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basis of the most highly corrected TI'D-like equation,
the general availability of TFD solutions favors their
use. It is felt that at normal or above-normal crystal
density, the best statistical-theory pressures will not
differ greatly from the TFD values except in the cases
of the aforementioned rare gases, alkalis, and alkaline
earths.
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The thermodynamic properties of systems in the immediate neighborhood of a locus of ) transitions have
been investigated. It is assumed that the transitions arise from spin orientation (or some other order-disorder
phenomenon), and that the partition function can be broken down into a product of a lattice part and a spin
part, the latter dependent only on I=J/kT, where J is an energy parameter. IfJ depends only on the volume
t/', then the speci6c heat at constant volume C, tends to become in6nite along the X line, but as is well known,
an instability sets in before this point is reached. It is shown that this instability occurs only very close to
the X line, and C„and (SP/BT) v may be expected to parallel each other much farther from the X line. If an
intrinsic volume change is associated with the ordering phenomenon, J is more approriately taken as an
enthalpy parameter, and may be supposed to depend on the pressure P rather than on 1/. Isothermal-isobaric
partition functions are used. C„ tends to become infinite and to parallel (8V/dT) p a considerable distance
from the X line. Only very close to the X line does (BV/SP)r become negatively in6nite. The results are
applied to liquid helium under pressure, and shown to accord with the data. The behavior of C, is discussed.
A possible generalization of the theory is suggested.

OME years ago I examined some of the problems
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which arise when a A. transition occurs in a com-
pressible substance. ' It was shown that if the constant-
volume specific heat C, rises steeply enough as the X

line is approached, especially if it becomes infinite,
there will be a van der VVaals loop in the pressure-
volume isotherm. Thus an instability will result, and
the transition will become first-order. At that time I
believed that the specific heat at constant pressure C„
would be unlikely to exhibit a locus of in6nities, but the
thermodynamics of such a situation was worked out.
The relations were derived independently and cast in a
diGerent form by Pippard' and were somewhat ex-
tended and applied to hquid helium (which does, ap-
parently, exhibit a locus of in6nite C~ s) by Buckingham
and Fairbank. '

The theory was discussed from the point of view of
statistical mechanics by Domb, ' and recently has been
the subject of several papers by various authors. '~

~ Work assisted by the Army Research Ofhce.' O. K. Rice, J. Chem. Phys. 22, 1535 (1954}.
~ A. B. Pippard, Phil. Mag. 1, 473 (1956); Elements of Classical

Thermodyrearascs (Cambridge University Press, London, 1957),
Chap. 9.

'M. J. Buckingham and W. M. Fairbank, in Progress in Jom
Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Company, Amsterdam, 1961),Vol. III, pp. 808.' C. Bomb, J. Chem. Phys. 25, 783 (1956).' C. P. Bean and R. S. Rodbell, Phys. Rev. 126, 104 (1962).' D. C. Mattis and T, D. Schultz, Phys. Rev. 129, 175 (1963).

Most recently a statistical formulation has been given
by Garland and Renard, ~ and applied to the transition
in ammonium halides, where there is evidence of in-
stabihty and hysteresis. It is the purpose of the present
paper to give a brief review of the theory of Garland
and Renard and to point out certain of its general con-
sequences. A related theory for the case where C~
becomes infinite will then be given, and applied to the
X transition of liquid helium.

1. LOCUS OF INFINITE C,

%e shall discuss an Ising lattice, in which the spins
are located on atoms in a compressible lattice. The
formulation would apply equally well, however, to a
case in which some other kind of order-disorder phe-
nomenon were substituted for that associated with spin
orientation. This particular case is used as a kind of
semantic tool.

YVe follow the assumption of Garland and Renard
that the partition function can be expressed as the
product of a function depending only on the lattice
vibrations and one depending on the spin system. Thus

7 (a) C. W. Garland and R. Renard, J. Chem. Phys. 44, 1120
(1966); (b) R. Renard and C. W. Garland, ibid. 44, 1125 (1966);
(c) C. W. Garland and R. Renard, ibid. 44, 1130 (1966); (d)
C. W. Garland and C. F. Varnell, sfrfd 44, 1112 (196.6). (e) R.
Renard and C. W. Garland, ibid. 45, 763 (1966).
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we write
e=ee. ,

where the subscript 1 refers to lattice and s to spin. We
write J'=(e,—e„)/2, where e is the spin interaction
energy of an adjacent pair of antiparallel spins, and
e„ that of a pair with parallel spins. More genera11. y, J
can be taken simply as some energy parameter. It is
assumed that Q, is a function only of I= I/kT, where
k is the Boltzmann constant, T is the absolute tempera-
ture, and J is assumed to be a function only of the
volume V. This, together with Eq. (l), is what Garland
and Rcnard called the assumption of weak interaction.
It should be noted that it includes the case of strong
interactions as defined by Mattis and Schultz since the
effect of the volume can be great, the only requirement
being that J depend only on V. Direct interactions be-
tween the spin and the lattice vibrations may be of im-
portance, ' and, indeed, Mattis and Schu/tz' have shown
that they are of importance in one dimension. These
authors have, however, given reasons for supposing
that such direct interactions are much less important
in three dimensions, and experimental evidence for
this conclusion has been discussed by Garland and
Rcnard. ~' Indeed, it would be expected on purely
physical grounds, for in one dimension there can be a
very direct correlation between the spin orientations
and the average distance between a pair of nearest
neighbors, whereas in three dimensions such correla-
tion would be hindered by the other near neighbors.

Accepting for the time being the assumption of weak
interaction as formulated in the above paragraph, we
note that the pressure P and the energy E of the system,
by application of the standard statistical mechanical
equations, will bc given by logarithmic diGerentiations
with respect to V and T, respectively. Thus

8=AT(8 ln Q)/BV)r+(Q, '/ Q,)df/d V
=I')+8„ (2)

X=AT'(8 ine(/BT) p —(Q,'/ Q,)J
—E(+jv (3)

where the prime indicates differentiation with respect
to I. From Eq. (5) we obtain

C.=C.
, )+C...

=C..~ (Q.'/Q. )'J'/&T'+—(Q'/ Q )I'/&T' (4)

and by appropriate use of Eqs. (2), (3), and (4)

(-,",-),=(,",),;,',(:-')'(,",)'

kT Q, dV Q, dV'

8V p) J' dV JkT dV'
' M. E. Fisher (private communication).

gT g gT g g, kT'dV, k1'dV

BT y, ) J dV

Equation (5) has been given by Domb~ and by Garland
and Renard, " and Eq. (6) has been given by the latter
authors. ~' At a locus of singularities with infinite C,
it is of course C„,, which becomes infinite. The last
term in the 6nal expression of Eq. (5) is probably
negligible, the 6rst term is negative and the second term
is positive. As has been pointed out, ' ' it is now easy
to see how the infinity in C„,, produces the van der
%Rais loops loop and consequent instability by making
the positive term larger in magnitude than the nega-
tive one. The larger (dJ/d V)/I and the smaller
(BP/BV)~ t (that is, the greater the intrinsic compres-
sibility of the lattice), the sooner this effect will be
noticed. The parallelism between (BI'/BT)v and. C„
previously noted from the thermodynamic equations,
is brought out and sharpened by Kq. (6).

Domb' has used Eq. (5) as the basis for an explana-
tion of the fact that it often appears that C~ becomes
inlnte rather than C,. He has noted that in a magnetic
system there are domains of finite and rather small
size. One thus has actually to deal with an aggregate
of small systems, and this results in the sharp peak of
C, being rounded o6. Bomb estimates that the maxi-
mum value might be around Sk per atom. Because of
the slow logarithmic increase of C, this still corresponds
to a temperature difference from the X point,

I
T T—

of the order" of only 10 ~ or 10-~ times Tg. Under
some circumstances, therefore, the second term on the
right-hand side of Eq. (5) might not become greater
thRn thc 61st tel m ln Rbsolutc VRluc Rlld thus thc
instability would not occur.

If, as appears probable, the domain structure is an
equilibrium phenomenon, and if there is a strict analogy
between magnetic ordering and other types of ordering,
one might expect the domain phenomenon to be general.
However, there may be diGerenccs in this respect, and
it may be signi6cant that the cases in which Garland
and co-workers found evidences of instabi]ity and
hystcrcsls RssociRtcd with going Rlong the InctRstRblc
portions of the van der Waals loop in the isotherm
where ammonium halides, in which the order-disorder
phenomena are not associated with magnetic ordering.
Bomb's mechanism would not be expected to apply to
helium, but Goldstein" has brought up a somewhat
similar point. He has called attention to the slow risc
of the specific heat near the singularity and has pointed
out that it is not possible to decide unequivocally by

9 C. Bomb, Proc. Phys. Soc. (London) 88, 260 (1966}.
"C.Bomb, Proc. Phys. Soc. (London) 86, 933 (1965).
«'L. Goldstein, Phys. Rev. 135, A14/1 (1964).
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experiment whether the speci6c heat actually becomes
in6nite. The closer one comes to the singularity, the
greater will be Quctuations in energy, and hence in
temperature. Goldstein has noted that eventually the
fluctuations in temperature will exceed

~

T Tq~,—and
then the temperature of the sample cannot actually be
determined. Under such circumstances the specific
heat (either C„or Cp) will appear to be rounded off;
but the Quctuations are smaller the larger the sample,
and in the case of helium it seems possible, in principle
at least, to take a very large sample, so that the rounding
off will occur at a very low value of

~
T Tq~. S—o con-

ceptually an irdinite specific heat seems possible in this
case.

One interesting conclusion can be drawn from a com-
parison of Eqs. (5) and (6), which I believe has not been
previously pointed out. One may compare the ratio of
the lattice terms to the ratio of the spin terms, and thus
come to some conclusion as to the relative effect of the
spin orientation on (BE/BV)r and (BP/BT)v. The
ratio of the lattice terms is

Ri (BP/BV)r, i/——(BP/BT) v, i= (BT/BV) p,—i. (7)

The ratio of the spin terms is

We can just as well compare the dimensionless forms

(RgV/Ti = [(V/T)(BT/BV)p, ii, (9)
and

IR V/TI = I(VP)d~/dVI.

It is seen that Eq. (9) is the relative change of tem-
perature with volume at constant P (related to the
reciprocal of the coeScient of expansion of the lattice
without spin), which is generally large for solids. On
the other hand Eq. (10) is the relative change of J
with V, which is expected to be relatively small. Even
if J varies as a fairly large power of the interatomic
distance, V itself varies as the third power, so Eq. (10)
would not be expected usually to be greater than 3 or
4. Therefore the spin will have much less effect on
(BP/BV)r than on (BP/BT) p, and the latter can
parallel the speci6c heat over a range of temperatures
in which the compressibility is scarcely affected, and
in which no signs of instability have appeared.

2. LOCUS OF INFINITE C„

In the case of liquid helium it seems likely, as already
remarked, that there is a locus of infinite C„and not of
infinite C,. One feels that this must be associated with
the fact that theexcitations in liquid helium, which,
by a cooperative phenomenon, are responsible for the
X transition, are associated with a change in volume,
which is one of their intrinsic properties. If the system
volume were held constant, changes in volume due to
new excitations would be compensated by changes in
density of the rest of the system. The energy of excita-

where III, is the enthalpy of the Lth state of the
assembly. In this case the Gibbs free energy is given by

and we have

and

G= —kT lnZ,

H=kT'(B lnZ/BT) p

V= kT(B lnZ/BP) r.—

(12)

(13)

We now introduce the equivalent of the weak-inter-
action assumption

Z Z)Zs p (15)

where again Z, is a function only of I=J/kT. But now
J is assumed to be the difference in entkalPy of the
antiparallel and parallel neighbors and is assumed to
depend only on I'. The latter assumption seems reason-
able in the light of the foregoing discussion if the change
in volume on going from the parallel to the antiparallel
is an intrinsic property of the excitation and if the
change on volume with temperature is chieQy that
associated with the change in the density of excitations.

Then, in place of Eqs. (2) and (3) we will have

V'= kT(B 1nZ(/BP) p (—Z, '/Z, )dJ/dP-
= V)+V. , (16)

"T.L. Hill, Statistical Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1956).

tion under constant volume would be equal to the
enthalpy of excitation at constant pressure. The energy
(or enthalpy at constant pressure) of excitation, and
the energy (or enthalpy) of interaction between excita-
tions (which is also an essential feature in any coopera-
tive phenomenon) tend to remain nearly constant
when the pressure, rather than the volume, remains
constant. This is so because the surrounding medium,
in which the excitation is formed, remains more nearly
in the same state under constant pressure. It is thus at
constant pressure rather than at constant volume, that
any analogy to the theory of the Ising lattice would
have to be applied. At the X point there is an infinite
rate of change of the number of excitations with tem-
perature. This means, of course, not only an infinite
value of C„, but also an infinite value of (BV/BT)p
(where V, T, and E are molal volume, absolute tempera-
ture, and pressure, respectively). It has been indicated
several times that C„and (BV/BT) p parallel each other
near a X line. ' '

Some further insight into the behavior of a system
which exhibits an infinite C„can be obtained from a
consideration of an Ising-type lattice in which an
attempt is made to express the thermodynamic func-
tions in terms of what has been called the isothermal-
isobaric partition function. " This is essentially a ca-
nonical partition function based on enthalpy rather
than energy, which we de6ne as

Z Z 8
—II'I, /kT
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and
e= kT'(a lnZt/aT) p (Z—,'/Z, )J

=Hi+H. . (17)

1 Z," dJ ' Z'd'J

kTZ, dP Z dP'

BP J' dP J dP'
(19)

BT g 8T g$ Zs kT QP Zs kT dP

C„,, dJ

J dP
(20)

The first thing to remark about Eq. (19) is that the
second term on the right-hand side is now negative.
Thus no matter how large C„,, becomes, no instability
will result; although (aV/aP)& can become very large,
it remains negative.

From Eq. (20) we see that (aV/aT) p will parallel

C„,, near the singularity. It is again of interest to com-
pare the relative sizes of the terms in Eqs. (19) and
(20), as we previously compared the terms in Eqs. (5)
and (6). We wish to compare

Ri/T = T'(a V/aP) r, i/(-a V/aT) p, &= Ki/Tni (21)

(where z~ is the lattice isothermal compressibility and
ni is the lattice coefficient of expansion) with

R./T= J 'dJ/dP (22)

(where R, is actually the negative of the ratio).
We will attempt to evaluate these quantities near

the X point at 13 atm and 2.02'K, a point which has
been investigated experimentally by Lounasmaa. " If.
helium behaved like a simple Ising lattice we could
assume that J was proportional to T~ and write

J 'dJ/dP= Ti '(dT/dP)), ,. (23)

Equation (23) would, indeed, follow, in the limit near
the X line, simply by dividing Eq. (19) by Eq. (20),
"C. E. Chase $Physica 27, 1129 (1961)j has presented a theory

in which the infinity in'C„ is associated with an infinity in the
second derivative of the excitation energy for rotons. This may
not be as far removed from the present theory as it seems. Such
an infinity in the second derivative may be associated with the
interaction between rotons in a region in which the second deriva-
tive of their number is infinite, this in turn being associated with
the infinity in Z,".

"O. V. I,ounasmaa, Phys. Rev. 130, 84'? (1963).

In place of Eqs. (4), (5), and (6) we have"

C„=C„,4+C„,,
= cp, i—(z'lz )'J'/&T'+(z'. /z )J'/&T' (1g)

remembering that (dP/dT) &, is equal to (aP/aT) 4 along
the X line. Substitution of Eq. (23) in Eq. (20) gives
the correct limiting thermodynamic expression very
close to the X line, ' ' which is verihed experimentally. '

If J were strictly proportional to Tq the "spin" part
of the entropy would be the same all along the X line.
Actually the entropy increases somewhat along the X

line (and the lattice contribution must decrease), so
it is clearly an oversimplihcation to assume that
helium can be described with the aid of an order-
disorder partition function which is a function of the
single variable I=J/kT with J a function of P alone.
Still Eq. (23) may give a reasonable estimate of orders
of magnitude. At T),=2.02'K, then "4

R,/T= J 'dJ/dP= —0.0065 atm '. (24)

The evaluation of Eq. (21) offers some difficulties:
a& and n& cannot be directly Ineasured. We shall assume
that ~~ is equal to the value of the compressibility at
some temperature well below the X point, where it seems
to become fairly constant. At 1.25'K, and 13 atm, ~ is
approximately'5 0.0065 atm '. Although the rotons and
photons in liquid helium are actually parts of the same
excitation spectrum, it seems reasonable to assume
that the rotons (which are associated with the volume
changes mentioned at the beginning of this section), are
principally concerned with the A, transition, whereas the
phonons are identihed with lattice vibrations. It thus
seems reasonable to get o.& by extrapolating the coef-
Gcient of expansion from the phonon region to the tem-
perature of interest. According to Atkins and Edwards'
the phonon part of the coeKcient of expansion is given
by 0.00108T', so at 7=2.02'K we estimate n&= 0.0089.
This is for essentially zero pressure; assuming it to be
the same at 13 atm we estimate

Ri/T=K4/Tui=0. 36 atm '.
This is about 50 times as large as R,/T, so we expect
(aV/aT)p to show the effects of the large C„,, much
farther from the X line than (aV/aP) r.

Now Lounasmaa'4 has found that at 13 atm (a V/aP) r
changes only moderately with pressure to within about
10 ' atm of the P line. Since the slope of the X line is
76 atm/deg, 10 ' atm corresponds to about 10 ' deg.
The increase in the magnitude of (aV/aP)r can only
occur closer to the X line than that. Lounasmaa did
not measure (aV/aT)p directly but he did measure
(aP/aT)r —(aV/aT)p(a——P/aV)r. This coeflicient re-
flects the behavior of (a V/aT) p, showing a logarithmic
change with

~
T Ti~ at constant p—ressure. However,

the slopes are diferent above and below the X point.
This may be because of a diGerence in the behavior of
(aV/aP)r. It is known from thermodynamics that
(aP/aT) v will not become infinite, but will eventually
reach (dP/dT) &„ the slope of the X line.

"W. H. Keesom, Helium (Elsevier Publishing Company, Inc. ,
Amsterdam, 1942)."K. R. Atkins and M. H. Edwards, Phys. Rev. 97, 1429 (1955).
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C,=C„—C~,, (26)

which simply means that, when C~„becomes infinite,
C, remains finite and approaches a constant value as
the X line is approached, since the singularity in C„
arises wholly from that in C„,„. Its actual value along
the X line is given by a formula derived by Buckingham
and Fairbank. '

The second term on l.he right-hand side of Eq. (25) is,
of course, negative, since (BE/BV)r is negative. It is
seen that as one approaches the P line this negative
term builds up relatively faster than C„ itself. Even-
tually a maximum in C, is reached, unless the region in
which (BE/BV)r suddenly drops off toward zero, is
reached first. We can estimate where this maximum
would occur, if we assume that the only quantity in the
right-hs, nd side of Eq. (25) which changes with appreci-
able rapidity is C„, Then the maximum will occur
when

0= (BC„,./BT) p+2C„,,(BC,,/BT) p(T/J')
X (dJ/dP)'(BP/BU), (27)

ol
C = —(J'/2T) (dJ/dP) '(BV/BP) r. (28)—

Using our estimate of (dJ/dP)/J, and Lounasmaa's
values of V '(BV/BE)r a—nd V at 13 atm and 2.02'K,
we 6nd that this maximum would occur at C„,,=27
cal mole ' deg. ' Such a value of C„,, would be reached
only extremely close to the P, line but it is undoubtedly

"These phenomena have been discussed from a different point
of view by E. G. Batyev, A. Z. Patashinskii, and V. L. Pokrovskii,
Zh. Eksperim. i Teor. Fiz. 47, 598 (1964) LEnglish transl. : Soviet
Phys. —JETP 20, 398 (1965)j.

The logarithmic increase of (BE/BT)rr starts some
tenths of a degree from the X point. If (BV/BP)r is 50
times too small at this point to show any anomaly, then,
because of the slow logarithmic change of C„with tem-
perature, its anomaly will not be observed until one is
many orders of magnitude closer to the P point. The
behavior of the thermodynamic coeScients is, therefore,
that expected from the theory. "

Equations (19) and (20) can be used to give a very
instructive insight into the behavior of C, as the P line
is approached. From thermodynamics

C„=C„+T(BV/BT)p'(BP/BV)r.

Then from Eq. (20), if one is fairly close to the X line,

C.=Cp+ T(C„,,/J)'(d J/dP)'(BP/B V)r . (25)

However, if one is so close to the X line that (BV/BP)r
has become very large, Eq. (19) gives, with Eq. (25),

an underestimate (though of the right order of magni-
tude), since Buckingham and Fairbank's estimate for
C„,), at this pressure was 40 cal mole ' deg

—'.

C„=C„+T(BP/BT) rr(BV/BT) r. (29)

If this is applied to the case where C„and C„are not
finite but C„ is—in which case (dP/dT)i=(BP/BT) v
at the X line —and if Y is so defined that it is constant
along the X line, then this equation yields Buckingham
and Fairbank's expression for the value of C, along the
X line.

If, on the other hand, Y (considered as a function of
P and T rather than a function of V and T) bears a
relation to the pressure such that (BY/BP)r and
(BY/BT)p are everywhere finite and (BY/BP)s is non-
vanishing, then Y is a pressure-like variable, and C„
belongs to one of a category of specific heats which
become in6nite along with C„.We can write

(BS/BT)r (BS/BT)p+(BS/BP) p(BP/BT) r, (30)

whence

C„=C, T(BV/BT) p(BP—/BT) r. (31)

Since (BP/BT)& —(BP/BY)z (BY——/BT) p cannot be
infinite, it is seen that if C„ is infinite either (BV/BT) p
or C„ is infinite. But these tend to become infinite to-
gether, unless (dP/dT)i, is zero, which would of course
give rise to an impossible situation. Now J may not be
a function solely of I' but, if it is a function of any
pressure-like variable, it should be possible, though
this has not been carried out, to use Y as a variable and
to 6nd another variable X to use in place of V, such
that XY has the dimensions of energy. Thus one could
get a simple formulation for the derivatives involving
the new variables. These could then be related to the
more usual themrodynamic coeKcients, but we would
already know that the A. line would be one with infinite
C~, with all the thermodynamic consequences arising
therefrom,

3. A POSSIBLE GENERALIZATION

It has been pointed out' that there is a whole category
of specific heats which become in6nite if C, becomes
infinite. If Y is some function of V and T such that
(BY/BV)& and (BY/BT)v are everywhere finite and
(BY/BV)z is nonvanishing, then Y may be called a
volume-like variable, and C„ is one of the category of
specific heats mentioned. The following general formula
(not dependent on the properties of Y) was derived for
C„:


