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The parametric excitation of the modes of an infinite plasma by intense incident radiation is studied on
the basis of the Vlasov equation. It is found that the modes can be driven into unstable oscillations for in-
cident frequencies in the three regions co0 co~„co„,+co;, and 2'„„where'~, is the electron plasma fre-
quency, and co; is the ion acoustic frequency. In the limit of weak intensities, the features of the two reso-
nances cot)~co„,+co; and 2'„,are found to be in substantial agreement with the results of DuBois and Gold-
man. For larger intensities it is found that the resonance eu~~m„, +co; is restricted to frequencies coo which
are not more than 4'~; above or co; below this value, and has a maximum growth rate of 0.05co„,.The reso-
nance near co~~c0„, is found to be dominated by collisional damping if y/u„, &10 4, and limited to a range
of frequencies coo of only c0„;/100. The present results do not generally agree with the results obtained by
Silin. These results indicate that the usual harmonic approximation for the plasma is justi6ed except in the
above-mentioned frequency regions.

I. INTRODUCTION
' "N recent years there has been considerable interest in
- ~ the effects which arise from the interaction of intense
radiation with a plasma. To investigate the nonlinear
interactions between the radiation and the plasma, at
least two simplifying approaches are possible. The most
common approach has been to treat the plasma as a
linear system which can be described by the usual linear
modes of oscillation t given by the zeros of the linear
dielectric function e(k,&e)j. These modes are then as-
sumed to be excited by, and subsequently scatter, the
incoming radiation. Studies based on this approach have
been used to examine such effects as optical mixing, '
"light-by-light" scattering, ' and stimulated Raman
scattering. ' A unified treatment of these various effects
can be found in a recent paper by Baym and Hell-
warth. 4 All of these phenomena require radiation of
extreme intensity (10'—10" W/cm') to produce even
marginally observable results. The essential point, for
our purposes, is simply to note that all of these effects
have been studied under the assumption that the plasma
can be treated in a linear fashion (what Baym and
Hellwarth termed the "harmonic approximation"),
whereas the radiation is treated nonlinearly. In par-
ticular it has been assumed that the radiation does not
produce any significant modifications of the linear
modes of the plasma.

A second possible approach is to ignore the scattering
of the radiation as it passes through the plasma, and
instead to concentrate on the modification which it
induces in the linear modes of the plasma. This approach
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can then be used to examine the harmonic approxima-
tion on which the above studies are based. Obviously, if
the harmonic approximation fails, and the radiation
also becomes strongly modified, then it becomes neces-
sary to treat both the radiation and the plasma in a non-
linear manner. However, in order to determine the
validity of the harmonic approximation, it suSces to
treat the radiation as given, and the amplitudes of the
plasma oscillations as small (i.e., neglecting mode-mode
coupling). It should be noted that the latter approxima-
tion does not generally hold for a Gnite plasma where
large amplitude oscillations may be excited by intense
radiation and mode-mode coupling becomes important.

The most interesting effect which arises from this
approach is the possibility of generating instabilities in
the modes by a parameteric action of the radiation field.
This possibility has also been noted recently by Silin'
and by DuBois and Goldman. ' The analysis of DuBois
and Goldman is based on a Green's-function perturba-
tive analysis, which is restricted to the case when the
radiation-induced energy of the particles is small com-
pared to their thermal energy. They showed that, even
with this restriction, the plasma can be unstable to
certain applied frequencies. However, in order to justify
the harmonic approximation for greater intensities, it is
important to estimate the range of frequencies which
produce instabilities when the intensity is very large. In
the present analysis their restriction on the intensity is
removed, and the parametric effects are examined from
the point of view of the Vlasov equation. The analysis
of Silin is largely based on the hydrodynamic equations
for a cold plasma. Therefore, he considers the case when
the radiation-induced energy of the particles is large
compared to their thermal energy, which should comple-
ment the work of DuBois and Goldman. However, since
he neglects the spatial variation of the applied electric
Geld, he failed to obtain one unstable region and his

' V. P. Silin, Zh. Eksperim. i Teor. Fiz. 48, 1679 (1965) t Eng-
lish transl. : Soviet Phys. —IETP 21, 1127 (1965)j.' D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14, 544
(1965).
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other regions of instability do not appear to bear any
similarity with what is found in the present study.
Moreover, it will be shown that there can be a "6ne
structure" in the unstable regions near or~., which
neither of the investigators appear to have noticed.

The physical origin of the parametric effects of
radiation on the modes in an in6nite plasma is fairly
easy to understand on a qualitative basis. An applied
electric field Ep cos(kp'r pppt—) generates drift veloci-
ties in the components of the plasma (qEp/mpip)
Xsin(kp r—a&pt), where q and m is the charge and mass
of that component. The density perturbations of
wave number k then have their charged components
shifted by a relative distance (q/m —q'/m') (k.Ep/pop'k)

X cos (kp ' r capt). Provided that the charge-to-mass
ratio of the mobile components is not the same, the
field then causes the modes of frequency cu to acquire
frequency components ncoo+co. In this way, the rela-
tively undamped high- and low-frequency modes of the
plasma (with frequency pplr and ppz, , respectively) acquire
frequency components moo+~II and eoro+~1.. Several
possibilities then arise. As noted by DuBois and Gold-
man, if cpp—MIr+ppz then Mp

—cpIi—ppr. so that the radia-
tion, together with the high-frequency mode, tends to
excite the low-frequency mode. Moreover, since
coo—coL, co~, the low-frequency mode and the radiation
act to also excite the high-frequency mode. This inter-
play between the high-frequency and low-frequency
modes and the radiation can then lead to instabilities of
both modes. This may occur even if the low-frequency
mode is strongly Landau damped, as in the case when
the electron and ion temperatures are comparable.
Another possibility which was apparently not con-
sidered by DuBois and Goldman, is when coo~co~. In
this case the high-frequency mode and the radiation
produce a density modulation with a frequency near
2~II, and this in turn interacts again with the high-
frequency mode, producing a frequency component co&,

which can again lead to instabilities. This, together with
still another resonance near ~o ~~—coL,, produces a fine
structure in the unstable region near the electron plasma
frequency. Since the separation between these reso-
nances is only of the order of the ion plasma (or acoustic)
frequency, this fine structure may only be of academic
interest. However, since the physical mechanism which
produces these resonances is quite distinct, and since
it is dificult to judge a priori the width of these reso-
nances, we will consider both of them in this study. The
work of Silin does not distinguish between these reso-
nances, nor is it clear to us what physical mechanism is
responsible for his instabilities. Finally, the spatial
variation of the applied electric field can produce an
instability at the higher frequency ~0 2coII, provided
that k kp does not vanish. This instability, which was

pointed out by DuBois and Goldman, does not depend
on the interaction between two types of modes in the
plasma. It is the highest frequency parametric in-
stability in a plasma. The in6nite number of sub-

harmonic instabilities (e.g., ppp~&orr/ip), which were con-
sidered by Silin, will not be studied here, since these
cases do not appear to correspond to a physically
realizable situation (the frequency happ must be larger
than the electron plasma frequency in order for the
radiation to enter the plasma).

In the following section we will 6rst obtain the basic
equations on which our analysis will be based. In Sec.
III, we will examine instabilities which are present in
the dipole approximation (kp ——0), and make some
comparisons of our results with those obtained by Silin
and by DuBois and Goldman. In Sec. IV, we will
investigate the instabilities which arise from the spatial
variation of the applied electric field.

II. BASIC EQUATIONS

We begin by considering an infinite plasma described
by the Vlasov equation. We assume that the plasma is
subjected to a transverse electric field

Ep(i' t) =Ep cos(kp'r pppt) (kp'Ep=0) . (1)

The modification of this radiation field due to the
plasma can be approximated by an index of refraction,
n(pip) = (1—pp„p/capp)'", and the usual relationship ckp
= rl(pip)pip. In order for this 6eld to penetrate the plasma,
we must take ~0 to be somewhat larger than the electron
plasma frequency cps, = (4~le'/m)'". Finally, the effects
due to the magnetic 6eld will be ignored, since we will
assume that the thermal velocities of the particles is
much less than the velocity of light.

If there are no density variations in the plasma, then
the distribution function for each component satisfies

~f ~f q ~f—+v —+—Ep(r, t) —= 0.
8t Br m Bv

A solution of this equation, which satisfies the condition
of no density variations, is f(r,v, t) = fp(u), where

u= v —(qEp/m) dt' cos(kp t r—v(t —t')]—~ppt')

are constants of the motion Lr may also be a function
of the constants kp. (r vt) and EpXV].—The functions

fp(u) are arbitrary, and can be selected on the basis of
considerations which are actually not included explicitly
in the collisionless approximation used here. Thus, for
example, collisions within each component would tend
to make the functions Maxwellian (possibly with a
constant drift velocity). While we will take the functions

fp(u) to be Maxwellian in order to obtain quantitative
results, their functional form can be left arbitrary for
the present. We will refer to any group of particles which
is described by a different function fp(u) as a different
"component" of the plasma, even if the charge and
mass is the same (e.g., two groups of electrons moving
relative to each other).



The constants of the motion u can be simplified if
it is assumed (as we have) that the thermal velocities
are all much less than the velocity of light. In this case,
the expression for u may be approximated by

u=v (—qEs/nues) srn(ks r—rept).

We must consider perturbations of the plasma which
are superimposed on this stationary state. The linearized
equations for the perturbed distribution functions are

~fr ~fr q ~fr
+v +—Es(r, t) ——Vy =0. (3)

Bt Bf ts Bv 8$ Bv

This is a linear homogeneous equation which contains
a given function Es(r, 1) as a parameter (or coefficient).
For this reason, it is co~on to call excitations due to
such a term palamctI'1c excitatlons. Thc clcctI'ostat1C
potential $(r, l) satisffed Poisson's equation

and then taking the Fourier transform with respect to
t'lt and time yields

Oo a
(k u—rd)F(k, u, r0) —(q/e) g (i)"J„(p)(k+nks)

BN

Xy(k+nks, ro+mus) =0, (8)

where p,=q.k Es/m~ss. In the present notation, the
perturbed quantities fr go as e'&"' "'& times the expo-
nential factor in Eq. (5). Introducing the function

p(k, ro) =q dssrF(k, u, r0),

then, from (8) we obtain

q' (k+Nks) (8fs/Bu)
p(k, ro) = ——Q (i)"J„(p) -- d'I

Co —k u+ib

V'y= —4rr p dsv q.fr. (r,v, l), (4) Xy(k+trke, r0+rr~s), (9)

where the sum is over the various components (as de-
scribed above). We will now follow a method which is
very similar to one used by Aliev and Silin, ~ except that
we will retain the spatial variation of the applied electric
6eld. We take the spatial variation of the perturbed.
quantities in the direction perpendicular to ko to go as
e'"&'" (where ks.kr ——0), and set

fr (r,v, t) = F (r„,k„u,t)e'"r'
)&expf —s(qk E,/rn~, ') cos(ks r—~,&)}, (3)

where r„=ks r/ks. The new distribution functions,
F(r, &,k&,u, i), describe the behavior of the component in
a frame of reference in which there is no induced drift
velocity. These functions satisfy the equations

BP BP
+&kr'uF+Nii--
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where 8 is a positive ininitesimal which yields the usual
Landau contour (this will be suppressed in what
follows). Also, if (5) is substituted into Poisson s equa-
tion, the Fourier transformed equation becomes Lagain
with the use of (7)j,

4x
4(k,~)=—Z Z (i)"~-(—p-)

n=x
Xp.(k+Nks, &0+rrros) . (10)

There are now several possible ways to proceed. The
most obvious thing to do at this point is to eliminate
the quantities p, (k,co) between Eqs. (9) and (10). The
resulting expression for the Fourier components of p is

y(k, rv) = —Z & (k,ro, ko,res)y(k+mko, rs+rr roo), (11)

4Ãgtr
r)fs q r)4' r)fo S„(k,ro,ks, res) = (i)"p p J„(p,)J (p.)
BU 8$8t') f BN f t

where f }is the same as in Eq. (5).Dividing Eq. (6) by
this term, and using the Bessel function identity'

expLiA cos(ko r—(sot)$= Q (i)"J' (A)e'"'"" "& '/)

Yu M. Aliev and V. P. Silin, Zh. Eksperim. i Teor. Fix. 48,
901 (1965) LEngIish transl. : Soviet Phys. —JETP 21, 601 (1965)g.

g A rather trivial point shouM be mentioned. The choice of
cos(h0. r—eo0$) instead of sinC'ko x' —+0') has been made because it
introduces some simplicity into the analysis at a later stage (Sec.
III, Case 3).It is essentially for the same reason that the Mathieu
and Hill equations are written with cosine parametric terms. This
choice introduces the factors ($) ln (7) %'hlch always drop out ln
the anal dispersion relations, so we do not nse the notation I~(iA).

1++&.(k,re) =0, (13)

k+mks. (af,./ ) )ru
-d'I (12)

re+~a —(k+eks) u

acts as an electric susceptibility matrix. It will be noted
that the various components appear in an additive
fashion in. this matrix. Now, as discussed in the Intro-
duction, we know that this system is stable provided
that we can set ho=0, and if all of the p, are equal. In
fact, under these conditions, the dispersion relation
reduces (as we will show later) to the usual form,
namely
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4orq. ' k (8fo./Bu)
X.(k,(o) = doe

k'm ~—k u
(14)

Xp..[k+ (m+e)k„ io+ (ni+n)~o], (15)

where the fact that ko. ED=0 has been used in the argu-
ments of the Sessel functions. To simplify this expres-
sion further, we will now make use of the fact that in
most cases the wave number k is much larger than ko.
Moreover, as we mill show below, only those compo-
nents of p, (k+nko, co+nooo) for which e is a small integer
have an appreciable magnitude. Thus, as a first ap-
proximation, we may set ko equal to zero in (15)—the
so-called dipole approximation. In this case, by making
the substitution m=e' —m, the sum on e can be per-
formed with the aid of the relationship

is the linear electric susceptibility of the component 0.
Thus, the total effect of the electric Geld in this case is
contained in the exponential factor in Eq. (5). While
these facts can be proved starting with Eq. (11), they
are by no means obvious just from the form of the
equations. In order to make this feature explicit, it ap-
pears to be necessary to use a somewhat more awkward

approach, and to eliminate p(k+ekooo, +moo) between
Eqs. (9) and (10).In this case, we obtain the system of
equations

4+q '
p.(k,~)=— Z Z {i)"+"J.(p.)

fg»»' n, m

(k+eko) 8jo.
gJ„(—p,.)(k+nko)-' don

m —kg 8U

the period of the applied Geld. More recently, Silin has
used the cold. hydrodynamic approximation to Eq. (17)
to study the parametric effects for lower values of coo.

To obtain the first-order corrections to (17) due to
Rnite values of ko, we approximate (k+nko) '(k+eko)
in Eq. (15) by k

—'k —nk —'(2k kok —k'ko). Noting that
eJ (2)= 1/2A (J +i+J i), one can again perform one
of the sums in (15) with the help of (16). One then
obtains

4~q '

m.k4

(2ko kk —k'ko) (afo /Bu)
d I

oo—k u

&&lp. Z Z(')"[J. (p-)+J (p-)j
y' n

&(p. {k+nko, io+ncoo). (19)

Now the second group of terms in (19) does not vanish
even if all of the p„vanish (i.e., all charge to mass
ratios are equal), and since k Eo appears as a coeKcient
of this term, the electric Geld can still have an inAuence
on the stability of the system. If one assumes that the
functions fo(u) are isotropic in u (in particular, that
there are no drift velocities to the components), then

(19) can be written in the more compact form

p.(k,oo) = —X.(k,a)g P(i)"J (p...)p..(k+eko, co+ego)
»I n

——,'(ko k/k')p, X.{k,(a)g g(i)"

&&[J-+i(p-)+J--i(p- )3

&(p. (k+eko, (o+e(oo). (19a)

p.(k~) = —X.(k~)Z Z(i) "J-(p-)p" (k+nko, ~+~o)
0' n

g J.(a)J. .(b) =J;(a+b),

and one obtains (dropping the prime on e')

p.(k,oo)= —X,(k,(u)P g (i)"J„(p..)

(16) It is a simple rnatter to obtain higher order corrections
to (19) following the above procedure, but we shall not
consider them here.

%e shall now consider the dipole approximation
(ko ——0), and then return to the more general case (19)
in Sec. IV.

)&p, (k, oo+eioo), (17)

where X,(k,oo) is given by (14), and

k'Eo
(lg)

&oo

Equation (17) now shows that if p...=0, then only the

term I=0 is nonzero in the sum, and thus one readily
recovers the dispersion relationship (13).Equation (17)
was used by Aliev and Silin to consider the stabilizing
effect of radiation on the drift instabilities in a plasma,
when coo&&~„,. Because they considered such high fre-

quencies, the drift instability could only be modified
if the electric field is strong enough to reverse the direc-

tion of the drift motion for an appreciable fraction of

IIL THE DIPOLE APPROXIMATION (ko=0)

In this section we shall neglect the spatial variation
of the applied electric Geld over distances of the order
of the perturbation wavelength. If k 0.1k~, where

k~ is the Debye wave number, then for ~0 1.1~„„
ko 0.4coo/c [see discussion following Eq. (10)], so

ko 0.44io~,/c=0.44kii (o~/c) =4.4k (or/c),

where or ——(~T/no)'I' is the thermal velocity. Thus, if
4vr/c((1, then k))ko and the dipole approximation is

justiGed —at least for those phenomena which do not
vanish when ko is set equal to zero. As we shall see, there
are instabilities which only occur if ho&0 and these will

be taken up in the following section.
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In the present approximation, we can use Eq. (17)
and, if we restrict our considerations to two components
(electrons and ions), we can write this equation in the
form

e (+~"o)p (~+~ o)= —X,(cu+mcvo)

X P (2)" "J „(~..)P, ( +n ), (20)

where e, (k,co) =1+X,(k,co) is the usual linear dielectric
function, and we have suppressed the wave number k.
In Eq. (20), o refers to one component and 0' to its
conjugate component Land not a summation index, as
in (17)]. Thus, (20) represents two (infinite) sets of
equations. With the recurrence relationship written in
the form (20), where m is an arbitrary integer, one can
require that Re(cu) &ca2/2 without any loss in generality.

Our primary interest is to determine whether there are
unstable roots cu to Eq. (20) for any (real) values of
coo. Following the discussion in the Introduction, we
expect that there might be instabilities if ~0 is near a
high-frequency mode coII and possibly in the region of
2co~ (for this is frequently the case in parametric
excitations). To illustrate the nature of the high-
frequency mode, we will first obtain an approximate
expression for ~II, and also for the low-frequency mode
col in the limit of very high coo. Modifications of these
results for lower coo will be taken up in the following
sections.

If co2 is very large (compared to all plasma fre-
quencies), the only terms in (20) which are of any
importance are the ones for which m =e=0, for all other
X,(co+nua2) are very small. Hence, in this limit, the
frequency cv is determined by the roots of

2.(~)2'(~) —Jo'(P-)X.(~)X'(~)=o (21)

When E2——0, this reverts to (13),but if E2"0 the factor
J02(p„) gives the approximate effect of the applied field
on the frequency of the modes. Obviously, if Jo vanishes,
then the neglected terms become dominant, but none-
theless they always represent only small corrections.
The frequencies cvII and cvJ are then given by the high-
and low-frequency roots of (21) which have the smallest
damping rate. To obtain approximate expressions for
these roots, it is sometimes useful to use the hydro-
dynamic approximation, for which

where &u2,2=co„,2+3k'nr, 2
A. s E2 is increased, the high-

frequency mode decreases toward its minimium value
co&„whereas the low-frequency mod. e increases towards
its maximum value coI,;.For more accurate'estimates of
these frequencies, one can use the usual asymptotic
expressions Lassuming that f2(u) is Maxwellian]

1 3)
X(k,(o) (kD) ' — 1+

2x' 2x'j
iy x2))1

(24)
x' y'&&1

X(k M) (kD) '$1+ixx I'](x' y'«1),

where D=(~T/4~m2q2)'" is the Debye length, and
(co/k)(m/2aT)'~2=x+2y Even. these expressions can
only be used to determine the low-frequency mode, pro-
vided that T,))T;.If T. T;, then this mode must be
determined numerically, and is rather heavily damped. '
The effect of the term Jo' on these modes has been
described in more detail by Aliev and Silin.

To investigate the stability of the system, we note
first that since coo cannot be much smaller than the
electron-plasma frequency, then X(~+euu2) is quite
small unless m=0, ~1 Lnote again that we are using
the convention &o2/2)Re(~)]. Thus, in Eq. (20), we
will restrict our considerations to the components p, (cq)
and p, (co~co2) and obtain the six equations

"(~)~.(~) = —X.(~)(Jo~"(~)+2J1(~- )
Xgp" (~+"2)+p" (~—~o)]}, (23)

2g(Cd+COP)P. (CO&(dP) = —X~((O+(OP)(JPP, I (a&+a&2)

+Ji(P..)P. (~)—J2P. (~~~O) }.
These equations are sufFiciently general to describe- the
entire frequency range above the electron-plasma-fre-
quency quite accurately. However, the resulting six-by-
six determinant is not particularly transparent, so we
will consider various unstable regions in which soriie
simplifications can be made. These regions can be
identified, in the limit of zero intensity, by the following
classification:

CaseA: cop co"+o)r. (~ ~r.), —
Case 8: (op—co" (co—0),
Case C: ~2—2a&a (a&—"a) ~

X.(k,o)) =(o„.2/(3k22r. 2—(a2), (22)
Ke shall now consider these cases individually.

where ~„2=4~m 'g,2/m„and vr, ——(~T,/I, )"2. This
approximation neglects Landau damping and is only
justified if ~/k)&vz. Therefore, this approximation does
not adequately describe the low-frequency mode, unless
the ion temperature is much less than the electron
temperature. In this approximation the high- and low-
frequency modes (~zP,&oz,') are given by

1(~„2+"„.2)~1((~„2 ~„.2)2+4J2( .)~ 2~ .2}1/2 (23)

Case A (~2=""&uz)
To illustrate these two unstable regions, we will con-

sider the case ~~&o~+cu' and comment below on the
analogous calculation for co~co~—cu'. If &u~cu~+&v'
and co cog then, as E2 goes to zero (p ~ 0), the most
important frequency components are p, (~—~2) and
p (v). The remaining terms in (25), p, (co+a&2), tends to

9 B.D. Fried and R. W. Gould, Phys. Fluids 4, 139 (1961).
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FM. 1. The un-
stable regions ema-
nating from cup=cusp
+co&p Where cusp'
=cup +cu» and 401,p
=au„;kD, and kD,
=0.1. The dashed
curve gives the fre-
quency for maximum
growth for a given
value of p,. The line
cup =cuIIp separates the
two (mirror-image)
unstable regions.

where some simplifying approximations have been used
in the last term. Here coII and col, are the same as in Eq.
(23), except that JO2 is replaced by (Jo+JP). This
modification tends to make co~ and co~ somewhat less
dependent on p—at least for small values of p, .To deter-
mine the region of instability, we replace co' by co&' and
(co—&u,)' by &v~' in all terms in (27) which do not thereby
vanish, except for the denominator of the last term. If
we now set"

co=&r,+», &0=&a+&I+»0

and assume that &o~&&~»0—»~, then (27) yields the
quartic equation for Ro

D»)2+2(vr»]' (2(vr»—0+ (»0)']L(»)'+2(ug»)
+(o~,'co„pJi'fu) r,+»0 j/cuir 0. (28)——

be less important because the frequency ~+&so coJr

+2cor, is further off resonance from any of the linear
modes of the system. However, for larger values of Ep,
the present unstable region extends down to values of
coo near u&rr, in which case p, (co+&so) is no longer negli-
gible. Therefore, rather than ignore the terms p, (co+~0)
entirely, we first eliminate them from the remaining
four equations in (25) and then neglect all terms pro-
portional to J2. This approximation takes into account
the dominant effects arising from p, (~+~0).The result-
ing four equations then yield the dispersion relation

L1—(J02+Jim) r, (co—cop) r;((a—
&oo)j

XD —( '+ i') .( ) '(~)1
+J, Er, ( —,)—r, ( )3Lr, ( —,)—r, ( )j—Ji'r, (M)I'. (co+coo)Ji'L1 —r, ((o—&uo)r. (co—coo)Jo j/

t 1—r, ((o+(op)r. (a)+cop) Jp']=0, (26)

where I' (co) =X,(co)/e, (co). The last term of (26) is the
principal contribution due to the components p, (co+a&0),
and contains a near-resonant denominator as &so+&a

decreases toward co~. The condition for the onset of
instability is determined by the behavior of r, (&o) for
real values of a& (as well as ~0). In the case of Maxwellian
distributions fo(u), this function can be evaluated from
known functions. " In general, Eq. (26) can only be
solved by numerical methods. However, aside from
the question of the onset of instability for weak in-
tensities (when the Landau damping becomes impor-
tant), the hydrodynamic approximation for r, (co) may
be used to simplify Eq. (26). We shall therefore first
consider this approximation, and return to considera-
tions of damping afterwards.

If we use the approximation given in Eq. (22), so that
I' (co)~co„'/co&,'—&o', then Eq. (26) can be put in the
form

COp
—M~ GO

—
COp

—
COI, CO

—GO~ GO
—Ml,

+J'~ '~ '{L~'—(~—~ )'j'+~H p~H (~ ~o)mj/

L&y—(~+ ~0)'j) =0, (27)
' B.D. Fried and S. C. Conte, The I'lcsmc Dispersioe Funt, lion

(Academic Press Inc. , New York, 1961).

Ims& 2&v„~,(m,Jim/m, )'" (2&y&0.1) . (29)

This indicates that the maximum growth rate is 0.028co„,
(for p 1.8), compared to a more accurate value of
0.046co~, .To the degree that Jim(p) can be approximated
by (p/2)', Kq. (29) agrees with the result of Silin who
found that the growth rate goes as a&„,(m,p'/m, )'".
However, Silin gave no upper bound to this growth rate.
Moreover, the unstable regions which we ffnd (Figs. 1,
2, and 3) bear no similarity to the ones described by
Silin. He appears to find two unstable regions which
both emanate from co,'=s&„,2+~~ 2 as y is increased
from zero. One region consists of ul/ frequencies for
which co„,'+co»~ —cop'&0, with no cutoff either at low

frequencies or low powers, while the second region lies

"In the CaSe Where cop~au~ —cur„ if One makeS analOgOuS ap-
proximations and sets cup=CO~ —cur, —%up, and cu=cuL, +5„, then
one again recovers Eq. (29). Thus this unstable region is the mir-
ror image of the present region reflected about the frequency cuz.
(See Figs. 1 and 2.)

It follows from this that the boundary between the
stable and unstable region occurs for values of Scop

which satisfy

[(»0) +2QJL»p] 4(&y (dept /COH) Ji (&GAL+»0) ~

This unstable region is shown in Fig. 1, where the
expressions (31) have been used for &sir and &or„and we
have taken kD, =0.1. The most significant feature of
the unstable region is that it is limited to a range of
frequencies colr+4a&„;&coo&corr. For even larger values of
p, , the unstable region may have a wavy structure, but
the above bounds on cop should still be valid.

To obtain the maximum growth rate for a fixed value
of p, we solve Eq. (28) for (»)'+2col.» and determine
the value of b~p which produces the largest imaginary
term in this equation. This yields the dashed curve
shown in Fig. 1. A rough approximation of this curve
can be obtained by noting thatch„, 2co~PJim/&o~coz, 'ismuch
larger than unity when 2&p&0.1, in which case one
6nds that »0/cur, (a&~,'a&„,'Jim/s&lr&vr, ')'~' Using t.his
value of »0 in Kq. (28) yields the maximum growth rate
as a function of p,
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somewhere above &22' ——to„,'+M~, s. He also finds a zero
growth rate along &os2=4s~,s+4os,s, whereas we find this
to be an unstable region (Case B). Considering these
differences, the above-mentioned agreement may be
fortuitous.

In order to analyze the effect of Landau damping, we
first neglect the last term of Eq. (26), since we will con-
sider only the region tos~4o~+4el. . Furthermore, we will

assume that T,& T, and that

2.0

1.5

x

~o ]0
0.

0X
3

0.5

tsz/ksr;, e4rr/k Vr.»1, and 1»e4L/kyar. ,

so that the asymptotic expressions (24) may be used
for x, (k,co). In this case, one finds that the real part of
Eq. (26) can be approximated by

0 2.0 4.0 60

FIG. 3. The narrow unstable region emanating from co0=co~o.
The growth rate along co0=coII is roughly eu„;Jg(p) (neglecting
damping).

case, the condition for stability (32) reduces to

if co is real and 1&)kD,. Here yi. is the linear Landau
damping factor 1 (Es k)'

(33)
4 k'4xm~T,yr„(to)/co = (2r/8)'"(cu/ksr )' exp( —4os/2ksttr, 2),

CV
—

COO
—

GOII GP —GO I,
—24e1 'Lvr. (to 402)/4o —tosj(2t/2)"'

X (ce/knr, )[to' —(1—Js' —Jt')ts ']
)2] 0 (30) 2r2224 YI 8 (tolr) t~ (f4) 14

2222, terr (kD,)' 2kD,]

and

~i,' ——~ L(kD,)'—(1—Js' —J ')]
2 ~ 2+~ 2 (1 J2 J2)~ 2 (31)

Equation (30) is analogous to Eq. (27) without the last
term. It is easy to show that (30) has real solutions for
ts (when R&s ——0) only if the sum of the last two terms 1s

positive. Hence, the condition for stability is found to be

(~/2)" (~ipse(~II)/~a»r e) & &ts/(kDe)2. (32)

The most important effect of damping is when the
power of the incident radiation is weak, in which case
(1—Js' —Jt')(kD ) '«1, even though 1»kD, . In this

where we have set oro~~~, in p, . The quantity
(Ess/42rtssT, ) is essentially the ratio of the energy
density in the radiation to the kinetic energy density of
the electrons. It is this parameter which DuBois and
Goldman used for their perturbative analysis, and the
present limit (1»p/kD, ) corresponds to the case which
they considered. The present result differs from their
result by a factor-of-4 increase in the power required
for instability. Despite this increased power require-
ment, (33) still predicts instabilityfor modest intensities.
To illustrate this fact, assume that 10 2&y(4orr)/tolr.
Then the system is unstable if i4/kD, &1.1X10-2.Now,
if we set coo

——~„ in the expression for p, we obtain

f4/kD. ~1.55X10'(I/24T)'Is (34)
2.0

o 1.03*
CL

3
O

St

kD, = .1

able

where 22 is in cm ', T in 'K, and the intensityI=Esse/42r
is in W/cm'. Thus, if n = 10"and T= 104, the system is
unstable for an intensity of 1 W/cm'. The details of the
unstable region (together with a portion of the mirror
region below &err) for small values of It4 is shown in Fig. 2.
The region which is stabilized by a damping rate
y/4o2, .—10 ' iS alSO ShOWn fOr 4o~~&u~ j&oz. The regian
in the immediate vicinity of coo——ar&, labeled as an
unstable "line" in Fig. 2, corresponds to another
instability which we will now consider.

Unstable "line"~

0 1.0
p. x lo~

1.5

Fto. 2. Details of the unstable region iand its mirror image) near
co0 =co~0 in Fig. 1.The region of stabilization due to a damping rate
of y/co„, 10 ' is shown. The unstable "line" along co0=coHO is a
narrow unstable region.

Case B (to~~tolr)

In this case, the frequency of the incident radiation is
near the lower limit of the frequencies which will be
transmitted by the plasma. Presumably, still lower fre-
quencies (where other subharmonic resonances can
occur) are therefore largely of only academic interest.
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The present case is interesting, not only because it shows
that there are other resonances besides Case A which
are observable, but also because the mode interaction
which produces the present resonance is quite different
from the Case A. We note first that if we set M=O in
Eq. (25), and we ignore the imaginary part of X (+cop),
then there are two classes of solutions, namely,

(a) p. (~,) =-p.(-~,), p. (0) =0
(b) u. (4oo) =p. (—4oo) ~.(0)&0.

These solutions are analogous to the usual sin(224op/)

and cos(224opt) solutions which separate the stable and
unstable regions of simpler parametric equations (e.g.,
the Mathieu or Hill equations). The purpose of express-
ing the applied electric 6eld in terms of a cosine function
(see Ref. 8 in Sec. II) was to get this simple separa-
tion [into (a) and (b)) at this point. The question now
arises as to whether these periodic solutions form bound-
aries between stable and unstable solutions in the
present system of equations. We-will show that this is
the case for the solutions (a), but it is not the case for
the solutions (b). In the present case, as contrasted with
Case A, the instability does not depend upon the
existence of a low-frequency mode (although it may be
strongly affected by it), but instead it is caused by the
nonlinear interaction of the mode on itself through the
action of the electric field. (This is in fact the more
common type of parametric instability. ) It should be
noted that while the instability does not depend on the
second mode, it will only occur if there are two compo-
nents with diferent charge-to-mass ratios.

We will 6rst examine the solutions which for M =0 go
over into solutions of type (a). To do this we ignore"
p, (co) for sma114o, and then obtain from (25) the condition

[1—I (4o+cop)1 (4o+4op) Jp ][1—I (Co
—4op)F (oo—4oo)Jp ]

—[r.( +,)r, ( —,)+r, ( —,)r,( +,)]J,
—I (M —opp) I (4o+ pop) r, (4o —«)I,(4o+4oo)

X[2J,J,'—J;]=0. (35)

If we first examine this using the hydrodynamic ap-
proximation (22), then we obtain

Mp M~ M Mp MJg M~ Mg

—( „4o(o)'( 4pJ'J2' J2') =0, (36)—
where 4o» and &oz, are given by (23).This is readily solved
to yield

4o = 4oo +4o» —( (4oo +4p» ) —(4o» —4oo )
+ (4o 4o .)4(4J 2J 2 J' 4)/(4o»2 4o~2)2)1/2

which predicts that these solutions are unstable if

("2 opr*) J2 (4J J2)/(4o» 4oz) &—(4o» —4oo) (3~)

As will be shown shortly, the expression (37) is not
accurate when J2&2Jp corresponding to a value of p
between two and three. The maximum growth rate in

~~ This:.depeg:dj. .on the faqt that opL, &&oy.

the present case is predicted to be of the order of M„;J~,
as compared. with the growth rate 4o„,(2N, J22/224, )'" in
the Case A [Kq. (29)j.Therefore, the present instability
is usually weaker than the instability in Case A.

To examine the effects due to damping, Eq. (35) can
be analyzed in the same way as used in Case A [except
now the condition 2',/T;&1 is not required, but only
that (4op&4o/k))&or„p2, ]. The real part of (35) can
then be put in the form

M Mp MII M Mp M& M& ML,

+44ope 4o» LVI.(4o»)/4o» j
4o~, pp~—, J2'[2+2Jp' J2'j=—0.

This equation differs from (36) not only in the addition
of the damping term, but also in a slight change in the
last term. If we set M~ M„„ this result shows that the
system is unstable only if"

J2 [2+2Jp J2 ]&4(2I /2224)2(p/4o ) (38)

Because of the large mass ratio factor, the present in-
stability will only occur if y/4o~, is less than about 10 4—
which may not be satisfied by the collisional damping.
The unstable region, as given by Kq. (37)—with
4Jo2 —J22 replaced by 2+2Jo2 —J22, is shown in Fig. 3.
The outstanding feature of this region is that is has an
extremely narrow frequency range —of the order of
or„,/100. This fact, coupled with the condition (38),
shows that this instability is probably only of academic
interest, for it would be extremely dificult to observe.

We now turn to the stability of the solutions of type
(b), and aSSume that, fOr Small op, p, (co+4op) p, (a&—4oo),

but now retain p (po). In this case, Eq. (25) yields (in
the hydrodynamic approximation)

Mp —Ma MI. —M MII —MI.

—2M ~M ~M~~J ~=0

from which it readily follows that M is real. Hence, the
periodic solutions of type (b) do not separate a stable
and unstable region.

Case C (opp—2pp»)

In many of the standard parametric equations, if the
system has a natural frequency M' and it is parametri-
cally excited at a frequency near 2M', then it becomes
unstable. The purpose of the present section is to show

that this is not the case with a plasma, provided that
we neglect the spatial variation of the electric field (i.e.,
within the dipole approximation). It is easy to see that
if Mp 2M& andM M~, then we may again use the same
equations as in Case A, for reasons discussed there. In
fact, since here 4op+op~34o» is quite far from any reso-

nance, the approximation is better in the present case

"This condition, together with the assumption ~L,&&co and the
above value for eu, is equivalent to the requirement that col. co;»y.
DuBois and Goldman considered the case p»co;, in which case the
present resonance does not occur. I am indebted to Dr; DuBois
for bringing this point to my attention.
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than in Case A. If we use Eq. (27), and now make use
of the fact that asap 2'~ and or or~, then we obtain

Q)Q —
CO
—

&Op GOII
—OP GOII

—
GOL,

+J Co M '[Cd (M Mo) ]=0
Substituting

M =Mrr+ 8M, Mp = 2Mrc+ hcd p

into this equation, and assuming that ~II))bco and
2m~))Scop, it is found that bar is always real so that the
system is stable in this region. It will be shown in the
next section that this region is not stable if one takes
into account spatial variation of the electric field.

IV. SPATIAL VARIATION OF THE
APPLIED FIELD

In this section, we will consider the eRects which arise
from the finite values of kp. At the same time, we can
fortunately simplify the equations by considering only
one (mobile) component. That is, the instabilities we
shall now consider do not arise from the relative motion
of two charged components, but are due to the relative
motion of a component and the electromagnetic wave.
In the dipole approximation (kp ——0) there is no wave
front with which the motion of the charge components
can be compared. The eRect of the radiation on each
component could then be replaced by a Galilean trans-
formation. In the present case this is not possible, and
new eRects thereby arise.

Returning to Kq. (19a), and setting cr'=cr (one
dynamic component), we obtain

p(k+44kp, M+scop) = n(k kp, cop)1'(k+skp, M+tEM p) p

X (p[k+ (44+1)kp, co+ (m+1)Mp]
—p[k+ (m —1)kp, M+ (e—1)Mp]), (39)

where n (k,kp, cop) =
p (k kp/k') (qk Ep/moP), and we con-

sistantly neglect terms of order (kp/k)'. Here 44 is an
arbitrary integer, and we can therefore require that
cop/2) Re(co). We will now reinvestigate Case C of the
last section, namely, when cop 2'~ and co ~&. Again
keeping only the components p (k—kp, co —cop) and
p(k, co), we obtain the dispersion relation

1—n'(k, kp, Mp)1'(k, co)I'(k —kp, co —cop) . (40)

The dependency of I"(k—kp, M —
Mp) on kp can be

neglected in this equation. In the present frequency
range the hydrodynamic approximation gives an ade-
quate 6rst approximation, and we then obtain

(M' —Mp) [(M—Mp)' —M p'] —n'(k, kp, Mp)co, '=0,
where cocP=M '+3k'p ' If we set

M =Mp+ 8M ~ cdp = 2cd p+ 8M p,

where cvj,))bc', and 2a)I,))Rap, then this yields

ko =-', 8M pa [(%op)'—n'(k, kp, 2M p) (co 4/MI, ')]'~' (4l)

I&0.15 (y/M „)'4p, (43)

where I=EpPc/47r is the intensity in W/cm' and 44 is in
cm—'. These results agree in most respects with the
results obtained by DuBois and Goldman, except that
the condition for instability (43) appears to require an
intensity twenty times higher than they found. While
the present instability is considerably more difficult to
excite than in Case A of the last section, the condition
(44) is generally well below the intensity obtainable
from lasers (10' W/cm'). Thus for laser beams in this
frequency range, the harmonic approximation cannot
be used for a plasma.

V. CONCLUSION

It has been shown that the modes of an infinite
plasma can be made unstable by intense radiation. The
most important unstable regions are found to be those
which, in the limit of weak intensities, correspond to the
instabilities described by DuBois and Goldman. The
unstable region which emanates from M~~Md, +cod, (kD,)
is shown to be con6ned to a range of frequencies
Md, +4M„;&Mp&M„„regardless of the intensity of the
radiation. In the most unstable region, the growth rate
is approximately given by xpco„,[I,JcP(y)/m;]'~P, where

&k.Ep/~p' and 2&p&0.1.The largest growth rate
is found to be slightly less than 0.05co„,. The onset of
instability for weak intensities (1))p/kD, ) is given by
I/NT&4&(10 "(y/M~, ), where I is in W/cm', and e is
in cm—'. A mirror-image unstable region, rejected about

or„„presumably cannot be directly excited, since we
must have Mp&or„, for the radiation to enter the plasma.
A second instability, which occurs for +p co„„ is
relatively weak and confined to a very narrow range of
frequencies (of the order of Md~/100). The condition for
inStability in thiS CaSe iS Jp(p)) (4';/m. )'(p/cod, ), and
hence the instability does not occur if y/co~, )10 '. It
is worth noting, however, that for a finite plasma, where
the modes can be excited to large amplitudes, it may be

Therefore, if we neglect damping, the system is unstable
to perturbations of wave number k, provided that

-'(qk Ep/4' p')'(kp k/k')'(co '/M p') & (8Mp)'. (42)

Thus, the most unstable perturbations are those for
which h lies in the plane of kp and Rp and bisects the
right angle between them [so that (k Ep)(k k,)/k'
=kpEp/2]. It is clear from (40) that, if cop/k))pr, the
Landau damping eRects are negligible, and the colli-
sional damping largely dominates. To estimate the
power required for the onset of instability, we can
balance the maximum growth rate, predicted by (41),
against the damping rate y. Doing this, we conclude
that the system is unstable if

(qkpEp/164rcM, ')) (y/co„) .

If we set k p= Mp/c 2M„/c, then this yields the following
numerical condition for instability
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possible to excite all three instabilities through mode
coupling (which can be ignored in the infinite plasma).
The final unstable region occurs near ~0——2'„, and,
while more dificult to excite, should be significant for
laser beams in this frequency range. The condition for
instability in this case is found to be I&0.15(p/&o„.) rt,
and the range of unstable frequencies is given by Eq.
(42). It is not clear whether or not instability will be
bounded in frequencies (for large intensities) as are the
above-mentioned instabilities. Finally, from these re-

suits, we conclude that the harmonic approximation
(discussed in the Introduction) is justified except in the
region of co~, and 2~~,.
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Hydrodynamic equations describing the motion of electrons in a weakly ionized plasma are derived form-

ally from the Boltzmann equation by means of the Chapman-Enskog procedure. Two cases are considered,
each with a stationary Maxwellian distribution ascribed to the atoms. In the first, electron-electron collisions
are ignored, and the electron distribution function is determined by a balance between the electron-atom
collisions and the electric field. There is only one conservation law, a hydrodynamic equation for the density.
In the second case, electron-electron collisions are dominant, the distribution function is a local Maxwellian,
and there are five conservation laws —equations for the density, drift velocity, and temperature. The equa-
tions used previously by the author to describe low-frequency oscillations are obtained in either case if the
electron-atom collision frequency is independent of velocity. Otherwise, the zeroth-order equations are still

exact, but first-order corrections are required, as illustrated by the example of the velocity-independent
mean free path. Our results are somewhat different from those of Davidov, who made different assumptions
about the dominant collision mechanisms.

I. INTRODUCTION

"'N this paper we discuss the derivation of hydro-
~ ~ dynamic equations for electrons in a weakly ionized

gas in an external electric field. We employ a spherical
harmonic expansion of the electron-atom collision
integral' ' (which leads to simple equations for small

values of the electron-atom mass ratio, rrt/M) and a
modification of the Chapman-Enskog procedure' (which

is valid for slow variations of the distribution function
in space and time). Our purpose is twofold. First, we

wish to establish somewhat more rigorously the equa-
tions previously assumed to describe certain low-fre-

quency oscillations. ' We find, in general, that correc-
tions to these equations are required. Second, we wish to

*Work supported by the U. S. Army Research OfBce (Durham)
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t Present address: Department of Physics, University of Texas,
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1952), 2nd ed. , Sec. 18.7.

e S. Chapman and T. G. Cowling Ref. 3, Sec. 7.1.
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distinguish mathematically the forms taken by the
Chapman-Enskog heirarchy for this problem when there
are diferent numbers of conservation laws. The classic
work on the motion of electrons in gases is that of
Davidov, e whose results are still quoted today. ' At
the end of the paper we will discuss the similarities and

differences between our equations and Davidov's.

The basic mathematical problem is the solution of the
equation'

(8 8 e c))
~

—+c ——E —
~
f(r,c t) = J(f)—

&at ar ttt aci

where f(r,c,t) is the electron distribution function, J(f)
is a sum of collision integrals, and

E=Es+E,(r,t), (2)

' B.I. Davidov, Zh. Eksperim. i Teor. Fiz. 7, 1069 (1937).
' See, for example, A. V. Nedospasov and Yu. B.Ponomarenko,

Teplofiz. Vysokikh Temperatur, Akad. Nauk SSSR 3, 17 (1965)
[English transi. : High. Temp. 8, 12 (1965)g.

8 We use the notation of Ref. 3. For example, c always denotes a
velocity, and 8/Br and 8/Bc denote spatial and velocity gradients,
respectively.


