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The S-wave pion-pion scattering lengths ao and a5 in the channels of total isospin 0 and 2, respectively, are
determined by requiring that the high-energy limit of the pion-pion total cross section be the same in all iso-
spin channels. The determination consists of using the once-subtracted dispersion relation and the phase rep-
resentation which are satisfied by the crossing-symmetric forward pion-pion amplitudes and also the unsub-
tracted dispersion relation valid for the crossing-antisymmetric amplitude. The specific approximations to be
made are that the scattering becomes asymptotic fairly rapidly above the p and f resonances in respective
channels, that these are the only 7= resonances in the energy region up to the f resonance, that the S wave
dominates below the resonances, and that the conventional effective-range expansion is valid for the S wave
with the effective range between zero and 2y~ (where x! is the pion Compton wavelength and the pion-
pion force range is expected to be 0.5~ because of 2-pion exchange). The scattering lengths are determined
as pao=0.253-0.08 and pa,=0.02-0.03. The uncertainties are based upon the variations in ao and a; due to
changes in the parametrization of the 7= scattering used in the present determination. It is found that the
unknown details of high-energy scattering are relatively unimportant in this determination of @ and a,.
Itis shown that the above values of ¢ and a; are consistent with the partially conserved axial-vector current
sum rule due to Adler. This is contrary to the conclusion of previous authors; we attribute the difference to
a different use of the sum rule. When one of the conjectured resonances (s and ¢) is added as a true res-
onance, no solution is found to make the high-energy limit of the total cross section the same with the
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parametrization of the phase and the cross section considered in the present work.

I. INTRODUCTION AND SUMMARY

HE high-energy limit of the = total cross section,
o(®), can be expressed in terms of integrals
over the mr total cross section and the phase of the nm
forward scattering amplitude. If one assumes that the
forward amplitude becomes pure imaginary sufficiently
rapidly in the high-energy region, the above expression
for ¢( =) allows one to estimate o( ) in terms of the
lower energy information. A study was made earlier of
the 7ta° channel.! Tt was found that enough information
appears to be available to carry out a reasonably ac-
curate estimate of o( ) except for the contribution
coming from the low-energy region. An estimate of
o( ) was made,! therefore, by treating the low-energy
scattering as unknown but parametrized by the scatter-
ing length appropriate to this channel (isospin 2).

In principle, ¢(«) can be calculated for all three
isospin channels by this procedure. However they are
not all independent; in fact, the Pomeranchuk theorem
implies one relation between them so at most two are
independent. These are, for example, o( ) for the
channels #+#® and #%°. It is generally granted that the
cross section for all three isospin channels, or equiva-
lently for all physical == channels, approach the same
limit.

It is the purpose of the present work to determine the
S-wave wr scattering lengths a¢ and as, in the channels
of total isospin /=0 and 2, respectively, by requiring
that the high-energy limit of the = total cross section
is the same in all channels. The main reason why such a
determination is possible is that the ratio of the high-
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energy cross sections in the channels 7t#® and #%° is
determined essentially by these scattering lengths as
long as the low-energy scattering is parametrized by
the conventional S-wave effective-range expansion with
the effective range not exceeding twice the pion
Compton wavelength. (The force range which corre-
sponds to the exchange of two pions is half the pion
Compton wavelength.)

For convenience, we deal in the present work with
the 7t7® and 7%7° channels, which are crossing-sym-
metric and involve both @ and @;. The requirement that
the cross sections for these two channels approach the
same limit provides a relation between ao and a,.
Another relation is provided by the unsubtracted
dispersion relation for the crossing antisymmetric
amplitude. This is sufficient to determine both a and a.
from the existing experimental information on the ==
system, namely the mass and width of the p resonance
(I=1) and the f resonance (I=0).

We assume, on the basis of recent experiments,? that
there are no other low-energy resonances which contrib-
ute. However, the effects of the conjectured ¢ and e
resonances,® treated as true resonances, are also
considered in Sec. IV. According to a preliminary
analysis, neither of these resonances seems to be
consistent with the requirement that the cross sections
approach the same high-energy limit. The possible
existence of high energy resonances affects the analysis
very little.

2H. O. Cohn et al., Phys. Rev. Letters 15, 906 (1965); I.
Corbett ef al., Nuovo Cimento 39, 979 (1965).

3L.. Durand and Y. Chiu, Phys. Rev. Letters 14, 329 (1965);
L. Brown and P. Singer, ibid. 8, 460 (1962).
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In Sec. II we review the basic equations for ¢( ),
which follow essentially from the phase representation?
and also the dispersion relations available for the
forward = scattering amplitudes. The explicit evalua-
tion of the integrals involved and the determination of
the scattering lengths are given in Sec. ITI. The accuracy
of the method is discussed in Sec. IV. It is shown in
Sec. V that our results are consistent with Adler’s sum
rule® relating 7w scattering to axial-vector renormaliza-
tion constant in B decay. In the Appendix, a rigorous
proof is given that the effective-range expansion is
valid at least in some vicinity of threshold in the
partial-wave dispersion theory. Arguments are also
given in the Appendix that the effective range can not be
too large compared with the actual force range.

The results of the present work can be summarized
as follows: For zero scattering lengths, ,( 0)>>ago( ),
while for large scattering lengths, o o(0)<Kaoo( ).
Thus, the requirement that the total cross sections
approach the same limit determines the scattering
lengths fairly unambiguously as pao=0.25-0.08 and
1a2=0.002-0.03 (u~! is the pion Compton wavelength).
For these values of @ and a3, 6,-( ©)=30=10 mb. The
uncertainties in @9 and @, are based upon the actual
variations in ¢o and @, when changes are made in the
parametrization of the phase and the cross sections. The
effective range is allowed to vary between zero and 2y
Also varied are the energies which define the energy
regions in which S wave dominates and the high-energy
region in which scattering is asymptotic. Some modifica-
tions of the effective-range expansion is also considered.
It is found that the unknown details of the high-energy
behavior of the scattering are unimportant in this
determination of @¢ and @, since, although they can
affect the value of the individual () greatly, they
hardly change the ratio o.o()/oeo( ). Presumably
the most essential assumption to the present determina-
tion is that the low-energy scattering is well para-
metrized by the effective-range expansion with an
effective range not greater than 2y~ in the energy region
roughly one pion mass above threshold (in the total
ca. energy). The details of the S-wave scattering
above this energy region are quite unimportant in the
present determination as long as the S wave does not
resonate.

Our result, o( ©)=30410mb, is in general agreement
with the conclusion reached earlier! that ayo( ) can
hardly be made smaller than 20 mb but unknown
details of the high-energy behavior make it difficult to
set a precise upper limit for oyo( ).

II. FORMALISM

The derivation of a convenient expression for ¢( «)
has been given in an earlier paper,! but the essential

4 M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 355 (1962);
Phys. Rev. 130, 2127 (1963).
©S. Adler, Phys. Rev. 140, B736 (1965).
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steps are reviewed here. The once-subtracted dispersion
relation and the phase representation? are valid for the
forward scattering amplitude 4 (w). For a crossing
symmetric amplitude, these take the forms

2et—p) o dg
A@=dw+—— [ ot (1)

A (w)=P(w2)exp<g:—2 /“ ) w—dg%%) ,  (1b)

where u is the pion mass, (w,q) is the lab pion energy-
momentum, and the normalization is such that the
total cross section is given by Im4 (w)=go(w). The
relation to the c.m. pion energy-momentum (E,p) is
summarized by ug=2pE. The total phase is defined by
A(w)==4|A4(w)|e?*™ on the real axis, where the =+
sign is determined to be the sign of 4 (x) by the require-
ment that §(w) be zero on the gap, —p<w<pu, where
A (w) is real. P(«?) is a polynomial in w?. Note that as
long as o(w) is non-negative, Im4 (w)=go(w)>0 and
hence 0<8(w)<7 for A(uw)>0 or —7<8(w)<0 for
A () <0.

We assume that the amplitude at high energies is
dominated by inelastic processes and hence becomes
imaginary (3( «)==%7) fast enough so that the total
cross section approaches a nonzero constant. It is then
possible to express a( «) in terms of the phase, §(w), and
the over-all constant ¢ which appears in"the polynomial
P(w?). The highest power of «? in P(w?) is found to be
either one or zero since ImA(w) « P(w?)w 27 a5
w— -+ . The over-all constant ¢ of P(w?) can be
expressed in terms of §(w) and o(w) by equating Egs.
(1a) and (1b) at w=0 and w=pu. The resulting expres-
sions are

2 [*dw
o'(°°)=(c/u)exp(——/ :[6((»)—5(00)]) , (2a)
where, for 4 (u)>0(8( ©)=17),

2 [ o)

™ 0 w2

—A@)[1~exp(—3'f T 96 )] e

T Jy 0 0?—u?

and, for 4 (u) <0(5( )= —3m),

dg @“A (u).

2#2 0

™ 0

(2¢)

There are two independent amplitudes which are
crossing symmetric and, therefore, satisfy all the
above relations. These are, for example, those for ztz®
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and #%° given by
Apo(w)=341(0)+342(w),
An(w)=340(w)+34:(w),

where 4 r(w) are the amplitudes in the channels of total
isospin I=0, 1, and 2. The third amplitude can be
made crossing antisymmetric, which is

fl@)=6[44(w)— 41+ (w)]
=2A¢(w)+341(w)—542(w). 4

As was mentioned earlier, we assume here that all
Ar(w) become pure imaginary at high energies fast
enough so that all ¢7( ) are finite, nonzero cross
sections. It then follows that f(w)/w satisfies an
unsubtracted dispersion relation
20 [ de’ Imf(w')
f=22 [ ), 5)

T Ju  w?—w?

®3)

The threshold value of f(w) is related to the S-wave
scattering lengths by f(u)= 167 (2a9—5as), so that

w [*dg
sou—Ss= f L)+l —5n@]. ©

Equations (2) and (6) constitute the basic expressions
for determining @, and a,.

A study of o40( @) based upon the expressions (2)
was made in a previous work.! It was found, in partic-
ular, that the S waves play an essential role in determin-
ing a0( ), though the final estimate of o o( ) turns
out to be rather insensitive to the S-wave parameters.
This was simply because a cancelation took place among
the S-wave terms in the expressions (2). However, such
a cancelation does not happen in the case of ogo( ),
but oo ) depends sensitively on @ and a,. One of the
main reasons for this difference is that there are two
S-waves contributing to o ) while a4y ( «) depends
only on one of them.

Because of this remarkable difference in the depend-
ence of ay0( ) and oo ©) on the S-wave scattering
lengths, it is proposed in the present work to determine
a0 and ¢ by requiring that

a40( ) =000 ( ) M

which, combined with the Pomeranchuk theorem,
implies that all o7( ) are the same.

The isospin amplitudes A7(w) can be expressed in
terms of the phase shifts by

16nE ednr—1
Ar(@)=—"2(2+1)——.
pu 1 21

The p resonance appears in 4, and hence #+7? scattering,
while the f resonance appears in Ao and hence 7x°
scattering.

Several remarks are pertinent here. First, the basic
equations (2) and (6) are all exact, as long as Ar(w)

®)

F. T. MEIERE AND M.

SUGAWARA 153
become pure imaginary at high energies sufficiently
rapidly. Second, since the expression for ¢( «) involves
both the phase and the cross section, it permits one to
make better use of the available knowledge of the mr
system than the usual dispersion relation does. In
particular, the high-energy region can be dealt with
knowing that the over-all phase approaches that of an
imaginary amplitude. Third, the constant ¢ and hence
o( ) can be expressed in a variety of different but
equivalent ways. The expressions (2) are chosen so as to
put emphasis on the low-energy region. Finally,
although essentially the same analysis can be carried
through for any other amplitude, there is a definite
technical advantage to choosing the amplitudes 4,0
and Ao which possess crossing symmetry and whose
over-all phase is conveniently bounded.

III. DETERMINATION OF
SCATTERING LENGTHS

The various phase and cross section integrals in Eqgs.
(2) and (6) can be broken into three parts according to
the range of integration; the low-energy region,
p<w<®, where & is some point close to but below the
resonance, the resonance region, @<w<wine, where
winel 1S somewhere above the resonance, and high-energy
region, wina<w. In the high-energy region, we set
§(w)=08( =) and o(w)=0c( ). In the resonance region,
we assume that the phase and cross section are dom-
inated by the resonant partial wave. In the low-energy
region, we assume that the S waves dominate. More-
over, we assume that an effective-range expansion is
valid for the .S waves,

P cotdo,r= (1/(11)-{-%1’[?2 . (9)

Since the S waves are always very important in the
integrals in (2) and (6), the assumption that the
expression (9) is valid in the low-energy region is
essential to our determination of a¢ and a,. In partial-
wave dispersion theory, one can prove the effective-
range expansion (9) rigorously at least in some vicinity
of threshold, as is shown in the Appendix. The effective
range 7y is treated in the present work as a parameter
in the range between 0 and 2y, in spite of the fact
that the force range is about 0.5u for 77 scattering.
Arguments are presented in the Appendix that the
effective range is not likely to be too large compared
with the force range, so that 0 to 2u™' should be
sufficient.

Arguments are presented in I that a meaningful
procedure to define the resonance region, @<w<winel
would be to choose it from one full width below the
resonance to 1.5 full widths above the resonance, in
units of the c.m. energy. This would mean that

&J(p) =0.48 Winel (P) =221 for =wtx®
(;)(f)=31.9 wine1(f)=52.1 for 7'n°

in units of u.

(10)
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For the case 4 (u)>0(5( ©)=m/2), the contributions
from threshold to @ may be considered as coming purely
from S waves. However, as long as the .S waves do not
resonate, the S-wave contributions come mainly from
the very low-energy region. Therefore, we simply
integrate the S-wave contributions up to @ as a reference
and consider the effect of changing the S-wave cutoff
in Sec. IV. For the case A(u)<0(d(x)=—37r), the
S-wave cutoff needs to be carefully examined. This is
discussed in detail in I and is not repeated here since
the threshold values are positive according to the
present work.®

One simplification occurs for the phase integrals in
(2a) and (2b). The over-all phase rises rapidly in the
resonance region passing through /2. Contributions
from either side of the resonance tend to average and
hence we may replace §(w) by its average, 3w, in the
resonance region. In fact, requiring this to be exact was
used in the previous work! to determine the values in
(10) for @ and winer. Thus,

2 r*dw 2 redw @
- [ Zpe-sen=- [ Zae-n,
W rde 86) 3 (o i)

7 Jy 0 (0—p?)

v @ (w?—p?)

&’2_#2
—%ln( p ) (11)

Both of these integrals can now be evaluated in terms
of (9) and (10).

The cross-section integral in (2b) and (2c) is written
as

2u? [*dg 2u? ridq 2u?
So== [ et |
™

T Jo w? T Jo w

Qinel dq
o)
w2

q

2u? ° dg
= [ ==,
g

™ inel &

(12)

where ¢ and ginel are the momenta which correspond to
@ and wigel. The resonant contribution in (12) is
evaluated using

o1(w) =472 (214+1)T6 (M — 2E) / §* (13)

where M and I' are the mass and the full width of the
resonance, and I and [/ are its isospin and angular
momentum, respectively. (This 8-function approxima-
tion was checked numerically for the p and found
equivalent to using a Breit-Wigner form for o7(w) over
arange of 1.5 full widths, and hence sufficiently accurate
for our purpose.) The low-energy contribution in (12)
is evaluated using

crz(w) = 87!’/ (p2+?2 cotﬁﬁo_z)

6 L. D. Jacobs and W. Selove, Phys. Rev. Letters 16, 669 (1966).

(14)
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with the effective-range expansion (9). The high-energy
contribution in (12) is

(2p/7)a( ) tan~(u/gine1)

which contains, however, ¢( ) yet to be determined.
This difficulty can be circumvented by solving (2b) for
¢, in terms of (2a), as

C=C'/(1—’y) )
where
2p2 Qinel ¢ 2”2 adq
d=— —qo w)+— | —o(w)
T Jz T Jo w?
&’2_#2 1/2
4| 1-(=5)
0)2
2t rodw  §(w)
Xexp(—-—/ — )], 15)
T Ju o (0P—p?)
and

v=3&—(p—)eXp(——2- / " faao))

T W T 12
Xl:% tan™! -+ tan™? :l , for atx?,
Gine1(p) Qinel (f)
26(f) 2 50 do
=—— exp(-——- —6(w)> {ta,n“‘ } ,
T ou Ty W qina1 ()
for #%°.

Then

) 2 [%dw
o(o)=— exp(———/ ———8(w)) . (16)
u? Ty @
The high-energy correction 1/(1—+) is one of the most
ambiguous parts in (15), but fortunately affects the
scattering-length determination very little.

A similar analysis is assumed for the cross-section
integrals in the unsubtracted dispersion relation (6).
The I=0 cross section is given by its .S-wave component
in the low-energy region, by the f in the resonance
region and by ¢( ) in the high-energy region which is
above wine(f). The I=1 cross section has a resonance
contribution from the p and is set equal to ¢( ) above
wine1(p). The I=2 cross section gives an S-wave
contribution, no resonance contribution, and is set equal
to () above wine(f). This behavior is summarized in
Fig. 1. In this procedure, the integral in (6) cuts off
at wine1(f). The Pomeranchuk theorem ensures that the
integrand in (6) goes to zero at high energy but there is
an ambiguity in the actual high-energy contribution.
However, assuming reasonable high-energy behavior,
one can estimate the high-energy contribution in the
integral in (6) to demonstrate that this integral is
actually dominated by the low-energy contribution.
Therefore, we assume the above procedure, and also
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Fic. 1. The qualitative behavior of the == cross section and
phase assumed in this analysis. Fig. 1(b) is related to Fig. 1(a)
by usual isospin conservation.

assume o1=0( ©)=25 mb between wine1(p) and wine (/)
to evaluate the integral in (6).

All these parametrizations are based on an intuitively
appealing picture of the =m scattering which certainly
matches the qualitative behavior of the phase and the
total cross section. In the present work, we assume
the values in (10) as a reference, but also vary & and
wine in order to discuss how sensitive our results are
to these quantities.

In order to determine ao and as, we first solve
numerically the unsubtracted dispersion relation (6)
for a¢ as a function of a.; the results are given in Fig. 2.
Using these values, we then calculate o40( ) and
ooo( ) from (15) and (16). The results are shown in
Fig. 3 for several values of 7o=7,. Representative values,
based on an effective range 7o=7o=0.5u7%, an S-wave
cutoff at the p resonance, and the choice of parameters
given by (10), are uao=0.23, uas=0.0, and o, ( ) =35
mb. If the only uncertainties arise from choice of the
parameters such as the effective range, @, and wine
which are discussed in Sec. IV, then the results of the
present work can be summarized as

pao=0.2540.08, pa;=0.0-£0.03,

orr(0)=30410 mb. an

IV. DISCUSSION

We now discuss the effect of changing our para-
metrization of the 7 cross section and phase by varying
the effective range, the S-wave cutoff, the form of the

AND M.
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S-wave effective-range expansion, and the parameters
@ and Winel.

As discussed in the Appendix, use of the effective-
range expansion is justified by partial-wave dispersion
theory in some region above threshold. It is also
discussed in the Appendix that the effective range
should be in the vicinity of, or less than, 0.547%, which is
the range of the force arising from the exchange of the
lightest system possible, namely, 2. If, however, the
effective ranges 7o and 7, are varied independently in
the interval from 0 to 2u~!, taking the S-wave region
for both channels from threshold to the p (1/s=5.46u),
the results vary from uag=0.20, pas= —0.01, ¢( ©)=36
mb to uae=0.30, pay==40.02, ¢( ©)=233 mb. Keeping
the effective range fixed at ro=ro=1x"" but reducing
the range of integration for the S-wave contributions to
about one pion mass above threshold (y/s=2.9u)
changes the results from uao=0.24, pa;=0.0, ¢( ©)=234
mb to uae=0.22, ua;=0.0, ( ©)=235 mb. The effective-
range expansion was modified to read p cotd=1/a+37p*
+Pp% but the coefficient P restricted so that the
correction does not change pcotd by more than a
factor of two up to the p resonance. For r=1u"", the
results could be made to vary from wpae=0.21, pa,
=—0.01, o(®)=36 mb to pae=0.25, pae,=-+0.01,
o( ©)=33 mb. In short, the results are rather insensitive
to the details of the S-wave scattering other than the
scattering lengths themselves if the effective range is
between 0 and 2u~. For larger values of the effective
range, the results become too sensitive to the details to
be useful.

The point @ is a measure of where the phase begins
to rise to the resonance value of . If this point is
varied from as high as the resonance itself to as low as
two full widths below the resonance, the results vary
from pae=0.28, may=-+0.01, o(©)=54 mb to wao
=0.21, uaz=—0.01, ¢( ©)=20 mb. In other words, if
the resonance begins to dominate roughly the same way
in the wt7® and 770 channels, the actual point where
the resonance begins to dominate can influence the
numerical value of ¢( ) but not the scattering lengths.
In fact this is true of any uncertainties present in this
calculation which affect both channels, in roughly the
same way. For instance, the point wine is a measure of
where the scattering becomes asymptotic. Varying winel

Fi1c. 2. The rela-
tion between @ and
a; provided by the
unsubtracted disper-

P4 sion relation (6) for
/ various effective
A : . \ ranges.
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F16. 3. 6 () as a function of
the scattering lengths ao or a,. o
Either (a) ao or (b) a2 can be (mb)
chosen as the independent
variable, for they are related
as shown in Fig. 2. 20 -
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changes the high-energy correction 1/(1—v) in (15)
and (16). Dropping this completely can decrease o( )
by 309% but leaves the scattering lengths essentially
unchanged. Varying winer arbitrarily for the p and f so
that the two channels are treated differently can
produce an uncertainty pAa=0.09, pAae,=0.02, and
Ag(0)=6 mb. Also, if the phase approaches {7 much
more slowly than can be accommodated by the above
parametrization, o(e) for both channels can be
significantly increased or decreased, but as long as the
approach is comparable in both channels, as one would
expect, the scattering lengths would not be appreciably
affected.

As a summary, the scattering length changes roughly
from 0.20 x! to 0.30 u~! when one varies the effective
range and the energies @ and wine. Since these are to be
considered as independent sources of uncertainties, we
conclude that pao=0.254-0.08 within the range of the
parametrizations considered in the present work. Our
final results (17) are obtained this way.

Two other resonances® have been conjectured in the
I=0 channels, the e (J=0, M~760 MeV, I'~100 MeV)
and the ¢ (J=0, M~400 MeV, I'~~80 MeV). Present
experimental evidence? indicates that neither exists and
we take this point of view, so that only the p and f
contribute to this calculation. Nevertheless, we discuss
briefly what would be the case if either did exist as a
true mw resonance. Only the #%x° channel would be
affected. Since these resonances are fairly low-energy
resonances with substantial widths, one expects a large
change in our determination of a@g and a.. In fact, a
preliminary calculation indicates that the dependence
of goo( ) on ¢ and a2 would be entirely different from
what is shown in Fig. 3. Moreover, our calculation
indicates, though in a preliminary way, that the two
curves for ay9( ) and gg(®) do not seem to cross
within the parametrizations considered in the present
work. We found solutions which gave the same limits
for all ¢( ) only when we gave up the relation between
ap and @ implied by the unsubtracted dispersion
relation (6).

s ' 1 L L I '
-06 -04 =02 0 +.02 +.04 +06  +.08

]
(b)

s Y
4 S5

V. PCAC SUM RULE

By assuming the equal-time commutation relations
proposed by Gell-Mann’ for the weak axial-vector
currents and the partially conserved axial-vector
current® (PCAC) hypothesis which states that the
divergence of the axial-vector current is proportional
to the pion field, Adler® and Muzinich and Nussinov®
have derived a sum rule involved the off-the-mass-shell
pion-pion scattering amplitude. By making a continua-
tion in mass from zero to the physical pion mass, they
attempt to place limits on the physical pion-pion
scattering lengths. Although they use slightly different
mass continuation, both authors conclude that the
lower limit for a, is approximately one pion Compton
wavelength (u™), which disagrees completely with our
results (17).

We show in this section that the sum rule is actually
consistent with our results (17). We also show that the
different conclusion reached by the other authors®? is
due to inadequate use of the sum rule.

The exact sum rule is

2 2MN? .
—=—F(0)0y0:0) )
g4 22K nn-2(0)

where the notation is that used by Adler.> The ampli-
tude F is defined as

(18)

y 1/2
F(V, t, __.P12’ _Pzz)_—_-M /d4x eix-pl(_Dz+“2)

2uy
X(@t(g2) | T{5~(0) ¢* (x)— 7+ (0) = ()} [7F(qu)), (19)

where j(x)= (=t o), 2ur=—p1-(q1+gq), ¢
=—((1—¢2)% ¢’=¢*’=—u> The amplitude F is
normalized so that ImF (»,0,u%,u?) = ¢(») (6—(») — o (»))/
2y, where ¢(v)=(2—p?)"? and o.(v) are the total

7M. Gell-Mann, Physics 1, 63 (1964).

8 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960).

91. J. Muzinich and S. Nussinov, Phys. Letters 19, 248 (1965).
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cross sections for a physical =+ scattering from a
physical %, For forward scattering, » reduces to the
laboratory pion energy « used in this paper and
F(w,0,u%u%) = f(w)/12w, where f(w) is the amplitude
defined in Sec. II, and hence satisfies the unsubtracted
dispersion relation (5). The sum rule (18) involves the
amplitude with two pions off the mass shell. In order to
use this sum rule to obtain information on the scattering
lengths, one has to know first how to continue in mass
from zero to p. As yet, there is no convincing way to
do this. Hence we replace F(0,0,0,0)/Knxn+2(0) by
F(0,0,u%,12), i.e., we take the pions on the mass shell.
One can then use the dispersion relation for F, which is
(), to give

) 2
Z / &g (o ()= 72 ).
0 13)

ga®  gim

(20)

This approximate sum rule is used by Muzinich and
Nussinov,? while Adler® breaks the cross section into
partial waves and replaces ¢%/w® by

o+ w(w®—p)t.

If the main contributions to the integral come from the
S waves and the known resonances, then the two
different forms should give effectively the same result.
In order to extract information about the scattering
lengths from (20), both authors®? attempted to evaluate
the integral directly by parametrizing the cross section.
However, one can use the exact dispersion relation (6)
to relate the integral in (20) to the scattering lengths.
By constructing the difference between (5) evaluated at
w=0 and (6), one can rewrite (20) as

2 Myx*8r
_— —(2ao—>5as)

g 3p
M‘N2 zﬂz 00

g? m Jo

dg
;—3[0-_ (@w)—or(@)], (21)

where o_(w)—o;(w)=2%(200+301—502). Compared to
the integral in (20), the integral in (21) is much less sen-
sitive to the high-energy behavior and the parametri-
zation of the S wave. It is in fact possible to estimate
the integral in (21) in a simple manner in order to show
that the second term is actually small compared with
the first term in (21) for scattering lengths which are
not too large. Thus assuming | az|<aq, one obtains from
the sum rule (21) that
3 g2
MO —
8 8 ,42 M N2

We interpret the fact that (22) differs significantly
from the results obtained by Adler® or Muzinich and
Nussinov® to mean that their parametrization of the
7w cross section is not compatible with the unsubtracted
dispersion relation (6). Though we do not know the
uncertainty in the sum rule (20) arising from mass
continuation, we are inclined to conclude that our

=0.35. (22)
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scattering lengths (17) are consistent with the Adler
sum rule (18).

Note added in proof. S. L. Adler (private communi-
cation) observed that the second term on the right-hand
side of (21) is small compared with the left-hand side
of (21) even when the ¢ and e resonances are assumed
and also for the S-wave scattering lengths which are as
large as one pion Compton wavelength.
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APPENDIX

Let g(s) be the S-wave amplitude (e2?—1)/2:p, where
s is the total c.m. energy squared and p is the c.m.
momentum, 4p?=s—4u? Let k(s) be the inverse
amplitude 1/g(s). The physical cut for g(s) extends from
42 to + oo. Then %(s) has this physical cut, a left-hand
cut, and possible poles arising from the zeros of g(s).
We take the kinematical cut from 4/s as part of the
left-hand cut. Hence, one has

()= () + ()

(s—4u?) /‘w ds’
2 8’4t §'—s

+ (left-hand integral)-+ (poles).

(A1)

In the elastic region, %#(s)=p cotd—ip. The integral in
(Al) with Imh(s") replaced by its elastic value —p(s’)
=—32(s’—4u?)Y? can be evaluated exactly. [The
simplest way is to recognize it as the subtracted disper-
sion relation for —ip(s).] The result is —i% (s—4u?)'?
with the cut from 4u? to 4. Inserting the above
integral on the left-hand side of (Al), one obtains
1(s—4u2)1/2
h(s)—l-—(————)—

[ImA(s")+-p(s") ]

s'—s

(s—4u?) /°° ds’

T o 8’ —4u?

+ (left-hand integral)+ (poles), (A2)

where g is the inelastic threshold. The function on the
left-hand side of (A2) becomes p cotd in the elastic
region. Hence, p cotd can be expanded in a power
series in s—4u?, or equivalently p% in some vicinity of
s=4u2 as
p cotd=1/a+37$*+0(p*). (A3)
The radius of convergence is the distance to the inelastic
threshold or to the left-hand cut or to the nearest zero
of the S-wave amplitude, whichever is the smallest.
The above argument alone hardly indicates any
magnitude for the effective range, nor does it indicate
how far above threshold the first two terms in (A3)
provide a good approximation to the true phase shift.
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In order to get some idea about the magnitude of the
effective range, let us assume that wr scattering is
described, at least in some region above threshold, in
terms of an effective energy-dependent potential whose
range is that of 2z exchange. The simplest such potential
which permits the effective-range expansion is Vo(r)
4+ (p*/1)V1(r), where Vo(r) and Vi(r) are appreciable
only within a range of order 0.5 u™'. Let the S-wave
component of the wave function be #(r)/7, normalized
so that u(r)~a(r)=sin(pr+3)/sind for large » and let
#o and 7, denote the zero-energy limits of these func-
tions. By standard arguments,’® one has the identity

00

1
p cotd=—+p? / drl{agi—uoutuoVi(r)u]. (A4)
a

0
Hence, expanding in powers of $? one obtains the
effective-range formula with

r=2 / i dr[@e?—uo®+V1(r)uo?]. (A5)

[}
Assuming that Vo(r) is sufficiently strongly attractive,
it is known that the first two terms in (AS) give a
contribution very close to the force range.’® The last

107, Blatt and V. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), p. 62.
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term in (AS) gives a positive contribution to the
effective range when V(7) is positive (which makes the
effective potential more attractive below threshold).
However, some upper bound for V(r) is provided by
the requirement that the effective potential must not
generate a 7w bound state below threshold. One can see
that a sufficient (but not necessary) condition for this
to be satisfied is that Vi(r) be of the order of one or
smaller within the force range. In this case the last
term in (AS) is of the order of half the force range or
smaller. Though it is not possible to set a precise upper
limit, one can see this way that too large an effective
range would violate the condition that there are no #r
bound states.

Experimental information is available on a process
similar to =m scattering, namely, KN scattering. In
both cases, the longest range force arises from the
exchange of 2, giving a force range of 0.5 u~. The
effective-range expansion provides in this case an
excellent fit" to the S-wave scattering up to at least
642 MeV incident K kinetic energy, with an effective
range 7~0.4 u~1. This value is only slightly less than
the force range due to 27 exchange.

1 G. Goldhaber et al., Phys. Rev. Letters 9, 135 (1962).
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Off-the-Mass-Shell Correction in Pion-Pion Scattering*
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A discussion is given of the off-the-mass-shell correction to the PCAC (partially conserved axial-vector
current) relation for pion-pion scattering. In particular, special attention is drawn to the fact that the usual
s and # cuts of the pion-pion amplitude give rise to cuts in the external pion mass extended far below the
cut due to the three-pion intermediate state. An estimate is made of the off-the-mass-shell correction due
to these induced cuts. It is shown that this correction is not likely to be significant as long as the S-wave
pion-pion interaction is relatively weak, implying that the use of the PCAC relation for pion-pion scattering
without the off-the-mass-shell correction is not expected to be any worse than that for any other PCAC

relation.

I. INTRODUCTION AND SUMMARY

HE algebra of current commutators proposed by
Gell-Mann! and the PCAC hypothesis? have been

used by Adler and Weisberger® to express the axial-
vector coupling constant renormalization in 3 decay,
g4, in terms of the pion-nucleon scattering amplitude
evaluated at some unphysical point. The success of this

* Work supported by the National Science Foundation.
(l;é\g). Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

2 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960).

3S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); W. I. Weis-
berger, sbid. 14, 1047 (1965).

calculation® prompted several authors to relate g4 to
other strong-interaction amplitudes to extract informa-
tion about the lesser known strong interaction, such as
wr or 7K .47

In principle, the only obstacle to these PCAC
relations is the external mass continuation. The exact
PCAC relation refers to the scattering amplitude in
which two of the external pion masses are set equal to
zero. In order to relate this to a physical amplitude, a
continuation has to be done in the external pion mass

¢S, L. Adler, Phys. Rev. 140, B736 (1965).

8I. J. Muzinich and S. Nussinov, Phys. Letters 19, 248 (1965).

¢ F. Meiere and M. Sugawara, preceding paper, Phys. Rev. 153
1702 (1967). papen T ’

7V.S. Mathur and L. K. Pandit, Phys. Rev. 143, 1216 (1966).



