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Auto-ionization states of two-electron systems (H~ and He) have been calculated using the Feshbach
Q-projection-operator formalism with a Hylleraas-type variational wave function. Results for most of the
S states in He and the first two in H— are lower than any previously calculated. The energy of the lowest 1S
state in He is found to be —1.5575487 Ry using 50 terms, and the convergence indicates that the first 6
figures are significant. Except for the lowest 3P state in He, calculations of odd-parity P states do not yield
as low results as previous relative partial-wave calculations. Comparison with accurate resonant-energy
calculations of Burke and Taylor in S states allows us to deduce energy shifts which are inherent in the

projection-operator technique.

I. INTRODUCTION

ITH the successful application of the Feshbach
Q-operator formalism!' to the calculation of
atomic auto-ionization states,? the possibility of calcu-
lating the energy of such states to very high accuracy
has been greatly increased. In this paper we consider
the calculation of auto-ionization states of He and H~
using a Hylleraas-type wave function

V=¢ trrtiars) 37 Crmarilre™ri (122).

Im,n

(1.1)

+ The wave function (1.1) is appropriate for S states
of singlet (upper sign) and triplet (lower sign) spin.
Previous calculations®? were based on relative partial-
wave expansions

V= i & (71,72) Pr(cos615) (1.2)
A=0

in which only a finite number of Legendre polynomials
Py(cosfis) (relative partial waves) were taken, the asso-
ciated function ¢»(7172) being of some convenient ana-
lytical form. It has been known ever since the pioneer
calculations of Hylleraas* for low-lying bound states of
two-electron systems that expansions of the form (1.1)
yield considerably lower energies than (1.2); thus it is
immediately tempting to carry through the similar
treatment to auto-ionization states. Before proceeding
with unbridled enthusiasm, however, one should bear
the following reservations well in mind. Auto-ionization
states are much larger in size than true bound states;
thus the electron-electron singularity, whose accurate
treatment is the strong point of (1.1) cannot straight-

* Part of this work was done while a National Academy of
Sciences, National Research Council resident research associate.

1 H. Feshbach, Ann. Phys. (N.Y.) 5, 537 (1958); 19, 287 (1962).

2T, F.O’Malley and S. Geltman, Phys. Rev. 137, A1344 (1965).
(1;6%) L. Altick and E. N. Moore, Phys. Rev. Letters 15, 100

4 E. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1929).
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away be expected to be of comparable importance for
auto-ionization states. If, however, the calculation actu-
ally yields lower energies 8o, the meaningfulness of
such results must be understood in the context of the
fact that the experimental energy £ that is measured
is shifted by an amount Aq whose magnitude depends on
the details of the Q operator which one uses.® (It always
being understood that in this calculation we only use
the same Q operator as O’Malley and Geltman.?)

E=8¢+Aq. (1.3)

For strictly experimental purposes, it makes no sense
to calculate &g to greater accuracy than Ag warrants
unless one knows from some other source what Aq is.
Furthermore, the experimental value of E is itself the
result of the measurement of some resonance phe-
nomenon associated with a width I'. This fact is usually
expressed by writing the energy as a complex® number
w:

W=E—Lr. (1.4)

In this way the time dependence of the auto-ionization
¢~Wt is automatically time-decaying. The prescription
of where precisely to put E within I' is to some extent
arbitrary, and particularly for auto-ionization states
(for which T is generally very large compared to optical
widths), this further renders the concept of an exact E
somewhat arbitrary.

These reservations having been stated, it is still of
considerable interest to utilize (1.1) to compute &q.
For in the case of two-electron systems, E is in principle
knowable from direct and very accurate calculations
and experiments. Thus one may use accurate calcula-
tions of &¢ to infer Ag, which is of interest since it

8 It is for this reason that we explicitly use the subscript Q on
the notation used in Ref. 2. In the tables, however, we shall drop
the subscript]Q and use the subscript # to refer to the sequential
order in the state in question.

8 A. Herzenberg and F. Mandl, Proc. Roy. Soc. (London)
A274, 252 (1963).
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measures the quality of the Q operator one has used.
One of the chief purposes of this paper is to present
such a sufficiently definitive calculation of the lower
lying 8. The formal definition of our Q operator is
given by”?

Q= (I—Pl)(l_P2); (1-5)
Pi=o(1:)> < o(rs), (1.6)

where ¢o(r;) is the ground state of the ith particle in the
nuclear field of charge Z:

eo(r)=[Rus(r)/r]V 00(),
Ry (r)=223"¢ 2",

(1.7a)
(1.7b)

Q is thus restricted to the description of auto-ionization
states below the =2 threshold.

Calculations based on (1.1) will also enable an assess-
ment to be made of the importance of the electron-
electron repulsion relative to the longer range correla-
tions which are implicit in (1.2). We shall find, for S
states, the expected improvement in using (1.1), the
improvement being greater in 1S than in 3S states,
whereas for P states, except for the lowest 3P state in
He, the results based on (1.2) are actually superior
(because of our restriction of u;=u, for P states) (see
Sec. IT). We shall also find in those cases where com-
parison is possible that the associated Aq are positive
and very small for the lowest states, but proportionately
more significant for the higher states.

All P state calculations in this paper refer to odd-
parity P states.

II. CALCULATION AND RESULTS

The expectation value of the energy in the restricted
space of Q¥ functions is given by

_(QUHQY) (¥Hoq¥)
v (ovow)

The denominator reduces to (¥Q¥) under the funda-
mental projection equality Q?=(. Utilizing (1.5), we
can write the numerator

(2.1)

(VH oq¥) = (VHY)— Y- [(VPHY)+(YHPZ)]

1=l

43 Zz(\I/PiHPj\IIH—(\IfHPng\I/)

i=1 j=1

+ (WP, P HY )+ (VPP H P1P3Y)

(2.2a)

—f [(¥P,P.HP W)+ (¥ P;HP Py¥)].

i1
The (anti) symmetry of ¥ can be used to show that

7Y. Hahn, T. F. O’Malley, and L. Spruch, Phys. Rev. 128,
932 (1962).
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certain terms of (2.2a) are equal:
<‘I/P1P2HP2‘I’>= (\I’P1P2HP1‘I/> y (233.)
(‘I/'PlHPz‘I’>= (\I’P2HP1\I’) ) (23b)
(¥ P HY)= (¥ P, HY), (2.3¢)
(WHPY)=(VHP.Y). (2.3d)
Substitution of (2.3) into (2.2a) then yields
(VHoqV)=(YHY)—2[(¥ P HY)+(YHPY)]
+ 2V PLHP W)+ 2( PLHPY)
+[(YHP, PV )+ (¥ P1P.HY)]
—2[{¥P1P.HP¥)+- (¥ P.HP,P:¥)]
+(¥P,P,HP,P¥). (2.2b)

The two quantities in each of the square brackets above
are the transpose of each other. Thus if we let 7 refer
to a triple of indices Z;, m;, #n; associated with specific
(symmetrized or antisymmetrized) term of (1.1), and
j to another term, then one can readily show, for ex-
ample, that

(PH)ij=(HP1)ji. (24)

The denominator in (2.1) may correspondingly be so
simplified.

The integrations in (2.2b) are then of three basic
types. The first is (WVH¥). This is just what arises in
ordinary energy calculations with Hylleraas-type varia-
tional functions, and we shall not discuss it further.

The second is where P,P; appears but not a single
P;. An example is (WHP,P»¥). Such terms can readily
be evaluated as indicated below. We shall write
symbolically®

W (r1,19) = fi(r179712) D:(©, D). (2.5)

Then
(YHP,\P¥)= / / d3r1d3ra¥ (r1,12) H 0o (r1) 0o (r2)
(2.6a)
X / / &ri'dry po(r1) o (1) ¥ (r1,1y).
Use now
@i d3ry =ri'ryrio'drdrydryy sin®’d @’ d®’dw
so that
(YHP,P,¥)

- / f d3rid®ra¥ (x1,19)H 0o (r1) 0o(72)

X / ri’reriddrddry drid ®o (7’ 1’) ®o (?' 2I)f 1 (7’1/7’ 7 12/)
X / DO, @, F) sin@'dO'd®'d¥’. (2.6b)

8 For further details cf. A. K. Bhatia and A. Temkin, Rev. Mod.
Phys. 36, 1050 (1964).
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153 CALCULATION OF AUTO-IONIZATION STATES
TaBLE I. Auto-ionization energies (Ry) as a function of N for the 1§ states of He and H™.
He H-
—8 — &3 — 84 (—8 (;-8) (;8) —-8) (—8) (—'81) (—82
(/4 , z) (e, () () pi1pts ph1,pts

N (0. 9§“ 95) (0. 700 70) (0. 55 10) (0. 3010) (0. 3010) (0.30,1.0) (0.30,1.0)  (0.30,1.0) (0.30,1.0)  (0.40,0.40) (0.12,0.50)

7 0.29402394
13 1.5566129 1.2435445 1.1689668 1.0932644 0.29638831 (.2516244
22 1.5574554 1.2451783 1.1795936 1.0955516 1.0882892 0.29748709 0.2517898
34 1.5575305 1.2454662 1.1800574 1.0962248 1.0895538 0.29753144 0.2519990
40 1.5575447 1.2454711 0.29754265
45 1.5575482 1.2454763 0.29754735
48 1.5575485 1.2454810 0.29755217
50 1.5575487 1.2454819 1.0963706 1.0897304 1.0553648 1.0527838 1.0236674 1.0007132 0.29755787 0.2520166

It is evident from (2.6b) that these terms are nonzero
only for /=0 (S states). The remaining “radial”’ factor
can be handled just as the ordinary Hylleraas terms in
(YHY).

The third type of term contains a single P;. An ex-
example is (VHP¥). This is the most difficult integral
for Hylleraas-type wave functions. In the Appendix we
sketch how this is analytically evaluated.

The integers I, m,n in (1.1) were selected in the
Pekeris® manner of taking all sets such thatl4+m+n=w,
where w traverses the integers. The total number of
terms /V is then a cubic function of w which is 7, 13, 22,
34, 50 for w=2, 3, 4, 5, 6 in the singlet case and
w—>w+1 for a given IV in the triplet case. Our tables
contain some values for intermediate NV which therefore
correspond to incomplete [4+m-+#=w sets in the sense
defined above.

In Table I we present results for the LS states of He
and H~ as a function of the number of terms N in the
expansion (1.1). The nonlinear parameters, u;1 and w2
are given at the top of each column. Only in the case
of the lowest eigenvalue in H~ and possibly the lowest
two in He do we feel that the first 6 significant figures
represent the true &q. As can be seen from Table II,
these values are noticeably lower than those calculated
by O’Malley and Geltman; however, as one goes to
higher eigenvalues the improvement rapidly decreases.
Any improvement can be directly attributed to the

presence of two nonlinear parameters in (1.1). States
6-9 have not previously been reported.

For P states, only in the lowest triplet case for He
is any improvement achieved. However, in this case we
are restricted to u;=p, (see below), with 50 linear
parameters.

The implication is clear then that the larger and more
asymmetric the state the less important the electron-
electron repulsive singularity relative to longer range
configuration interaction effects. The situation is not
really surprising. In H~ the size of the nth auto-ioniza-
tion state is of the order!®

R” o a2e'rrn/a ,

where a is a constant. Thus the size increases exponen-
tially and it is quite enormous even for comparatively
low values of n. As a result, the electrons spend ex-
cessively small amounts of time in each other’s vicinity,
and the exact description of the wave function for close
interactions is correspondingly less important.

In particular, our calculated values of the second
levels of H- may be considerably too high in spite of
their being based on 50 terms of the conventional
Hylleraas type. Thus the fact that our second H- values
are above those predicted by Temkin and Walker,!* the
latter may still be correct. Recent preliminary varia-
tionally calculated results of J. C. Y. Chen (private
communication) using the correct long-range part of

TaBiLE II. Comparison of §¢ (Ry) with results of O’Malley and Geltman.

. System ) S p P

AN O’Malley O’Malley O’Malley O’Malley

AN and and and and
AN Present Geltman® Present Geltman® Present Geltman® Present Geltman®
He 1 —1.557549 —1.55648 —1.205199 —1.20480 —1.38268 —1.38316 —1.522576 —1.52176
2 —1.245482 —1.23824 —1.119515 —1.12084 —1.19268 —1.16564
3 —1.180057 —1.17960 —1.097682 —1.10688 —1.12396 —1.10788
4 —1.096371 —1.10012 —1.065013 —1.06184 —1.09260 —1.07900
5 —1.089730 —1.08000 —1.056664 —1.05336 —1.08904 —1.06624
H- 1 —0.2975579 —0.29744 —0.254216 —0.25401 —0.24568 —0.25193 —0.284795 —0.28504
2 —0.2520166 —0.25192 —0.250184 —0.25013 —0.25003 —0.25042

s Reference 2.

9 C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
10 A. Temkin and] F. Walker, Phys. Rev. 140, A1520 (1965).
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TasLE III. Lowest calculated eigenvalues (&g in.Ry) of Hgq.
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present (Q-operator, Eq. (1.5), unless the continuum
functions are orthogonal to the (1s) state. However, in

\ns\yStem 1§ 55 P P the case of Altick and Moore, since their continuum
—~ basis is automatically orthogonal to their discrete basis
He 1 —1.557549  —1205191 —138316* —1.522576  fynctions their Q-operator is the same as the present
2 —1.245482 —1.12084» —1.19268> —1.16564° : :
3 1180057 —110688" —112396> —115492¢  one. Thus we conclude that at least the sign of Ag in
f; —i(l)gg%a —}82.65%2 —1.09260b —1.0937(7)° those 'P(+) cases is reliably negative, in contrast to
—1. —1. —1.08904> —1.08167¢ 141
6 10553648 _10375254 —105756> —lo7sdee  Lhe Present positive S-state results. :
In practical terms this means that although a varia-
H-1 —02975579 —0254216 —0.25193* —0.28504° tional calculation of 84 will yield an upper bound for
2 —0.252016 —0.250194 —0.25003> —0.25042=

s Reference 2.
b S, Geltman (private communication).
o Reference 3.

the wave function!® are in agreement with those
predictions. '

In Table ITI we have collated the lowest variational
results for the lower states of He and H~. The calcu-
lated results which we include are only those which use
the specific form of Q in Egs. (1.4) and (1.5). Thus we
do not include those of Lipsky and Russek! which in
effect are based on a different Q operator.

Our improved accuracy for the lower S states can
also be used together with recent calculations of the
corresponding scattering resonant energies £ by Burke
and Taylor? to yield reliable information about Ag.
The results are given in Table IV. The major con-
clusion from it is that Aq are small and positive. This
result is to be contrasted with the results of Burke and
McVicar, and Altick and Moore® for a subclass of the
P states, labeled™ by the additional approximate quan-
tum number (+4), which yield negative A. In both
papers'® A has been deduced by comparing the respec-
tive scattering resonance energies with eigenvalues ob-
tained from the full equations by deleting all terms
referring to the 1s state. As stated by Burke and Mc-
Vicar and shown in Ref. 10, for the close-coupling
equations, this is not formally equivalent to using the

8¢, the value will not necessarily be an upper bound on
E. We also note from Table IV that the ratio® A,/
| ny1— 8| increases rapidly as a function of #. This
means that the relative shift for higher levels is more
significant than for the lowest one. A comparison of A,
with the widths I', for the 1S states as calculated by
Burke and Taylor'? shows that, whereas A,<T', for
n=1, they are quite comparable thereafter. (The n=2
eigenvalue in He can be classified to a good approxima-
tion as the first member of another series '4)

We have not included any comparison with experi-
ment as the experimental results are adequately sum-
marized in Ref. 2, and nothing qualitatively new is
found with our results. The extremely accurate vacuum-
ultraviolet results of Madden and Codling'® merit
further comparison; however, in view of our wi=u.
restriction for P states (the calculation being difficult
enough as it is), we shall not attempt such comparison
here. We do intend to include two nonlinear parameters
and at the same time to examine such perturbations as
reduced mass and mass polarization in order to effect
a meaningful comparison.

It should be remarked that in comparing with experi-
ment, it is necessary among the other things to convert
the rydberg to eV and this conversion factor has varied
in the fifth figure from case to case in the eV results
presented by O’Malley and Geltman.? Thus some of
their entries will differ by one unit in the fourth sig-
nificant figure if the latest value of the rydberg!® (for

TABLE IV. Values® of Aj,.

System and E, &n An Ap
state n (Ry) Ry) (Ry) (eV) An/| 8np1— Enl
He (15) 1 2.444301 2.4424451 +0.00185 +0.0252 0.0059
2 2.759783 2.754518 +0.005265 +0.0716 e
3 2.821582 2.819943 +0.001639 +0.0223 0.0205
He (35) 1 2.7951030 2.794909 -+40.00019 +0.0026 e
H- (1) 1 0.70269 0.70244 +0.00025 +0.0034 0.0055
2 0.748091 0.74798 —+0.00011 +0.0015
H- (5S) 1 0.7460154 0.745784 +0.00023 +0.0031

a The entries are relative to the ground state of the target systems He+ and H, respectively. The En are taken from Burke and Taylor (Ref. 12 and pri-
vate communication) ; the remaining entries refer to this calculation.

171, Lipsky and A. Russek, Phys. Rev. 142, 59 (1966). Cf. also references to E. Holgien contained therein. The Q operator used in
these references has the effect of introducing spurious (non-auto-ionization) eigenvalues into the spectrum. For details cf. the article by
A. Temkin, in Autoionization, edited by A. Temkin (Mono Book Corporation, Baltimore, Maryland, 1966), p. 66 ff.

12 P, G. Burke and A. J. Taylor, Proc. Phys. Soc. (London) 88, 549 (1966).

1 P, G. Burke and D. D. McVicar, Proc. Phys. Soc. (London) 86, 989 (1965); P. L. Altick and E. N. Moore, Phys. Rev. 147, 59 (1966).

14 7, Cooper, U. Fano, and F. Prats, Phys. Rev. Letters 10, 518 (1963).

15 R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963); Astrophys. J. 141, 364 (1965).

16 E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37, 537 (1965).
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infinite mass) R,=13.60535 eV be used. Altick and
Moore? have not given the value of the rydberg that
they have used.
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APPENDIX

We indicate here how one calculates terms of the
type (WHP1¥) as typical of the single P; terms occurring
in Eq. (2.2b). The state is here explicitly labeled by its
angular momentum /.

(YHP)

=//d3r1d3r2\1'1(rl,rg)HPl\Ifl(rl,m)
(A.1)

=/fd371d31’2\1’1(r1,r2)ﬂ<p0(rl)/d3r1(po(r1/)\lll(r1,,1'2).

The second (r,’) integral can be evaluated by introduc-
ing the Fourier representation of the delta function:

1
8(ty—1y) = /d3 ¢ia- (rrmr2’) | A2
211 ) q (A.2)
Then
/ dry o(r )W (11',15)
=//d3r1’d3r2’6(r2— rzl)gao(f’ll)\llz(rll,l'gl) (A3)

= /dsqeiq'r2//d371’d372,€_iq’rz,goo(ﬁl)q’l(n',1’2’).
(2m)?

Using the spherical angle expansions of efa*2 and
e’z we find

L=161 V(@) / g jo(ars) / / dridrss(grd)
Tu 0

XY o* (@) 0o(rd )i (rd,1s), (A4)
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where

I(r))= / a3y @o(r{ ), (1/,12). (A.5)

We shall next sketch the manner in which (A.5) may
be integrated. Writing ¥ symbolically as in (2.5) and
expanding V,,(Q,’) symbolically as?

Yau=0‘a(012) DM (Q;Q;‘F) ) (A6)

one may, using the orthonormality of the D,®), reduce
(A.5) to the form

T V3(Q0) / ¢*dqji(grs) / ro'dryji(gry’)

X / / r'drriddriy oo(r ) (01d) fi(ri'rdre’) . (A7)

The last double integral in (A.7) may be performed
analytically using the explicit form of a;(f12’) given in
Ref. 8. Call this result F;(ry):

Fi(r)= / r'dr'rd dr’ oo () (61 filri'r're’) . (A.8)

And now we observe that in the integration over ¢, the
functions 7;(g72)71(gr2’) act like a delta function;i.e.,'”

/ g’dg / Fu(rd)jigra)jilgrs)rddry ‘
=4xF(rs)/re. (A.9)

This result multiplied by the function ¥;o(Qs) com-
pletes the analytical integration of 7,(ry"). The matnx
element is then

(‘I’HPl‘I/> o« /[dar1d3f2Wz(rl,r2)
XH(po(1’1) Yzo(Qz)Fz(fz)/fz.

With F(rs) known explicitly, the evaluation of (A.10)
is straightforward (but nevertheless extensive, par-
ticularly for P states).

(A.10)

Y G. N. Watson, Theory of Bessel Funchons (Cambndge Uni-
versity Press, Cambridge, England, 1958), p.



