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Theory of Three-Photon Ionization of the Alkali Atoms*
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Three-photon ionization transition rates are calculated for the alkali atoms (except Li) using quantum
defect Coulomb functions to evaluate the well-known perturbation formula. Several corrections of previous
work are mentioned. The often-used approximation of keeping only a small number of intermediate states is
investigated. The predicted three-photon ionization rate (in cgs units) of the alkalis for the ruby photon
energy of 1.78 eV is of the order of 10 "X(photon Aux)'. Detailed results are presented as dispersion curves
of the transition rate for photon energies between the three-photon and two-photon thresholds.

I. INTRODUCTION

HE alka, li atoms (except lithium) ionize with the
absorption of three ruby-laser photons. The

ionization potentials of the heavier alkalis are low

enough to permit three-photon ionization with Stokes-
shifted ruby lines. These experimental conveniences
have motivated calculations of the three-photon ioniza-
tion rates for photon energies between the three-photon
and two-photon thresholds. Recently, the two-photon
ionization rates of the alkalis have been calculated' and,
in conjunction with earlier work on the one-photon
ionization and the present work, theoretical predictions
for the photoionization rates of the alkalis have been
made available for photon energies between about one-
third of the one-photon threshold to well above the one-
photon threshold.

Even at a time when. the details of the one-photon
ionization of the alkalis are still under scrutiny, ' Ha11
has investigated the two-photon ionization of Cs vapor
using the second harmonic of ruby (and several Stokes-
shifted second-harmonic lines), making careful com-
parisons between experiment and theory. ' Yatsiv et' a1.'
estimated the one-photon photo-ionization rate from
the 6s1/2 excited state of potassium which was satur-
ated by a double quantum transition from the ground
state. This calculation, which is almost incidental to
their excellent work on double quantum saturation of
an excited level, can be regarded as three-photon
ionization in the case that one (or both) of the photons
is in resonance with an intermediate state. Additional
references and discussion can be found in Ref. 1,

II. THEORY

In previous work, the theory of multiphoton ioniza-
tion has been developed and applied to several systems.
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Careful calculations have been made for X-photon
ionization of hydrogen' (X=2 through 12) and for two-
photon ionization of the alkali atoms. ' More approxi-
mate treatments have been performed for the multi-
photon ionization of the rare-gas atoms for ruby-laser
1ight. In this section some of the principal results
of the afore-mentioned work are reviewed and then
applied to three-photon ionization of the alkali atoms.
Several minor corrections and clarifications of previous
work are mentioned.

The integrated transition rate (in units of sec ') for
S-photon ionization is given by

/JAN g't+&=2~/(2~~P(g)&S&&)(k g)

where

(1a)

y=1 6y Q)g 0
—pe)

(lc)

6 (a) H. B. Bebb and A. Gold, Phys. Rev. 143, 1 (1966); (b)
also see Physics of Quantum E/ectronics, edited by P. L. Kelley,
B. Lax, and P. E. Tannenwald (McGraw-Hill Book Company,
New York, 1966), p. 489.

7K. V. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1959).
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P
S'~'(k;g)= —P dQ„~(k~r&~'~g)['.

gp tn

Here n is the fine-structure constant e'/Ac, F is the
Aux in cm ' sec ', and ~ is the photon radial frequency.
The set of quantum numbers specifying the ground state
is denoted g and the continuum states are specified by
the electron propagation vector k The degeneracy gp of
the ground state

~ g) has been included in the definition
of the "ionization strength" S&+&(k; g). The strength
defined here might thus be regarded as the "average
strength" rather than the "total strength" dined by
Condon and Shortley. ~ The sum over re spans the gp

degenerate magnetic components of the ground state
arid often reduces to the factor gp 3ust canceling the gp

in the denominator. The density of states p is included
in the definition of 5'~'(k; g) to insure its independence
of the normalization convention used for the continuum
states. For the normalization convention used here,
p =mkk/(2~5) '.

The Eth order transition operator v &+) is dined



H. BARRY BEBB

where the sums over the intermediate states a, include
complete sets of states discrete plus continuum. The
quantity (k~r&n) ~g) is seen to be just the usual Eth-
order matrix element.

For many atomic systems, the 6nal-state continuum
functions can to a good approximation be taken as
Coulomb functions in the partial-wave expansion' '

~
kl, m,)m&=R, (k,r)Y)")(8,y)x(m, ). (2b)

The radial function R~(k,r) is normalized so that it
asymptotically approaches

R)(k r) ~ (kr) ' sin(x+b(k')),

~
ir& =4m. Q g P i'e'&'Y)"'*(8,y) ) k, l,m), m, ), (2a)

mg l te)

where

where
x= kr+k ' 1n(2kr) —xshr+))~. (3b)

The phase 8(k') accounts for the "quantum-defect"
distortion of the continuum functions and vanishes
as the quantum defect goes to zero. '

For dehniteness, we specify the ground state ~g) in
the jm representation by ~nljm). Substituting Eq.
(2a) into Eq. (1b), the ionization strength reduces to

S~n) (k; nl j)
) (4~)'

~

(kl'm('m, '~ r~" ~nljm) [' (4)
2j+1 m J vm)'nba'

after some straightforward algebra. Here, go is replaced
by its definition 2j+1.

We now specialize to three-photon ionization ex-
plicitly writing out the third-order matrix element
using the jm eigenstates for the intermediate states,

. .(4-)' '
&

kim~' m'lsl (nl jm)2&&(nl jm)slsl (nl jm)r&&(nl jm))Is lnl jm& '
S&')(k; (5)

2j+1 m i l'm)'ms') (alp'm)i (n)fm)2 Q(nlj)2Q(«j ))

The energy denominators do not depend on the magnetic quantum number m and are completely speci6ed by the
quantum numbers (nl j) with the notation

kQ(nl j)„=e(n 1j.)„,c(—nlj ) vk—a) .

Here, k&o is the proton energy, e(nl j) is the ground-state energy, and e(n„l„j„)is the energy of the vth intermediate
state. In Eq. (5) we have also adopted a convention of using subscripted parentheses to indicate a set of variables
with a common subscript, i.e., (nlj m).=n„l„j„m-„

While the reduction of Eq. (5) to a, computational form is quite straightforward, the algebraic steps required
are tedious and numerous. Rather than pursuing this cumbersome and unrewarding task with elaborate generality,
we restrict our attention to one-electron atoms with s ground states and incorporate selection rules appropriate to
the dipolar matrix elements, thereby simplifying Eq. (5) to

) (4n)' s &~™)™lsl(nij)2m&&(«j)2mlsl (npj)~m)&(npj)~mlslns-:m& '
5'"(k; ns2) =

2J+1 ~ s vm, )'m, ' (elj)a (nj)z Q(nl j)2Q(nP j))

The jm functions are expanded into the m&m, functions via the Clebsch-Gordan series:

(
nl jm& =P &l, s, m „mm—~j m&

~
n, l;, m —m„m, &,

ms

(6)

(7)

where the condition m, =m~+m, has been used. The angular-momentum quantum number l in the m)m, functions

is subscripted with the associated j value as a reminder that the radial functions depend on j through the spin-

orbit coupling. '
Using (7), the dipolar matrix elements appearing in Eq. (6) can be expressed in terms of dipolar matrix elements

involving mmmm, functions:

&(nPj))m~s[ns ', m)=(P ', 0', (jm-)((-nP-j)&0~s[ns)~20&, (Ba)

1/2

((nlj)2m]sf (nPj)&m)= P (l2, -'„m—v, v) j&m)&P, —',, m —v, v) j&m&&(nl )2m[s( (nP~)&m —v),
v=1/2

(8b)

(k, l', m m, ', '(m—~(nsl j)2m) = (l2, —',, m „m~mj&—m)&k, l', ns m, ) s
( (nl, )&m —m, )—.

' H. B. Bebb, J. Math, Phys. 7, 957 (2966).
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Substitution of (8) into (6) yields

/ (4~)' 1/2

5'3/(k; ns-', ) = p p p p p I (l2, —',, m m—„m, ljmm)(4, —',, m —v, vl j2m&(p, -'„m—v, vl j&m)
2j+1 m j=vml' (nl j)s (n/)t v I/2

(0, l', m —m I«l (nl )2m —m, ')((nl )~m —vl«l (np/)~m v—)&(np/)&01«les~/20& '
X(p2,0 k I j~m)]

n(ntj), n(npj),
. (9)

This expression can be regarded as the computational formula for the ionization strength. While it appears formida-

ble, its interpretation is obvious and its evaluation is easily aBected with the aid of a digitial computer. For those
preferring less reliance on large computers, the result can be further reduced to an expression involving only dipole
matrix elements by evaluating the Clebsch-Gordan coefficients and explicitly writing out the terms indicated by
the summations:

mkk 3s'"(&' n s-') = (4«)' 2, &&pl«ln'»/2)&n'»/2I«lnpv~&&npv~l«ln»/«)
(2«A)' ' Q(e's-', )Q(np-', )

+ . . . &&pl«le'»/~&&e'sv21«l cps/2)&np3/21«ln»/2&+ . . .&&pl«ln'da/2)&n'd8/2I«lnpv«)
0 (n's-', )0 (n p-', ) 0 (n'd-', )Q (np-,')

1/15 9/15
X &npv~ I «I e sv 2&+, &&p I

«ln'd3/2&&n'd3/~
I «lnp3/2&&np3/2 I «In sou&+ &~p I «In'd5/2)

n(n'd-;) n(np3) n(n'd-,')n(np-,')

x&n'ds/21«l cps/2&&epa/21«le"v2& + 2 . . .&&fl «Ie'da/, &&n'd3/2I «lnpi/&)(np~/2I «ln, si/2&". n(n'd-;)n(np, ')
1/15 9/15

+ . . .&&fl «I e'd»~&&n'd8/2I «Inp~/2)&npa/2I «In, »/2&+ . . .&ff I «I n'd»2&&n'd5/«I «I np»«)
0 (n'd-,')0 (ep-,') n(n'd-', )n(np-', )

—(546)/30 —(g6)/30
X &np~/~l «I e.»/2& + v'l 2, &~p I «In'da/~&&n'd~/2I «Inpv~&&npv~ I «ln"v2)+

- - n(n'd-;)n(np-', ) n(n'd-;) n(np-', )

—(5+6)/30 —(g6)/30
+ v 3 2 . . . (&jl «I e'd3/2&&n'd3/2I «

I np~/2&&npv2 I
«

I n.»/«&+ . . . &&f I «I n'ds/«&-" n(n'd-;)n(np-', ) a(n'd;)n(np$)

(6/6)/30 2

X (n da/2 I
«

I np3/2&&npa/2 I
«

I n.»/2&+ . . . &&j I
«

I
n'd»«&&n'ds/2

I
«

I npa/«&(np«/2 I
«

I n.sv«& (10)
n(n'd-', )n(bp-,')

(6/6)/30 2

X&&pl«ln'de~&&n'd3/~I«lepv~)&np3/21«ln. sv2&+ . . . &&pl«ln'd«/~&&n'ds/21«lnp«/2&&np»«l«ln. »/2&
n(n'd-', )n(np-', )

The three-photon ionization rate is given by substitut-
ing Eq. (10) into Eq. (1a).

Angular integrals in (9) involving m~ ——+1 have been
expressed in terms of m~=0 angular integrals in (10).
Hence, the dipolar integrals appearing in (10) are all
of the form

&n'l/'l«lnl;&= R $, (r)F'g'(0, $)«R„t, (r)

X F& '(8,@)r'drdQ. (11)

Several comments about Eq. (10) are appropriate.
First, the result is somewhat diferent from what would

be obtained by deriving selection rules based on the
concept of average-energy denominators developed
in Ref. 1. In particular, the last two terms (here we are
regarding the set of elements enclosed in absolute-value
signs as a term —there are four terms) which originate
from m~= +1 continuum functions would not appear. '
This diGerence arises because v ('& can be regarded as an
operator transforming as s' only in the space spanned
by the true eigenfunctions of the Hamiltonian —in the
present instance, the jm functions. However, in using
approximate m~m, continuum functions, we have ex-
tended the space (i.e., m~m, functions are not eigen-

' See note added in proof of Ref. 1.
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functions of the complete Hamiltonian with spin-orbit
coupling) and the result that r&'I transforms as s' is
no longer strictly valid. On the other hand, the last
two terms are almost always small compared with the
first two, so that results based on average energies still
provide an excellent approximation.

Second, as an instructive check on the result, con-
sider the reduction of Eq. (10) as the spin-orbit energy

is "turned off." Results appropriate to m~ns, functions
should be recovered. As the spin-orbit coupling becomes
negligible, frequencies associated with the same con-
figuration but diff erent j values collapse, Q(nP 2)-
=Q(np-,') =Q(np), and Q(nd-,') =Q(nd2) = Q(nd). The
corresponding radial matrix elements also become in-
dependent of j.Thus, the last two terms vanish and the
6rst two add to give

s&~I (k; n s) = (tnkk/(2m. k)') (4ir)' 2 (kp I
s

I
n's&(n's

I
s

I np&(np I
s

I n"&
n n Q(n's)Q(np)

+ (kpl sI n'd&(n'dl slnp&(npl sins& + p (kfl sin'd&(n'dl slnp&(npl sin"& (»)
Q(n'd) Q(np) "-Q(n'd) Q(np)

Equation. (12) is just a special case of the more general
result given by Eqs. (39) and (40) of Ref. 6(a)."

1O-78

1O-7~

10 78

1O-78

10 77

1O-78

~1O-»

7D

III. RESULTS AND DISCUSSION

The three-photon ionization strengths, Eq. (10), and
the corresponding transition rates are estimated by
replacing the infinite sums over intermediate states
with a limited number of signihcant terms. The sum
over first-order intermediate states lnp, & is dominated
by the lowest lying conhguration due simultaneously to
the large value of the corresponding matrix element

(n=n„p, lsln, st&2& and the occurrence of a near reson-
ance of the photon energy with the (n„p) configuration
making Q(nP j) small. The summation over the second-
order intermediate states is extended to include all
(n's) and (n'd) configurations with energies that occur
in resonance with 2Aco. The contribution from the higher
lying (np) and (n's), (n'd) configurations are discussed
later.

The techniques used to evaluate the required dipolar
matrix elements are detailed in Ref. 1. BrieRy, the
wave functions (for both the bound and free states)
are approximated by quantum defect Coulomb func-
tions and the radial integrals are calculated using the
techniques of Bates and Damgaard" for the bound-
bound integrals and the results of Burgess and Seaton'
for the bound-free integrals.

A zoRTRAN computer program was written to evalu-
ate the three-photon ionization rate. The output from
the IBM 7074 (the transition rate t&t&, ,&3I and the photon
energy A&d) is written on magnetic tape which is used
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PHOTON ENERGY(EV)
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FIG. 1. Three-photon ionization rate of Na. The sum over the
second-order intermediate s and d states extends to n'=9. The
doublet structure of the 3p and n'd levels is included in the com-
putation but is not resolved in the dispersion curve. The symbol
8'/(P~) should be interpreted as wq g(')/F'.
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'0 Equations (40), (41), and (42) of Ref. 6 contain an error.
In the notation of Ref. 6, Eq. (40) should read

I(k[&r&n& In, l,) ['

= (4m)' g I
(kl/~&n& Ingle) ['

1=0

(k, l [z I n, l+1)= (4~) Z r. ( (g 1) + ~

/2)

2

X(n, l+1I r&n '& In lg)+term in (1—1)

Analogous replacements should be made in Eqs. (41) and (42) of
that work. The error resulted from an effort to simplify the nota-
tion. The correct expression as quoted here was actually used in the
computations.

1p -82
I

I I I I1o-ss
1 ~ S 1.4 1.5 1.6 1-7 1.8 1.9 Z.

PHOTON ENERGY(EV)

FxG. 2. Three-photon ionization rate of K. The sum over the
second-order intermediate s and d states extends to n'= 8.The sum
over the 6rst-order intermediate p states includes 4p and Sp.
Only 4p is near resonant within the photon energy range indicated.
The doublet structure is clearly visible. The dashed line gives the
results when the contribution from the Sp intermediate state is
neglected. Incorporating the higher p states than the Sp state, on
the other hand, does not affect the result indicated with the solid
line. Note that the (n'+2, s) levels almost coincide with the
(n', d) levels.

D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc.
London A242, 101 (1949).
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2. 1

Fn. 3. Three-photon ionization rate of Rb. The sum over n'
extends to n'=12. The enormous peak at 1.58 eV is due to simul-
taneous resonances occurring in first and second order. The s
states above n'=8 begin to coincide with the d states Pe.g.,
~(10,s) =3.887 eV and e(8,d,—,') =3.870 eVj are not resolved. The
dashed line corresponds to approximating the sum over np by
Sp. The higher p states clearly contribute very little to the transi-
tion rate.

as input for a Calcomp digital plotter. The digital
plotter draws the transition rate as a function of
photon energy. The dispersion curves, Figs. 1 through 4,
are, reproduced directly from the digital-plotter output
Lthe label W/(Ii~) on the ordinate should be read as

(3)/p&g

The three-photon ionization-rate dispersion curves
for the alkalis Na, K, Rb, and Cs are given in Figs. 1—4
for photon energies between the three- and two-photon
thresholds. The peaks arise from near resonances in
both first and second order. The lowest lying p configur-
ation shows a near resonance with A~ (first order),
while the s and d configurations show near-resonances
with 2A~. The occurrence of simultaneous near-reson-
ances in first and second order leads to unusually large
transition rates (w''i 10 "F') in. Rb and Cs for
photon energies around 1.58 eV and 1.38 eV, respec-
tively. For these photon energies, the three-photon
ionization can to a good approximation be regarded as
a sequence of three first-order transitions, say Ss~ Sp&~2

5p3~q ~ 5d, and 5d ~ k for rubidium.
As previously implied, the often used approximation

of replacing the infinite sums over intermediate states
by a limited number of dominant terms was investi-
gated by observing the change in the dispersion curve
as the number of terms is increased. Of course, the
terms occurring in near-resonance with the photon
energy are clearly essential and should provide the
major contribution near the corresponding peaks. Less
obvious is the contribution of the nonresonant terms
(including the continuum) to the valleys. The sum over
first-order intermediate states is well approximated by
keeping only the lowest two configurations coupling
the ground state, (N„p) and (n,+1,p). The correspond-
ing results with only the lowest configuration (ii„p)
are indicated by the dashed lines in Figs. 1-4. Only the
transition rate of potassium obtains a significant con-
tribution from the (n,+1, p) configuration with a
slight contribution occurring for rubidium and a
negligible contribution for sodium or cesium. Higher

10-»—
10 72

10 78

10-74

1 p -75

10-78
z
~ 10 -77

1 p -78

10-»

6D
eP~(

6P~~

9D

(ns

10 -80
1.2

I I I I I I I

1.8 1.4 1.5 1.6 1.7 1.8 1.9 2.
PHOTON ENERGY(EY)

FrG. 4. Three-photon ionization rate of Cs. The sum over n'
extends to n'= 11.The splitting of the d lines as well as the p lines
is sufficient in cesium to be resolved in the graph.

lying p configurations are certainly negligible. The sum
over the second-order intermediate s and d states is
well approximated by keeping only the near-resonant
terms indicated in Figs. 1—4. However, it should be
pointed out that more states than those labeled in the
figures were actually used in the computations. They
are indicated in the figure captions.

From the above agruments, the contribution from
the continuum cannot be precluded as negligible. How-
ever, since the main part of the oscillator strengths of
the relevant levels is provided by the discrete portion of
the spectrum, we might expect the continuum con-
tribution to the intermediate-state sums (in the pertur-
bation formulas) to be small. This is certainly the case
the case for the first-order intermediate states (imp), as
argued in Ref. 1, but is less clear for the second-order
summation over e'. Regardless, the continuum con-
tribution can be significant only with respect to the
deepest part of the valleys. We caution, however, that
the deep valleys arise from cancellation eGects between
terms which can cause the transition rate to actually go
to zero. A small contribution can shift the position of
the minimum as well as the depth of the valley (for ex-
ample, see Fig. 2). On the other hand, the results pre-
sented in Figs. 1—4 should be quantitatively reliable for
most photon energies with uncertainties arising only
near the deepest portions of the valleys.

IV. GAS BREAKDOWÃ

Recently, there has been considerable speculation
about the role of multiple-photon ionization in the gas
discharges observed at the focal region of Q-spoiled
ruby and neodymium lasers. "The breakdown is con-
viently divided into three states: initiation, growth, and
recombination. The growth of the optical discharges in
the rare gases appears to be accounted for by cascade
ionization processes taking place through the agency
of "free" electrons (in the neighborhood of gas atoms)
absorbing energy from the optical field. Owing to the
large ionization potential of the rare gases, multiple-

"C.S. Naiman, M. Y. DeWolf, I. Goldblatt, and J. Schwartz,
Phys. Rev. 146, 133 (1966). This article contains extensive refer-
ences to the literature on gas breakdown.
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photon ionization occurs with reasonably low prob-
ability and thus contributes significantly only to the
initiation stage (at least at moderate pressures —say,
around one atmosphere). At lower pressures, E-photon
ionization should contribute in increasing amounts to
the growth of the discharge due to its relative weak
pressure dependence compared to cascade ionization
processes (see, for example, Fig. 20 of Ref. 6).

The photon flux F (photons cm ' sec ') required to
produce a given transition rate W (transitions cm '
sec ') is given by

p —Q 1/ N—
((pig (x') )1IN (13)

where Xo is the atomic number density (roughly pro-
portional to pressure) and w'~)=b'~&F+ is the transi-
tion rate per atom. For low-order processes —say, X=2

or 3 (as appropriate for photo-ionization of the alkali
gases with ruby laser light) —the flux required to pro-
duce a substantial transition rate lV is significantly
lower than for the higher order processes appropriate
to the rare gases. Also, the pressure dependence for
the lower order processes is much stronger, in accordance
with Eq. (13).Hence, multiple-photon ionization should

play a more dominate role (over appreciable pressure
ranges) in the growth of gas discharges in. the alkali
gases than in the rare gases. The alkali gases thus seem
to be interesting candidates for gas-breakdown experi-
ments as well as for direct photo-ionization experiments.
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Electron Photodetachment from 0- anti Elastic Scattering
from Atomic Oxygen
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Cross sections have been determined for the photodetachment of an electron from the negative atomic-
oxygen ion. Calculations are made for the three transitions 0 'P to O'P, 0 'D, and 0'S with photon
energies from threshold to 13.6 eV. A method is used wherein wave functions for both bound-state and
continuum electrons are obtained through a modified version of Slater s approximation to the Hartree-Fock
equations. Correlation effects are included through a polarization potential obtained from an application
of 6rst-order perturbation theory to the Hartree-Pock atomic system. Results are compared with the experi-
ments of Smith and of Branscomb, Smith, and Tisone, giving very good low-energy agreement. In addition,
the elastic-scattering cross section for neutral oxygen, the dipole polarizability, the attachment cross section,
and attachment coefhcient for electron capture were also determined. Agreement is quite good between these
observables and available experimental data.

I. INTRODUCTION

ECAUSE of their importance in terrestrial and
stellar atmospheres, the cross sections for photo-

detachment of the negative atomic-oxygen ion and cross
sections for low-energy electron scattering by atomic
oxygen have been studied by a number of investigators
both experimentally and theoretically. ' In treating
either of these problems theoretically there is the usual

difhculty of adequately describing the continuum so-
lutions at low energies, the ordinary Hartree-Fock
treatment being inadequate because of correlation
eRects. In the case of the negative ion there is the added

* Present address: Health Physics Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee.

' See review by L. M. Branscomb, in Atomic and Molecular
Processes, edited by D. R. Bates (Academic Press Inc. , New York,
1962), p. 100.

problem of obtaining acceptable wave functions for
the initial negative-ion state since, again because of
neglect of correlation, Hartree-Fock solutions are not
particularly accurate.

In the present treatment of these problems, a method
is utilized wherein the bound-state system is described
through a modification of the Hartree-Fock-Slater
(HFS) technique and correlation effects are determined

by a polarization potential obtained from the pertur-
bation of the bound-state system by the detached (or
scattered) electron. The latter has been applied with
some success in low-energy electron scattering from
alkali atoms' where polarization terms in the interaction
potential are quite large.

' W. R. Garrett, Phys. Rev. 140, A705 (1965);hereafter referred
to as I.


