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The standard theory of fluctuations in thermodynamic variables in various ensembles is generalized to
nonthermodynamic variables: e.g., the mean-square fluctuations of the kinetic energy E in a classical micro-
canonical ensemble at axed energy B is given, for large systems, by ((bE)')/(E) = T[1 3/2C), w—here T is
the temperature (corresponding to the energy E) and C is the speci6c heat per particle (in units of Boltz-
mann's constant). The general results may be expressed in terms of the asymptotic behavior of the Ursell
functions in various ensembles. Applications are made to molecular dynamic computations where time
averages correspond (via ergodicity) to phase averages in an ensemble with fixed energy and momentum.
The results are also useful for time-dependent correlations.

I. INTRODUCTION
' 'T is generally believed (and partially proven') that
~ - all thermodynamic properties of a physical system
may be computed from any of the various I'-space
ensembles, e.g., canonical, grand-canonical, micro-
canonical, constant-total-momentum, isobaric, etc.,
commonly used in statistical mechanics. The reason
for this is that in the thermodynamic limit (size of

system —+ oo) appropriate to the various ensembles,

the expected values of phase functions corresponding
to "intensive" or per-unit-volume (per particle) proper-
ties of the system are independent of the ensemble used.
Care must be exercised, of course, in the region of
thermodynamic singularities, i.e., at phase transitions,
and we shall not discuss the relevant extensions here.

The kinetic energy per particle

K 1 ~
k=—=—P P,s/2nt

E

where

is the potential energy. The results differ only by terms
o(N) as N~ oo, with p=N/0 kept fixed. ' That is,
separating explicitly the fixed parameters,

(k(Q",P") l&,p,N) =(&(Q",P ) I e,p,N)+o(N), (1.3)

where Q~, P~ denote the full system phase space of
coordinates and momenta (gi, Ilier, pi, piv), and

e= e(f3 p, N) = (H (Q~,Ps')/—N
I P p,N)

is given the value obtained from the canonical ensemble.
Here the volume 0 is axed by rigid or periodic boundary
conditions, the precise nature of which is unimportant
to our considerations.

An equation similar to (1.3) holds for the virial

is an example of such an intensive property. Its value

may be computed in a canonical ensemble (c.e.) with

fixed reciprocal temperature P, particle number N, and

volume 0, it may also be computed in a microcanonical

ensemble (m.e.) at fixed N, 0, and energy per particle

e= H/N =K/N+4'/N,
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' See, e.g., M. E.Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964);
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(%"x+&e) =NP/—p, (1.5)

where P is the pressure. In general, we expect an
ensemble-independent average in the thermodynamic
limit for the value per particle of a function 3 of the
form

g (QN PN) —Q tt(q, p. . Qx Piv)

~ Explicit forms for the o($) terms are given in J. L. Lebowitz
and J. K. Percus, Phys. Rev. 124, 1673 (1961) and references
quoted therein. Some of these have been used and veri6ed ex-
plicitly in machine computations with 1000 particles by J. L.
Anderson, J. K. Percus, and J. Steadman (to be published).

250



where phase space, in an ensemble speci6ed by extensive
variables Vj, V2, ~ ~, as mell as by parameters which.

11 .t b. 'sp-'f. ed'. .e they Il ot be .lte.ed.
Hence

to exist, where we have used (N) instead of N to
include the possibility of a grand ensemble. The
quantity / ~ mill however Sot be independent of the
ensemble, For example, if 3 =A~=H, then 1 ~=0 in.

the m.e. but is proportional to the specific heat per
particle in the c.c. In comparing classical-canonical with
grand-canonical ensemble expectations, the momentum
distributions are identical. The relation between Auc-

tuations in functions of the coordinates is then ob-
tainable from the asymptotic properties of the spatial
distribution Is,+g(qt, q,+~) when the set of s particles
is far removed from the set of t particles. Indeed, it has
been shown that'

g.c.e. : ts,+((z) —& N, (s)N, (s),

c,c. :
,r a~, {N)

e,~,(N) -+ N, (N)ng(N) ——X p
Bp

g p, 1.10

in the grand-canonical and canonical ensembl, re-
spectively, where X is the isothermal compressibility.
It ls our purpose here to ObtalQ a gcncral and useful
relation between Auctuatioiis in diGercnt. ensembles.
(Our analysis here will be restricted to classical
systems, the generalization to quantum systems may
involve problems of commutation relations. )

II. EXPECTATIONS UNDER TRANSFORMATIONS
OF ENSEMBLE

Suppose that we knorv the expected value .of a
quantity A(R), where R denotes a point of the full

' J.L. Lebowitz aud J. K. Percus, Phys. Rev. 122, 1673 (1961);

g(q;, y,", q, , p, „) 0 when
~ q,—q, , t

Herc n is independent of Ã, and a vanishes su%ciently
strongly at ~ so that the integral over the g;, exists.
For large enough systems, we can then use any con-
venient ensemble to compute expectation values of
quantities like A.

The situation is quite di6erent, however, when we
consider Quctuations. Lct us define

L,=(A 2,)—(A )(A,) {1.7)

in any ensemble, for quantities of the form (1.6). Then
Ill tile 'thel'IIlodyIIRIIIIC llnllt {111R sIIlglc pllRsc system)
we expect

(Ai VI, Vs, )= W(RiUI, Vs, )A(R)dR/

W(VI, Vs ~ ), (2.1)

where W(R~ VI, Vs ~ ) is the appropriate stattsttcal
%'clght and

W(VI Vs )= W(RI VI, Vs )dR

=e-&(&&,v's" ) (2 2)

the associated partltlon functloQ, wjth thc property
that in the thermodynamic limit,

lim -4(VI, Vs ) =if(ttt, ss )(%~co (N)
(2.3)

exists, with s;= V;/(N). A Legendre transformation to
intensive variables X&, X2 ~ ~ now results from the
definition

W(R i XI,Xs, ~ ~ )= W(Ri VI, Vs )

so that
X«pL —P X;V jdV (2 4)

s-s'I»»" )= . . . e-[s(&i,vs" )+zx;v;Igy

(a~x„xs".)=, &x.x "& . . . (q~V, V, . . .)

Xcxp —Lq'(VI. Vs" )+p X~V~jdV. (2.6)

Jn parttcular wc 11RVC fI'OI11 (2.5) RIld {2.6) the
expectations and fluctuations4 (V;=—(V,) JV,.= V,. V,)

V'(XI»s )= —e)q'(XI, Xs )/&X; (2 7)

(&Vh+XI,Xs, . . .)=a%(XI,Xs. - )/aX;e)X;
= —aV/aX = —aV/aX (2 g)

'thc thelmodynRmic limit, the exponent .qf (p)
+Z XP~ in (2.5) and {2.&) goes to infinity as (N), so
that tile dlst11buttoll III V space, in, units of (N) .

becomes in6nitely sharp. Hence by a steepest dcsccrit
expansion, or any equivalent technique, ' ' (A ~X) will
be given at finite (N) by (A

~ (V(X))) plus a correction
series in ascending powers of (N) '. The series is most
directly obtained by a Taylor expansion-about the

see also A. Meeron and Siegart, J. Math. Phys. 7, 741 I'j.966);
Z. Salsburg, I. Chem. Phys. 44, 3090 {1966),vvhere extensive use
is made of these relations.

4 See, e.g., L. D. Landau and E. M. Lifshltz, Statzstzcul I'hyszis
(Addison-%'esley Publishing Company, Reading, :. Massachusetts,
1958).' G. Honjritz, J. Math. Phys. (to be pubhshed).
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=(A IX)+-', P
av; a'&A lx)

BX; BV;BV,

8 8
=(A IX)+-', P (A IX)

8X; BV;

limiting form:

&A I
v&= &A I &v(x)&)+ Z av, (a/av;) &A l(v(x) »

+-', p av, av, (a/av, av, )(A l&v(x)))+ ",
followed by an average defined by (2.6):

a' A v)
&A Ix&= &A I &v))+-; Z &av,av, Ix)

av,av;

+O((A)/(N)) . (2.9)

Since numerical computations are simplest in a V
ensemble while analytical computations are simpler
in an X ensemble, (2.9) is more useful in its inverse

form, now reading
as&A IX&

&Al&v»=&Alx& ——,'p &av,av, lx&
BV,BV;

+O((A&/&W)

and B(R), where R& is the point in phase space at which
R arrives after a time t. Since (A(R~)&=(A(R)), the
relation between &5A (R,)8B(R)) in different ensembles
is independent of t and (2.11) then yields a general
relation between expressions for transport coefficients
in different ensembles. '

Asymptotic Form of the Corre1ation Functions

A particularly useful application of the general
formalism is to the distribution and Ursell functions in
the various ensembles. This leads to a generalization of
(1.10) from which the relation between fluctuations in
different ensembles may be found. Letting y;= (q;,p;),
we have for any ensemble~

m, (sr, .,s,)= &Q irg g;,..h. (y;,—sr)

a(y'. -')&, (2»)
which is of the form (1.6) for a given set of s s, the n,
now being, however, 0(1) rather than 0&(N)). Appli-
cation of (2.10) then shows at once that, with obvious
notation,

rz, (V) —I, (X)=-,'(a/aX) (a/aV)n, (X) . (2.14)

Equation (2.14) directly implies (2.10) as (A) may be
generally written as an integral over the e,.

Further, if we introduce the generating functional
8 BX; 8

=(A IX)+-', g (A IX),
ax;aV; aX,

(2.10)
~Lf]=—2 — &.(yt, ",y.)f(yt) f(y.)dyt

s
where X=X(V) is the inverse function to (V(X)).
Applying (2.10) to AB, we have as well the transfor- then

mation formula for fluctuations: ~Lf I v]=~Lfl X]+l(a/ax)(a/aV)~Lfl X]

(2.15)

&»»lv&=&ABlv& —(A I v&&Blv) But then to the same order in (tV&, the generating

=&aAaBlx) —p &av,av, lx) functional for the Ursell distribution' Ii, (yt, y,),
where

a(A IX) a(BIX))
X

I
(2.11)

av, av; i —mr (yt)It (ys), ~ ~ (2.16)

BX;

ax, a(A Ix) a(Blx)
=(aAhBlx)+p

BV, BX;

has the form

(212) FlflV]=lnnl flV]=lnel flX]

now to relative order 0(1).The generalization of these

results to transformations between ensembles with
mixed intensive and extensive variables, e.g., isobaric
and grand canonical, is straightforward. LEquation

(2.11) can also be derived, formally at least, by con-

sidering generalized ensembles in which the functions

A and 8 play the role of.additional V s with respect to
which the ensembles are always canonical, using thermo-

dynamic fluctuation theory and then setting the corre-

sponding X s equal to zero.]
We note here that the functions A(R) and B(R)

could also depend on the time t. In particular, transport
coefficients can be expressed, via the Kubo relations,

as expectations of fluctuations in quantities like A (R~)

1 1 a a

2 rzLflx] aX V
ol

1 8 8
~Lflv] —RLflx]=- ~Lflx]

2BX BV

1 a 8+- RLfl X] RI:fl X] (2 1g)
2aX aV

If the intensive ensemble is a grand ensemble and
we are considering the limit as a set of s particles diverge

' See, e.g. , M. S. Green, Phys. Rev. 119, 829 {1960);R. Zwan-
zig, Ann. Rev. Phys. Chem. 16,67 {1965)for review and references.

' J.L. Lebowitz and J.K. Percus, J.Math. Phys. 4, 1495 (1963).



from a set of $ paIticles~ then 1t ls kIlown that

F,+g —+ 0.
It follows then from (2.18) that

(2.19)

1B BV B
F,+,(V) -+ — F,{X) FI(X), (2.20)

2BV BX BV

wlllcll ls R gcncrahzatlon of (1.10).
It should be noted that e, and Ii, are quantities

0{1),so that the right sides of (2.14) and. (2.18) are
O{{$)-').These corrections are therefore important
only vrhen used, in ending the expectations of quantities
like Quctuations which involve integrations over the
volume of the system vrithout any "cuto6."%hen that
happens, the 6rst term on the right of (2.18) will give
a contribution of 0(1), while the second term will be
of 0({Ã)) recovering the general form (2.11).

I...= (A.A,),—(A.),(A„),.
Assuming the system to be ergodic, these time averages
vrill coincide vrith ensemble averages at 6xed values of
any of the uniform constants of the motion vrhich exist.
Consequently, the system is speci6ed by extensive
parameters: total energy II=E, total momentum M,
total particle number E, total volume Q.

Let us now compare this microcanonical ensemble of
molecular dynamics computations vrith the corre-
sponding canonical ensemble at Gxed reciprocal tem-
perature p, center-of-mass velocity v. Total volume 0
and. particle number E are 6xed in both. Ke shall
sllpposc tlla't tile systclll ls IllslIltMIlcd at M=0, so
that v=0 as wrel. Now for the canonical ensemble,

((BH)')= B(H)/BP =XP—'C-
= lVp s(CIr+C'), (3.2)

vrhere C~=~3 is the kinetic component of the speci6c

'B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439
(1960).

o A. Rahman, Phys. Rev. 136, A405 (1964).
's L. Verlet, Phys. Rev. (to be published}.

III. FLUCTUATIONS IN MOLECULAR
DYNAMIC COMPUTATIONS

In molecular dynamics calculations on high-speed
digital computers, ~'0 the nature of the system param-
eters is quite rigidly 6xed. The calculations are done
by setting initial conditions for several hundred,
particles interacting via some pair potential and re-
stricted to a box with periodic boundaries, and then
solving the classical equations of motion. Waiting a
certain amount of time for the system to "thermalize, "
time averages of quantities like A or fluctuations are
then computed:

(3.1)

heat per particle, in units of Boltzmann's constant k,
and C' is the potential component. Further, at v=0,

(BHMf;) = —B(M),/Bp =0,
{(m)I)= (M)s= m/P= —B(M)/BvP.

Equations (2.10) and (2.11) now become
1BP'B

(AlE, M=O)=(Alp, v=o) ————
2 BPEC BP

(3.3)

8
X{AlP, v=o)——

2 BV33TP Bv

x &A IP,v)l, „ (3.4)

(BABBlE, M=O)=(bASBlP, v=0)—
P' &A)~ &~)~

EC Bp Bp

1 &A) {E)
(3.5)3' Bv Bv w

We shall now use (3.5) to obtain theoretical values
for the fluctuations ((SK)') and {&WBC)de6ned in (1.1)
and (1.5), which were "experimentally" measured by
Verletm and Rahman. '

&(BK)'lP v=o) = (B/BP)&K—)=3&/2P', (3.6)
so that from (3.4),

1 3 3~—((BK)slE, M=0)=
2P 2C)

=—{(BC) lE, M=O). (3.y)

In other vrords, the kinetic-energy Quctuation is a
direct measure of the speci6c heat, and of course,
since K+4 is constant, this is identical with the
potential-energy fluctuation. Similarly, B%/BV=O at
v=0 by parity and vre Gnd

iV- (WV.BClE M=0)

N'&bWeBKl E,—M=O)
Bp) B&NS) B{C)=E '(~ N lP V=O)-+X
BE) Bp Bp

= (3T'/2C) (B/BT)((F/ )—Tj,
where use has been made Qf 'tllc I'clR'tlon (B/Bp)(~ I p)=-{B»lp)

Ayylication to Comyutex "Exyeximents"

The specific heat can be computed, using (3.7), from
either the kinetic-energy or the potential-energy Ruc-
tuations, which are theoretically equal in a machine
computation, where the equations of motion are inte-
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0.85 2.89
2.20
1.2.1
113
0.88

(1) C'

0.73
0.79
0.95
0.99'
1.11

(2) C'

0.63
0.78
0.89
0.86
1.19

(3) C4

0.59-
0.78
0.84
0.78
1.24

TABLE I. Interaction part C' of the specific heat per atom, in
uni'ts o'f the Soltzmann constant. (1):ijujiierical diBerentiation of
the'internal eriergy. (2): calculated value" using: (3.9) with the
results (1) in the right-hand, side. (3): direct calculation of C'
using (3.9).

po

0.85

T/e

2.89
2.20
1.21
1.13
0.88

1 BP

pBT j
4.3
4.4
49
5.0
6.0

(2)
(1 BP

EpaT

3.3
40
46
48
6.4

TABLE II. p 'BI /BT—1'. (1) numerical'differentiation of .the
equation of state. (2) calculated value using (3.8).

0.75 2.84
0.827

0.56.
0.88

0.495
0.885

0.47
0.89

0.75 2.84
0.827

3.4-

49
3.0

0.45 4.62
2.93
1.71
1.51

0.20
0.26
0.28
0.28

0.23
0.23
0.42
0.30

0.25
0.22
0,46
0.31

grated. at constant density. This is only approximately
so:in the calculations performed by one of us, 's some of

the results'of which will be given now as examples of
the preceding considerations; there, the integration

'algorithm de'termines th 'positi'ops a& various 'times.

The velocities are then calculated by a numerical

differentiatiorri which introduces ' a small apparent
fluctuation of the total energy. Numerically, however,

this e6ect is very small: The Quctuations in potential
and kinetic' energy differ by less than 1% when the

time averages are performed on 1200 time steps of

10 '4 sec each, using a system of 864 particles simulating

argon molecules with the help of a Lennard-Jones

potential y(r) =4e[(a/r)" (o/ )r'$r. From —(3,.6), we

can write for the part C' of the specific heat due to the

interaction
O'= C--'

2

= ()3'/&)-'C((C") —&C)') (3 9)

In Table I Lcolumn labeled (1)] are given some values

,,of C,', deduced. .from numerical differentiation of the

interaction part of the internal energy with respect to
the temperature along the three isochores, for which

the particle density is of 0.85, 0.75, and 0.4 in units a. '.
The precision is of the order of 5%(. The err'or on the

fluctuation of the potential energy. is much larger, as

may be seen from Table I. In the column labeled (2)
are given the values obtained when, in the right-band

side of,„-(3.8),: C has been replaced by the value (1),
obtained by numerical diRerentiation of the internal

'@meggy. In the last colulnn 'are. given the values'of C'

derived entirely from (3.9). Although the values ob-

'tahled'from the first proced'ut"" whi'cd was used to

display a more direct test of (3.9)—'are somewhat

better, it is seen that the statistical errors are rather

large and m'ay'reach 20%; On the other hand, the

:Icsislts, pre, suKcigntly prgcise to illustrate the use of

(3.9) to calculate the specific heat in the microcanonical
. ensemble. ,The agreement with experiment is certainly
good for the isochore at po'=0.45, where the experi-
mental data of Levelt" and the internal energy calcu-
lated from molecular dynamics agree very well. For
the two high-density isotherms, we know that the
equation of state (P/pkT) derived from the molecular
dynamics computations agree very well with experi-
ment. No direct comparison is possible for the internal
energies. Some experimental data are available at
temperatures and densities rather near some of the
points of Table I:

For po"=0;84, (Tje)=0,836, the experimental value
is C'=1.07', which should be compared with the value
1.11 at po'=0. 85, T/e= 0.88; for po'=0. 798, 2'/e=0. 92,
C'= 0.96 experimentally; at po'= 0.75, T/e= 0.827,
C'=0.88, from the molecular dynamics computation.
The results are in reasonable agreement.

Also, a comparison can be made w&th the data which
can be extracted from Rahman's work', for about 800
steps of 10 " sec, at T/e=0. 79,

' po'=0.82, the value
C'=0.81 cap be derived:from the temperature Quc-

tuation given by Rahman.
The same kind of analysis cari be made -using the

fluctuation of the product of the virial and the potential
energy [Eq. (3.8)j.As above, we compare the results
derived, using the formula where C has been obtained
from the computed internal'energy, with the results
we get by differentiating the equation of state t column
labeled (2) in Table II precision around 5%j. Again,
the statis'tical error on the fiuctuatiori is larger, but the
ever-all agreement is satisfactory. The agreemeiit with
experiment is also good in view of the fact that the
equation of state obtained from computation Gts very
well with the argon data.
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