Rev. 123, 1482 (1962);
hereafter referred to as CM.
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consistent calculation was made each time the variable
parameter was adjusted rather than taking a single
equation and adjusting a parameter in the total po-
tential function in order to match the 2p eigenvalue.
However, the present technique is not expected to be
appreciably better than that of Ref. 10 or 11, though
both are probably better than ordinary HF. In Fig. 2
the 2p functions of O and O~ are plotted for compara-
tive purposes. The overlap integrals

/ Rgp'iRgpff2d7’
0

which describe the relaxation of the passive electrons
were found to be 0.9575 for a single electron. This is
significantly less than one, and when the product of the
squares is taken, the resultant value of ¢ in Eq. (2) is
0.71. Thus, in the case of negative ions a considerable
error is made by assuming £ to be unity.1%:1!

VII. RESULTS
A. Photodetachrhent Cross Section

Having obtained bound-state and continuum so-
lutions, the matrix elements for ¢4(v) yield the photo-
detachment cross section. The results of the cross-
section calculations are shown in Fig. 3 along with the
experimental results of Branscomb, Smith, and Tisone!?
and of Smith.! The s- and d-wave contribution to
o4(v) are shown separately along with the total detach-
ment cross section.

At higher photon energies the oxygen atom may be
left in the excited 1D or 1S state of the ground configu-
ration. This possibility increases the cross section at the
threshold energies for leaving the residual atom in these
states. Using the appropriate values of the binding

LEGEND :
PRESENT ANALYSIS
BRANSCOMB,SMITH, TISONE EXPERIMENT
. SMITH EXPERIMENT

®
T
°

N
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O~ PHOTODETACHMENT CROSS SECTION (10® cm®)
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2.2 26 30 34 38 4.2
PHOTON ENERGY (eV)

5
by
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F1c. 3. Total photodetachment cross section for O~ showing
contributions from the s and d waves. Experimental values are
those of Branscomb, Smith, and Tisone and of Smith.

121, M. Branscomb, S. J. Smith, and G. Tisone, J. Chem. Phys.
43, 2906 (1965).

13, J. Smith, in Proceedings of the Fourth International Con-
ference on Iowization Phenomena n Gases, Uppsala, 1959, edited
by N. R. Nilsson (North-Holland Publishing Company, Amster-
dam, 1960), p. 219.
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energy Ep and the C’s in Table I, estimates of the cross
sections are obtained by performing the same set of
calculations as for the case when the atom is left in its
3P ground state. The approximation here is less ac-
curate since the same bound-state radial function is
used as for the ground state. Excitation to the first of
these two levels is clearly shown in the experimental
results of Branscomb et al.l? above 3.4 eV, where the
cross section shows a sudden increase. The calculated
values in this region are also shown in Fig. 3. It should
be noted that experimental difficulties in the high-
energy region yield more uncertainty in the last few
points on the right of Fig. 3. Results over a wider energy
range with both !D and S excitation are shown in
Fig. 4 along with the theoretical results of Cooper and
Martin.!

In all of the earlier treatments of photodetachment
from O, polarization was included by the use of a semi-
empirical term of the form?!0.11:14

Vyp(r)=—P/(r*+r,")?, (24)

where the quantity 7, is the so-called screening distance
(about 1.2 a.u.) and P is a polarization parameter
which was adjusted in such a way as to yield an eigen-
value of E; when put into the Schrédinger equation for
the 2p function for O~. The best values obtained were
P~35.7 by Bates and Massey! and ~5.5 in later calcu-
lations.!® ! The same term was then used in the Schré-
dinger equation for the continuum functions. For low
energies, a comparison of earlier results with the present
analysis is shown in Fig. 5. Experimental values are
very close to the present results in this range.

It is worth noting that the major difference in the
photodetachment cross-section calculations here as
compared to those of KB!® and CM!" results from dif-
ferences in the continuum functions rather than the
bound-state functions. For comparative purposes the
present calculations were repeated using our bound-
state O~ functions and utilizing continuum functions
which were solutions to the equation used by CM. The
cross section thus obtained was very little different

»
PS

_____ COOPER AND MARTIN
20l ~———— PRESENT. ANALYSIS

P D s

PHOTODETACHMENT CROSS SECTION (16'%cm?)

PHOTON ENERGY (eV)
F16. 4. Total photodetachment cross section of O~ for the
three final-state multiplets of oxygen.

14 D. R. Bates and H. S. W. Massey, Phil. Trans. Roy. Soc.
London A239, 269 (1943).
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Fic. 5. Comparison of low-energy o4 results
with earlier calculations.

from their results, indicating that differences in the
bound-state functions were only slight. A comparison
was also made with the 2p function of KB where a fit
was made to an analytic function in the asymptotic
region. There was little difference (<109, )in the two
cases. The present results correspond to a value of about
0.32 for their quantity N. Thus, the significant dif-
ferences in our results stem from the continuum so-
lutions which are sensitive to small differences in the
polarization potential.

As a final test of the sensitivity of o4 to the bound-
state functions, sample calculations were made utilizing
ordinary HF wave functions for O~ obtained from
Roothaan’s method.!®!8 The matrix elements as well
as the overlap integrals of Eq. (2) were re-evaluated
using the analytic HF functions. The results were not
appreciably different from those of Fig. 3; the photo-
detachment cross section maintained almost exactly
the same shape as in Fig. 3 and differed by ~15%, in
magnitude.

B. Attachment Cross Section and
Attachment Coefficient

The reverse process of photodetachment, i.e., radia-
tive attachment, may be formulated in a manner similar
to the above, whereby one may obtain the radiative
attachment cross section o¢4. describing the process
¢ +0 — hv+0~. The two cross sections for detachment.
and attachment are, in fact, related by the relationship*

3cim&?
04(02P — 03P)=— 74(03P — O2P).

2h%?

(25)

Thus, one may immediately determine the radiative
attachment cross section from a knowledge of the photo-
detachment curve. Results of o4 obtained in the present
calculations are shown in Fig. 6 along with results
obtained by Branscomb! from experimental data in the
low-energy region. One other quantity of interest in

18 E. Clementi and A. D. McLean, Phys. Rev. 133, A419
(1964). »

18 E. Clementi, C. C. J. Roothaan, and N. Yoshimine, Phys.
Rev. 127, 1618 (1962).
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F16. 6. Attachment cross section of electrons to atomic oxygen
calculated by detailed balancing from the photodetachment cross
section.

electron-attachment problems is the attachment co-
efficient defined as v.04, where v, is the velocity of the
electron. For completeness, this quantity is also shown
in Fig. 7 compared with the results of Branscomb.!

C. Elastic-Scattering Cross Section

The total elastic-scattering cross section for low-
energy electrons can easily be obtained by the method of
partial waves from the solutions for the continuum
functions Pri(r) of Eq. (22). In units of 7,02 the scatter-
ing cross section is

4
=—3 (241)sin2;, (26)
2

where 6, is the /th partial-wave phase shift.

In the present treatment of the scattering problem,
correlation effects between incident and bound electrons
are included through the use of the polarization po-
tential of Sec. IV, and exchange is included in an ap-
proximate way through the use of the modified Slater
exchange term in Eq. (22). As described earlier, the
exchange term was modified so as to yield a negative-
ion wave function with an eigenvalue which matched a
predetermined value. Thus, the phase shifts were ob-
tained from solutions to the simple differential equation
(22), which is an approximation to the integro-
differential equation resulting from a more complete
perturbed-HF treatment.!?

We note that in the scattering problem it is not
really appropriate to use the same continuum solutions
as for the photodetachment problem. In the photo-
detachment process one has a continuum electron
moving away from its parent negative ion which asymp-
totically approaches a free electron outside a neutral
atom with the appropriate polarization potential ~a/r4.
However, in the scattering problem the target wave

17 A, Temkin, Phys. Rev. 107, 1004 (1957).
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functions are those of a perturbed neutral atom. Thus,
in the present treatment of the problem the appropriate
Coulomb and exchange terms in the interaction po-
tentials will be slightly different in the two cases. Thus,
for the scattering problem the calculations of the con-
tinuum wave functions Pi(r) were repeated using the
same polarization potential as before (appropriate for
a neutral atom) but with the modified HF Slater terms
of Eq. (22) being those obtained from the HFS’ calcu-
lations for neutral oxygen, as described above. Thus, the
exchange term in the scattering equation was taken as
that of the neutral atom modified so as to satisfy the
criterion of Sec. VI. Another criterion which is very
appropriate as a definition of good wave functions for
the neutral atom is that they yield a dipole polarizability
which agrees with experiment. The results of Sec. IV
indicate that this criterion was met very well.

Results of the present determination of the elastic-
scattering cross section are shown in Fig. 8. The curve
labeled I was obtained using the Coulomb and exchange
terms of the negative ion in the equation for the free
electron. The results labeled IT were obtained using the
potential function obtained from neutral oxygen. The
differences in the two sets of results are thus due to
small differences in the Coulomb and exchange terms
in the potential functions representing an electron
moving in the field of its parent negative ion and an
incident electron moving in the field of a neutral atom,
in both cases the polarization potential term being the
same. One can argue that neither of the two cases
represents the actual situation for a low-energy elec-
tron and that the real potential probably lies somewhere
between these extremes. The present results indicate
that these small differences are in fact of considerable
importance for low-energy collisions.

In Fig. 8 results from the present analysis are com-
pared with the results of four different experiments on
atomic oxygen. The two very low energy values of &
were obtained by shock-tube techniques!®-*?; the results
of Neynaber et al.?° and of Sunshine, Aubrey, and

o
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Fic. 7. Variation of attachment coefficient with electron energy
for electron capture by the neutral oxygen atom.

18 S, C. Lin and B. Kivel, Phys. Rev. 114, 1026 (1959).

19 T, W. Daiber and H. F. Waldron, Bull. Am. Phys. Soc. 11,
496 (1966).

20 R, H. Neynaber, L. L. Marino, E. W. Rothe, and S. M.
Trujillo, Phys. Rev. 123, 148 (1961).
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F1c. 8. Total elastic-scattering cross section for oxygen com-
pared with available experimental data.

Bederson?! are from crossed-beam experiments. The
present results agree quite well with most of the experi-
mental data.

One might use the results obtained in cases I and II
to gain a rough idea of the magnitude of some of the
errors which occur in using the adiabatic approximation
as employed here. In a dynamic rather than a static
treatment of the scattering problem, the atomic elec-
trons respond to the field of a moving electron. This
response depends on the velocity of the incident par-
ticle.22—24 As the incident velocity is made smaller and
smaller, the scattered electron spends more time within
the atomic system, thus causing the atomic orbitals to
approximate those of the negative ion. One could say
that at zero incident energy the system corresponds
roughly to an excited state of the negative ion, i.e.,
a state with zero binding energy. Thus the Coulomb and
exchange integrals at zero energy should approach those
for the stationary negative ion and at higher energies
they should lie between the negative ion and those for
the neutral atom. Thus by comparing the two cases as

21 G. Sunshine, B. B. Aubrey, and B. Bederson, in Proceedings
of the IVih International Conference on Physics of Electronic and
Atomic Collisions, Quebec, 1965, (Science Bookcrafters, Hasting-
on-Hudson, New York, 1965), p. 130.

22 A, Temkin, Phys. Rev. 126, 130 (1962).

28V, D. Obedkov, Zh. Eksperim. i Teor. Fiz. 43, 649 (1962)
[English transl.: Soviet Phys.—JETP 16, 463 (1963) ].

24 R, W. LaBahn and J. Callaway, Phys. Rev. 147, 28 (1966).
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in I and II of Fig. 6, one can get an idea of the size
of these effects by comparing the two extreme cases.
However,” a more important consideration in the
dynamic problem is that of the effect of the velocity
term on the polarization potential, where the distortion
of the atomic system is reduced with increasing electron
velocity.?* This simple argument gives no information
on this ‘aspect of the scattering interaction.

VIII. CONCLUSIONS

The use of a polarized orbital-type polarization po-
tential in both the problems of low-energy photodetach-
ment and elastic electron scattering leads to a substan-
tial improvement in the agreement of theory and experi-
ment over that achieved with semiempirical correc-
tions for atomic distortion. The use of a modified
Hartree-Fock—Slater potential for the bound state as
well as the continuum functions seems to have consider-
able merit for complicated systems where more de-
tailed calculations would be very difficult. The present
method of obtaining negative-ion solutions is somewhat
unattractive, but the photodetachment cross section is
apparently less sensitive to the bound-state function
than to the continuum solution.

Application of the present analysis to the elastic-
scattering problem yields results which are as close or
closer to the experimental values than any of several
earlier calculations.?s The results of Bauer and Browne?®
for elastic scattering from oxygen are rather similar to
the present results; however, their analysis is consider-
ably different in that adjustable parameters were used
in the terms of the scattering equation, whereas the
exchange term is adjusted here only in the bound-state
problem and is not treated as a variable function in the
scattering equation. The treatment of dynamic effects
on the polarization potential for more complicated
systems is even more involved? than for H and He but
should be investigated to determine their significance
for the multielectron atoms.

25 . Bauer and H. N. Browne, in Atomic Collision Processes,
edited by M. R. C. McDowell (North-Holland Publishing Com-
pany, Amsterdam, 1964), p. 16. References to earlier theoretical
results are cited here as well as a display of the cross sections,



