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Hylleraas Variational Calculation of Auto-Ionization States
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Auto-ionization states of two-electron systems (H and He) have been calculated using the Feshbach
Q-projection-operator formalism with a Hylleraas-type variational wave function. Results for most of the
S states in He and the first two in H are lower than any previously calculated. The energy of the lowest 'S
state in He is found to be —1.5575487 Ry using 50 terms, and the convergence indicates that the first 6
figures are significant. Except for the lowest 'P state in He, calculations of odd-parity P states do not yield
as low results as previous relative partial-wave calculations. Comparison with accurate resonant-energy
calculations of Burke and Taylor in S states allows us to deduce energy shifts which are inherent in the
projection-operator technique.

The wave function (1.1) is appropriate for S states
of singlet (upper sign) and triplet (lower sign) spin.
Previous calculations" were based on relative partial-
wave expansions

+s Z Qx(rl, fs)PK(cos8ts)
0

(1.2)

in which only a finite number of Legendre polynomials
Pq(cos8ts) (relative partial waves) were taken, the asso-
ciated function gq(rtrs) being of some convenient ana-
lytical form. It has been known ever since the pioneer
calculations of Hylleraas4 for low-lying bound states of
two-electron systems that expansions of the form (1.1)
yield considerably lower energies than (1.2); thus it is
immediately tempting to carry through the similar
treatment to auto-ionization states. Before proceeding
with unbridled enthusiasm, however, one should bear
the following reservations well in mind. Auto-ionization
states are much larger in size than true bound states;
thus the electron-electron singularity, whose accurate
treatment is the strong point of (1.1) cannot straight-

*Part of this work was done while a National Academy of
Sciences, National Research Council resident research associate.

~ H. Feshbach, Ann. Phys. (Ã.Y.) 5, 537 (1958);19, 287 (1962).
~ T.F.O' Malley and S. Geltman, Phys. Rev. 137, A1344 {1965).'P. L. Altick and E. N. Moore, Phys. Rev. Letters 15, 100

(1965).
e E. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1929).
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I. INTRODUCTION

ITH the successful application of the Feshbach
Q-operator formalism' to the calculation of

atomic auto-ionization states, the possibility of calcu-
lating the energy of such states to very high accuracy
has been greatly increased. In this paper we consider
the calculation of auto-ionization states of He and H
using a Hylleraas-type wave function

%=e &"t"t+»"s& P Ct~„rttrs rts"+(1~~2). (1.1)
lan

away be expected to be of comparable importance for
auto-ionization states. If, however, the calculation a,ctu-
ally yields lower energies h@, the meaningfulness of
such results must be understood in the context of the
fact that the experimental energy E that is measured
is shifted by an amount hg whose magnitude depends on
the details of the Q operator which one uses. ' (It always
being understood that in this calculation we only use
the same Q operator as O' Malley and Geltman. s)

For strictly experimental purposes, it makes no sense
to calculate Bq to greater accuracy than dg warrants
unless one knows from some other source what hg is.
Furthermore, the experimental value of E is itself the
result of the measurement of some resonance phe-
nomenon associated with a width I'. This fact is usually
expressed by writing the energy as a complex' number
F':

In this way the time dependence of the auto-ionization
e '~' is automatically time-decaying. The prescription
of where precisely to put E within j. is to some extent
arbitrary, and particularly for auto-ionization states
(for which I' is generally very large compared to optical
widths), this further renders the concept of an exact E
somewhat arbitrary.

These reservations having been stated, it is still of
considerable interest to utilize (1.1) to compute htt.
For in the case of two-electron systems, 8 is in principle
knowable from direct and very accurate calculations
and experiments. Thus one may use accurate calcula-
tions of hg to infer hg, which is of interest since it

5 It is for this reason that we explicitly use the subscript Q on
the notation used in Ref. 2. In the tables, however, we shall drop
the subscript„". Q and use the subscript n to refer to the sequential
order in the state in question.

sA. Herzenberg and F. Mandl, Proc. Roy. Soc. (London)
A274, 252 (1963),
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CALCULATION OF AUTO —IONIZATION STATES

TABLE I. Auto-ionization energies (Ry) as a function of E for the S states of He and H

61)] 2)
E (0.95,0.95)

7
13 1.5566129
22 1.5574554
34 1.5575305
40 1.5575447
45 1.5575482
48 1.5575485
50 1.5575487

—G~ —83
(...") (. ,')

(0.70,0.70) (0.55,1.0)

—f,4

(~1,~~)
(o.3o,i.o)

1.2435445
1.2451783
1.2454662
1.2454711
1.2454763
1.2454810
1.2454819

He—Gs —86 —87 —&s —Gg

(P1 P~) (PI Pg) (P1 P ~) (PI P ~) (P1 P~)
{0.30,1.0) (0.30,1.0) (0.30,1.0) (0.30,1.0) {0.30,1.0)

1.1689668 1.0932644
1.1795936 1.0955516 1.0882892
1.1800574 1.0962248 1.0895538

1.0963?06 1.0897304 1.0553648 1.0527838 1.0236674 1.0007132

—81
(PI,P.)

(0.40,0.40)

0.29402394
0.29638831
0.29748/09
0.29753144
0.29754265
0.29754735
0.29755217
0.29755787

—8e
(» 1,~~)

(0.12,0.50)

.2516244

.2517898
0.2519990

0.2520166

It is evident from (2.6b) that these terms are nonzero
only for 1=0 (S states). The remaining "radial" factor
can be handled just as the ordinary Hylleraas terms in
(OH').

The third, type of term contains a single P;. An ex-
example is (O'HPt+). This is the most dificult integral
for Hylleraas-type wave functions. In the Appendix we
sketch how' this is analytically evaluated.

The integers 1, m, m in (1.1) were selected in the
Pekeris' manner of taking all sets such that 1+m+m= re,

where co traverses the integers. The total number of
terms S is then a cubic function of co which is 7, 13, 22,
34, 50 for co=2, 3, 4, 5, 6 in the singlet case and
ce —+ re+1 for a given X in the triplet case. Our tables
contain some values for intermediate E which therefore
correspond to incomplete l+m+n =to sets in the sense
defined above.

In Table I we present results for the '5 states of He
and H as a function of the number of terms lV in the
expansion (1.1). The nonlinear parameters, pt and ps
are given at the top of each column. Only in the case
of the lowest eigenvalue in H and possibly the lowest
two in He d.o we feel that the first 6 significant figures
represent the true Bq. As can be seen from Table II,
these values are noticeably lower than those calculated.
by O' Malley and Geltman; however, as one goes to
higher eigenvalues the improvement rapidly decreases.
Any improvement can be directly attributed to the

presence of two nonlinear parameters in (1.1). States
6—9 have not previously been reported.

For P states, only in the lowest triplet ca.se for He
is any improvement achieved. However, in this case we
are restricted to pt ——ps (see below), with 50 linear
parameters.

The implication is clear then that the larger and. more
asymmetric the state the less important the electron-
electron repulsive singularity relative to longer range
con6guration interaction effects. The situation is not
really surprising. In H the size of the nth auto-ioniza-
tion state is of the order"

g tX S~n n/Or
n )

where o. is a constant. Thus the size increases exponen-
tially and it is quite enormous even for comparatively
low values of n. As a result, the electrons spend ex-
cessively small amounts of time in each other s vicinity,
and the exact description of the wave function for close
interactions is correspondingly less important.

In particular, our calculated values of the second
levels of H may be considerably too high in spite of
their being based on 50 terms of the conventional
Hylleraas type. Thus the fact that our second. H values
are above those predicted by Temkin and. Walker, ' the
latter may still be correct. Recent preliminary varia-
tionally calculated results of J. C. Y. Chen (private
communication) using the correct long-range part of

TABLE II. Comparison of Gq (Ry) with results of O' Malley and Geltman.

System

ng
He 1

2
3
4
5

H 1
2

Present

—1.557549—1.245482—1.180057—1.096371—1.089730

—0.2975579—0.2520166

O' Malley
and

Geltmana

—1.55648—1.23824—1.17960—1.10012—1.08000

—0.29744—0.25192

Present

—1.205199—1~ 119515—1.09/682—1.065013—1.056664

—0.254216—0.250184

sS
O' Malley

and
Geltman'

—1.20480—1.12084—1.10688—1.06184—1.05336

—0.25401—0.25013

Present

—1.38268

—0.24568

O' Malley
and

Geltman'

—1.38316—1.19268—1.12396—1.09260—1.08904

—0.25193—0.25003

Present

—1.522576

—0.284795

O' Malley
and

Geltman'

—1.52176—1.16564—1.10788—1.07900—1.06624

—0.28504—0.25042

' Reference 2.

C. L. Pekeris, Phys. Rev. 112, 1649 (1958)."A. Temkin and J. F. Walker, Phys. Rev. 140, A1520 {1965}.
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TAsrx UI. Lowest calculated eigenvalues (so in Ry) of Hoo.

+System
ag
He 1

2
3
4
5
6

'S

—1.557549—1.245482—1.180057—1.10012+-1.089730-1.0553648

—1.205191
—. 1.12084&—1.10688'—1.065013—1.056664—1.0375254

lp

—1.38316'—1.1,9268b—1.12396b—1.09260b—1.08904b—1 05756b

ap

—1.522576—1.16564b—1.154920—1.093700—1.08167o—1.07546o

H 1 —0.2975579 —0.254216 —0.25193' —0.28504'
2 —0.252016 —0.250194 —0.25003' —0.25042'

& Reference 2.
b S. Geltman (private communication).
e Reference 3.

the wave function" are in agreement with those
predictions.

In Table III we have collated the lowest variational
results for the lower states of He and H . The calcu-
lated results which we include are only those which use
the specific form of Q in Eqs. (1.4) and (1.5). Thus we
do not include those of Lipsky @nd Russek" which in
eBect are based on a different Q operator.

Our improved accuracy for the lower S states can
also be used together with recent calculations of the
corresponding scattering resonant energies E by Burke
and Taylor" to yield reliable information about Ag.
The results are given in Table IV. The major con-
clusion from it is that Ao are small and positise. This
result is to be contrasted with the results of Burke and
McVicar, and Altick and Moore" for a subclass of the
I' s tates, labeled' by the additional approximate quan-
tum number (+), which yield negative ~. In both
papers" 6 has been deduced by comparing the respec-
tive scattering resonance energies with eigenvalues ob-
tained from the full equations by deleting all terms
referring to the 1s state. As stated by Burke and Mc-
Vicar and shown in Ref. 10, for the close-coupling
equations, this is rot formally equivalent to using the

present Q-operator, Eq. (1.5), unless the continuum
functions are orthogonal to the (is) state. However, in
the case of Altick and Moore, " since their continuum
basis is automatically orthogonal to their discrete basis
functions their Q-operator is the same as the present
one. Thus we conclude that at least the sign of Ag in
those 'P(+) cases is reliably negative, in contrast to
the present positive S-state results.

In practical terms this means that although a varia-
tional calculation of bg will yield an upper bound for

hg, the value will not necessarily be an upper bound on
E. We also note from Table IV that the ratio' 6„/

~
8.+i—B„~ increases rapidly as a function of e. This

means that the relative shift for higher levels is more
significant than for the lowest one. A comparison of 6
with the widths I'„ for the 'S states as calculated by
Burke and Taylor" shows that, whereas A„(&l „ for
e= 1, they are quite comparable thereafter. (The m= 2

eigenvalue in He can be classified to a good approxima-
tion as the first member of another series")

We have not included any comparison with experi-
ment as the experimental results are adequately sum-

marized in Ref. 2, and nothing qualitatively new is
found with our results. The extremely accurate vacuum-
ultraviolet results of Madden and Codling" merit
further comparison; however, in view of our @~=@2
restriction for P states (the calculation being dificult
enough as it is), we shall not attempt such comparison
here. We do intend to include two nonlinear parameters
and at the same time to examine such perturbations as
reduced mass and mass polarization in order to eRect
a meaningful comparison.

It should be remarked that in comparing with experi-

ment, it is necessary among the other things to convert
the rydberg to eV and this conversion factor has varied

in the fifth figure from case to ca.se in the eV results

presented by O' Malley and Geltman. ' Thus some of
their entries will diRer by one unit in the fourth sig-

nificant figure if the latest value of the rydberg" (for

TABLE IV. Values of b, .

System and
state

He ('S)

He (3S)
H- (IS)

H ('S)

(Ry)

2.444301
2.759783
2.821582
2.7951030
0.70269
0.748091
0.7460154

e
(Ry)

2.4424451
2.754518
2.819943
2.794909
0.70244
0.74798
0.745784

~a
(Ry)

+0.00185
+0.005265
+0.001639
+0.00019
+0.00025
+0.00011
+0.00023

(eV)

+0.0252
+0.0716
+0.0223
+0.0026
+0.0034
+0.0015
+0.0031

'«/l sn'i —gal

0.0059
~ ~ ~

0.0205
~ ~ ~

0.0055

a The entries are relative to the ground state of the target systems He+ and H, respectively. The B» are taken from Burke and Taylor (Ref. &2 and pr1-
vate communication); the remaining entries refer to this calculation.

' L. Lipsky and A. Russek, Phys. Rev. ].42, 59 (1966).Cf. also references to E. Holpien contained therein. The Q operator used in
these references has the effect of introducing spurious (non-auto-ionization) eigenvalues into the spectrum. For details cf. the article by
A. Temkin, in.ANtoionization, edited by A. Temkin (Mono Book Corporation, Baltimore, Maryland, 1966), p. 66 ff.

'2 P. G. Burke and A. J. Taylor, Proc. Phys. Soc. (London) 88, 549 (1966)."P. G. Burke and D. D. McVicar, Proc. Phys. Soc. (London) 86, 989 (1965);P. L. Altick and E.N. Moore, Phys. Rev. 147, 59 (1966).
'4 J. Cooper, U. Fano, and F. Prats, Phys. Rev. Letters 10, 518 (1963)."R.P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963);Astrophys. J. 141, 364 (1965)."E.R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37, 537 (1965).
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