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The standard theory of fluctuations in thermodynamic variables in various ensembles is generalized to
nonthermodynamic variables: e.g., the mean-square fluctuations of the kinetic energy K in a classical micro-
canonical ensemble at fixed energy E is given, for large systems, by ((6K)?)/(K)=T[1-3/2C), where T is
the temperature (corresponding to the energy E) and C is the specific heat per particle (in units of Boltz-
mann’s constant). The general results may be expressed in terms of the asymptotic behavior of the Ursell
functions in various ensembles. Applications are made to molecular dynamic computations where time
averages correspond (via ergodicity) to phase averages in an ensemble with fixed energy and momentum.
The results are also useful for time-dependent correlations.

I. INTRODUCTION

IT is generally believed (and partially proven!) that
all thermodynamic properties of a physical system
may be computed from any of the various I'-space
ensembles, e.g., canonical, grand-canonical, micro-
canonical, constant-total-momentum, isobaric, etc.,
commonly used in statistical mechanics. The reason
for this is that in the thermodynamic limit (size of
system — ) appropriate to the various ensembles,
the expected values of phase functions’ corresponding
to “Intensive’” or per-unit-volume (per particle) proper-
ties of the system are independent of the ensemble used.
Care must be exercised, of course, in the region of
thermodynamic singularities, i.e., at phase transitions,
and we shall not discuss the relevant extensions here.
The kinetic energy per particle

K 1n~w~
k=—=—3 pd/2m (1.1)
N Ni=1

is an example of such an intensive property. Its value
may be computed in a canonical ensemble (c.e.) with
fixed reciprocal temperature 3, particle number N, and
volume €, it may also be computed in a microcanonical
ensemble (m.e.) at fixed N, @, and energy per particle

e=H/N=K/N+&/N,
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where
=32 ¢(gi—¢))
is the potential energy. The results differ only by terms

o(N) as N — o, with p=N/Q kept fixed2 That is,
separating explicitly the fixed parameters,

<k(QN7PN) I.BprN>= <k (QN)PN) I é,p,N>+o(N) )

where QV, P¥ denote the full system phase space of
coordinates and momenta (gi,- - -gw, p1,* *  pn), and

é=&(B,p,N)=(H (Q",P")/N|B,p,V)

is given the value obtained from the canonical ensemble.
Here the volume Q is fixed by rigid or periodic boundary
conditions, the precise nature of which is unimportant
to our considerations.

An equation similar to (1.3) holds for the virial

(1.2)

(1.3)

(14)

(w(Q",PY)= <Zi[-3—17;1n2+% 2 (a—a) -g;;_—q")b

=(Wx+Wa)=NP/p, (1.5)
where P is the pressure. In general, we expect an
ensemble-independent average in the thermodynamic
limit for the value per particle of a function 4 of the
form

N
4 (QNyPN) = Z a(qiypi; QN7PN) ’

=1

2 Explicit torms for the o (V) terms are given in J. L. Lebowitz
and J. K. Percus, Phys. Rev. 124, 1673 (1961) and references
quoted therein. Some of these have been used and verified ex-
plicitly in machine computations with 1000 particles by J. L.
Anderson, J. K. Percus, and J. Steadman (to be published).
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where

a(qi,p:; QV,PV)= 3 a(qs,pi; @i, Piss" * Qi P5n) ,  (1.6)
Il In

and

lgi—qjs| — .

Here # is independent of NV, and @ vanishes sufficiently
strongly at o« so that the integral over the q;, exists.
For large enough systems, we can then use any con-
venient ensemble to compute expectation values of
quantities like 4.

The situation is quite different, however, when we
consider fluctuations. Let us define

Loy= (AaA7>_<Aa><A “/> (1-7)

in any ensemble, for quantities of the form (1.6). Then
in the thermodynamic limit (in a single phase system),

we expect
1
lim | —Lyy |=la
(N)y—00 [(N) ‘YJ v

to exist, where we have used (V) instead of N to
include the possibility of a grand ensemble. The
quantity /.y will however nof be independent of the
ensemble. For example, if 4,=4,=H, then l,,=0 in
the m.e. but is proportional to the specific heat per
particle in the c.e. In comparing classical-canonical with
grand-canonical ensemble expectations, the momentum
distributions are identical. The relation between fluc-
tuations in functions of the coordinates is then ob-
tainable from the asymptotic properties of the spatial
distribution #,.:(qs,* * *qs+:) When the set of s particles
is far removed from the set of ¢ particles. Indeed, it has
been shown that?

a(qs,p:; Q5+ *pj,) — 0  when

(1.8)

gee: Mmeul®) > mE@m(e), (1.9)
ce: Map(N) = ”a(N)"z(N)—£X<pam(N))
N dp
an (N
X(ﬂ”ﬂ) , (1.10)
dp

in the grand-canonical and canonical ensemble, re-
spectively, where X is the isothermal compressibility.
It is our purpose here to obtain a general and useful
relation between fluctuations in different ensembles.
(Our analysis here will be restricted to classical
systems, the generalization to quantum systems may
involve problems of commutation relations.)

II. EXPECTATIONS UNDER TRANSFORMATIONS
OF ENSEMBLE

Suppose that we know the expected value of a
quantity 4 (R), where R denotes a point of the full

3 J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1673 (1961) ;
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phase space, in an ensemble specified by extensive
variables Vi, Vs, -+, as well as by parameters which
will not be specified since they will not be altered.
Hence

AV V)= / WR|Vy Ve, - )4 (RMR/
W(V1,V2- <), (2.1)

where W(R|V,Ve--+) is the appropriate statistical
weight and

W(Vl,Vz,---)=/W(R|V1,V2---)dR

=¥ (V1,Va--0)

(2.2)

the associated partition function, with the property:
that in the thermodynamic limit,

1
m —W(Vy, Vs )=y (1,05 - )

A (2.3)

exists, with v,=V;/(V). A Legendre transformation to
intensive variables X3, Xa'++ now results from the
definition

W(RIXl,Xz,"')=/"’/W(R‘Vth"')

Xexp[—X X;V.JdV, (2.4)

so that
e—‘I'(Xl,Xa---)=/. . .fe~[W(V1.V2-~)+EXin'IdV, (2.5)

and

(Ale,Xz"'>=6\I’(X1'X2"‘)/"'/(AlVl,Vz,"')

Xexp—[¥(Vi.Vy - )+2 X,V 1dV. (2.6)

In particular, we have from (2.5) and (2.6) the basic
expectations and fluctuations* (V=(V,), V,.=V,~7,)

ViX1,Xa, - )= —0¥ (X1, X, - +)/0X, .7
(OVaV;| X1, X, )= 020 (X1,Xs- - -)/0X:0X;
=—0V/0X,;=—aV,;/0X;. (2.8)

In the thermodynamic limit, the exponent W(V)
+2° XViin (2.5) and (2.6) goes to infinity as (), so
that the distribution in V space, in units of (V),
becomes infinitely sharp. Hence by a steepest descent
expansion, or any equivalent technique,’® (4|X) will
be given at finite (V) by (4 [(V(X))) plus a correction
series in ascending powers of (N)1. The seriés is most
directly obtained by a Taylor expansion about the

see also A. Meeron and Siegart, J. Math. Phys. 7, 741 (1966) ;
Z. Salsburg, J. Chem. Phys. 44, 3090 (1966), where extensive ugé
is made of these relations. :

“ See, e.g., L. D. Landau and E. M. Lifshitz, Statistical Plysics
iA;lghson-Wesley Publishing Company, Reading, Massachusetts,

958).
8 G. Horwitz, J. Math. Phys. (to-be published).
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limiting form:

(AIV)=(A | VEN+E 8V4(3/0T )4 | (VX))
+3 3 6VV (00T 0T A (VN +- -,

followed by an average defined by (2.6):

A VY
A|X)=(A(V)+3 X OVdVi| X)——
aV.aV;

+O0((4)/(N)).

Since numerical computations are simplest in a V
ensemble while analytical computations are simpler
in an X ensemble, (2.9) is more useful in its inverse
form, now reading

(2.9

54| X)
AV)=(4 | X)=3 T 6VaV;| X——
+O(4)/(V))
vV, 0%(4|X)
=A|X)+3 2
30X, oV.dV;

AT — )X
={4| >+723;an< )

7

d 9X; 9
=UX)+HE Y ———4|X),
AIRHE

where X=X(V) is the inverse function to (V(X)).
Applying (2.10) to AB, we have as well the transfor-
mation formula for fluctuations:

(348B| V)= (4B|V)— (4| V)(B|V)
= (3A3B|X)— Y (6V1oV;|X)

(2.10)

a4 |X)\ 79(B|X)
X( ov; )( 0V,~) 1)
: X) o(B|X
=(6A«SBIX>+Z?—{(—MAl s >, (2.12)
v, dX; 0X;

now to relative order O(1). The generalization of these
results to transformations between ensembles with
mixed intensive and extensive variables, e.g., isobaric
and grand canonical, is straightforward. [Equation
(2.11) can also be derived, formally at least, by con-
sidering generalized ensembles in which the functions
A and B play the role of additional V/’s with respect to
which the ensembles are always canonical, using thermo-
dynamic fluctuation theory and then setting the corre-
sponding X/’s equal to zero.]

We note here that the functions 4(R) and B(R)
could also depend on the time ¢ In particular, transport
coefficients can be expressed, via the Kubo relations,
as expectations of fluctuations in quantities like 4 (Ry)
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and B(R), where R, is the point in phase space at which
R arrives after a time f. Since (4 (R))=(4(R)), the
relation between (84 (R,)6B(R)) in different ensembles
is independent of ¢ and (2.11) then yields a general
relation between expressions for transport coefficients
in different ensembles.®

Asymptotic Form of the Correlation Functions

A particularly useful application of the general
formalism is to the distribution and Ursell functions in
the various ensembles. This leads to a generalization of
(1.10) from which the relation between fluctuations in
different ensembles may be found. Letting y;= (g:,ps),
we have for any ensemble’

(31,7 *88) = (2 Taeremeiy d(yiy—21) -+

8(y:,—2:)), (2.13)
which is of the form (1.6) for a given set of z/’s, the #,
now being, however, O(1) rather than O{()). Appli-
cation of (2.10) then shows at once that, with obvious
notation,

1s(V)—n,(X)=3%(0/0X)(8/0V)n(X). (2.14)

Equation (2.14) directly implies (2.10) as (4) may be
generally written as an integral over the #,.
Further, if we introduce the generating functional

1
ML1=T / ne(1ye -3 [+ S )y -y,
(2.15)
then
WLF| VI=nL 7| X143 (/3X) (8/aV)nL 7| X].

But then to the same order in (V), the generating
functional for the Ursell distribution” Fs(y1,:*-¥s),
where

Fi(y1)=n(y1), Fa(y1,y2) =n2(y1,y2)

—m(y)ni(ye), - -+ (2.16)

has the form

FLf|V]=Inn[f|V]=Inn[f|X]

1 9 9
- —. X .
+2n[f1Xj| po W%[fl 1 (@17

or

19 o
F[flV]“F[fIX]=55§'WF[f[X]

" X] aF[ X]. (218
+§aX L/ v f1X]. (2.18)

If the intensive ensemble is a grand ensemble and
we are considering the limit as a set of s particles diverge

6 See, e.g., M. S. Green, Phys. Rev. 119, 829 (1960) ; R. Zwan-
zig, Ann. Rev. Phys. Chem. 16, 67 (1965) for review and references.
7J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495 (1963).
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from a set of ¢ particles, then it is known that?
F PEN S d 0.

It follows then from (2.18) that

(2.19)

Fope(V) 19, X) oV aF(X) (2.20)
& —> -l T T ) .
“ 2 0V aX oV

which is a generalization of (1.10).

It should be noted that #, and F, are quantities
O(1), so that the right sides of (2.14) and (2.18) are
O((N)™). These corrections are therefore important
only when used in finding the expectations of quantities
like fluctuations which involve integrations over the
volume of the system without any “cutoff.” When that
happens, the first term on the right of (2.18) will give
a contribution of O(1), while the second term will be
of O({IV)) recovering the general form (2.11).

III. FLUCTUATIONS IN MOLECULAR
DYNAMIC COMPUTATIONS

In molecular dynamics calculations on high-speed
digital computers,®1° the nature of the system param-
eters is quite rigidly fixed. The calculations are done
by setting initial conditions for several hundred
particles interacting via some pair potential and re-
stricted to a box with periodic boundaries, and then
solving the classical equations of motion. Waiting a
certain amount of time for the system to “thermalize,”
time averages of quantities like 4, or fluctuations are
then computed:

1 to+T
- N N
Ao [ A.0Q7(),PY(1)dt,

0

(.1)

Ea'y= <A aA 'y>t- (A a)t(A 1)t-

Assuming the system to be ergodic, these time averages
will coincide with ensemble averages at fixed values of
any of the uniform constants of the motion which exist.
Consequently, the system is specified by extensive
parameters: total energy H=FE, total momentum M,
total particle number N, total volume Q.

Let us now compare this microcanonical ensemble of
molecular dynamics computations with the corre-
sponding canonical ensemble at fixed reciprocal tem-
perature 3, center-of-mass velocity v. Total volume
and particle number N are fixed in both. We shall
suppose that the system is maintained at M=0, so
that v=0 as well. Now for the canonical ensemble,

((GH)*)=—0(H)/3p=Np~*C
=NB*(Cx+CH, (3.2)
where Cg=3 is the kinetic component of the specific

(1;%) J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439
9 A. Rahman, Phys. Rev. 136, A405 (1964).
10 L., Verlet, Phys. Rev. (to be published).
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heat per particle, in units of Boltzmann’s constant &,
and C* is the potential component. Further, at v=0,

(OHOM ;)= —0(M)./95=0,

(GM)%)=(M)*=3N/8=—o(M)/ov8.  (3.3)
Equations (2.10) and (2.11) now become
190 8 9
(4| E, M=0)=(48, v=0)—~— — —
208 NC 98
1 9
X(A]B, y=0)—=——.—
2 9v 3NB v
X{(A[BV)|v=0, (3.4)
(545B|E, M=0)=(545B|8, v=0)——£2~@§3—>t
NC 38 8
1 (4): (B):
————— e — (3.5)
3NB dv v lvoo

We shall now use (3.5) to obtain theoretical values
for the fluctuations ((8K)?) and (315®) defined in (1.1)
and (1.5), which were “experimentally” measured by
Verlet?® and Rahman.?

(@K)|8, v=0)=—(8/38)(K)=3N /282,
so that from (3.4),

(3.6)

—1—((6K)2|E M—O)——3—(1— 3
N ’ o 2c>

1
= (G221 E, M=0). (3.)

In other words, the kinetic-energy fluctuation is a
direct measure of the specific heat, and of course,
since K+4® is constant, this is identical with the
potential-energy fluctuation. Similarly, 8W/dv=0 at
v=0 by parity and we find

N-(W 480 E, M=0)
=—N-1(0W4+0K | E, M=0)

=N"1(0Wqd®|8, v= 0)+N«1<§§>6<'W¢) (@)

B 4B

= (37%/2C)(8/9T)[(P/p)—T], (3.8)

where use has been made of the relation (3/98)(W|8)
= — (6WoH | 8).

Application to Computer “Experiments”

The specific heat can be computed, using (3.7), from
either the kinetic-energy or the potential-energy fluc-
tuations, which are theoretically equal in a machine
computation, where the equations of motion are inte-
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Taste I. Interaction part Ci of the specific heat per atom, in
units of the Boltzmann constant. (1): numerical differentiation of
the ‘intémal energy. (2): calculated value using-(3.9) with the

results (1) in the right-] hand side. (3): direct calculation of C*
using (3.9).

pd® r/e (i) Ci ) \c«‘/ ‘ "(3) C

0.85 2.89 0.73 0.63 0.59
2.20 0.79 0.78 0.78

1.21 0.95 0.89 0.84

1.13 0.99 0.86 0.78

0.88 1.11 1.19 1.24

0.75 2.84 0.56. 0.495 0.47
0.827 0.88 0.885 0.89

0.45 4.62 0.20 0.23 0.25
2.93 0.26 0.23 0.22

1.71 0.28 0.42 0.46

0.28 0.30 0 31

1.51

grated at constant density. This is only approximately
soin the calculations performed by one of us,* some of
the results’' of which will be given now as examples of
the preceding considerations; there, the integration
‘algorithm determines the positions at various times.
‘The velocities are then calculated by a ‘numerical
‘differentiation ~which introduces “a small apparent
fluctuation of the total energy. N umerically, however,
this effect is very small: The fluctuations in potential
and kinetic energy differ by less than 19, when the
time averages are performed on 1200 time steps of
10~ sec each, using a system of 864 particles simulating
argon molecules with the help of a Lennard-Jones
potentlal o(r)=4€[ (o/r)2— (o/7)®]. From (3.6), we
can write for the part C? of the specific heat due to the
interaction
Ci=C-%
= (B/N3C (@)~ (@)

In Table I [column labeled (1)] are glven some values
,of C¢, deduced from numerical differentiation of the
mteractlon part ¢ of the internal energy with respect to
‘the temperature along the three 1sochores, for which
the partlcle den51ty is of 0.85, 0.75, and 0.4 in units ¢3.
The precision is of the order of 5% The error on the
fluctuation of the potential energy is much larger, as
may be seen from Table I. In the column labeled (2)
are given the values obtained when, in the right-hand
side of (3.8),-C has been replaced by the value (1),
obtalned by numerical differentiation of the internal
‘energy. In the last column are given the values of Ci
derived entirely from (3.9). Although the values ob-
‘tairied" from' the first procedure——whlch was used to
display a more direct test of (3.9)—are somewhat
better, it is seen that the statistical errors are rather
large and may ‘reach 20% On the other hand, the
results. are sufficiently precise to illustrate the use of

(3.9)
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TaBiE II. p~19P/dT—1. (1) numerical differentiation of the
equation of state. (2) calculated value using (3.8).

H @
1-0P 19P
- 1) - 1)
pad T/e p 0T p 0T
0.85 2.89 4.3 33
2.20 44 4.0
1.21 49 4.6
1.13 5.0 4.8
0.88 6.0 6.4
0.75 2.84 34 3.0
0.827 4.9 4.7

(3:9) to calculate the specific heat in the microcanonical
‘ensemble. The agreement with experiment is certamly
good for the isochore at po®=0.45, where the experi-
mental data of Levelt" and the internal energy calcu-
lated from molecular dynamics agree very well. For
the two high-density isotherms, we know that the
equation of state (P/pkT) derived from the molecular
dynamics computations agree very well with experi-
ment. No direct comparison is possible for the internal
energies. Some experimental data are available at
temperatures and densities rather near some of the
points of Table I:

For po®=0.84, (T/€)=0.836, the experimental value
is Ci=1.07, which should be compared with the value
1.11 at po®=0.85, T//e=0.88; for po®=0.798, T/e=0.92,

Ci=0.96 experimentally; at po®=0.75, T/e=0.\827,

Ci=0.88, from the molecular dynamics computation.
The results are in reasonable agreement.

Also, a comparison can be made with the data which
can be extracted from Rahman’s work?; for about 800
steps of 107 sec, at 7/e=0. 79, pa3—0 82, the value
Ci=0.81 can be 'der,ived from the temperature fluc-
tuation given by Rahman.

The same kind-of analysis can be made using the
fluctuation of the product of the virial and the potential
energy [Eq (3.8)7). As above, we compare the results
derived, using the formula where C has been obtained
from the computed internal energy, with the results
we get by differentiating the equation of state [column
labeled (2) in Table II, precision around 5% 7]. Again,
the statistical error on the fluctuation is larger, but the
over-all’ agreement is satlsfactory The agreement with
experiment is also good in view of the fact that the
equation of state obtamed from computatlon fits very
well with the argon data.
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