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Deterraination of S-Wave Pion-Pion Scattering Lengths

F. T. MEIERE AND MABAO SUGAWARA

Depurtment of Phys~as, Purdue University, tutuyette, Indiunu

(Received 9 May 1966)

The S-wave pion-pion scattering lengths u0 and u& in the channels of total isospin 0 and 2, respectively, are
determined by requiring that the high-energy limit of the pion-pion total cross section be the same in all iso-
spin channels. The determination consists of using the once-subtracted dispersion relation and the phase rep-
resentation which are satisfied by the crossing-symmetric forward pion-pion amplitudes and also the unsub-
tracted dispersion relation valid for the crossing-antisymmetric amplitude, The specific approximations to be
made are that the scattering becomes asymptotic fairly rapidly above the p and f resonances in respective
channels, that these are the only w2i- resonances in the energy region up to the f resonance, that the 5 wave
dominates below the resonances, and that the conventional effective-range expansion is valid for the S wave
with the eQective range between zero and 2p, ' (where p, ' is the pion Compton wavelength and the pion-
pion force range is expected to be 0.5y

—because of 2-pion exchange). The scattering lengths are determined
as duo= 0.25+0.08 and pu2=0. 0~0.03. The uncertainties are based upon the variations in up and ug due to
changes in the parametrization of the ~~ scattering used in the present determination. It is found that the
unknown details of high-energy scattering are relatively unimportant in this determination of ufl and uq.
It is shown that the above values of uo and u2 are consistent with the partially conserved axial-vector current
sum rule due to Adler. This is contrary to the conclusion of previous authors; we attribute the difference to
a different use of the sum rule. %hen one of the conjectured resonances (0. and e) is added as a true res-
onance, no solution is found to make the high-energy limit of the total cross section the same with the
parametrization of the phase and the cross section considered in the present work.

I. INTRODUCTIOH AND SUMMARY

'HE high-energy limit of the x~ total cross section,
0(oe), can be expressed in terms of integrals

over the xx total cross section and the phase of the mr
forward scattering amplitude. If one assumes that the
forward amplitude becomes pure imaginary sufficiently
lapldly ln thc high-energy lcgloIl, thc above cxprcsslon
for o(~) allows one to estimate 0( ~) in terms of the
lower energy information. A study was made earlier of
the x+~p channel. ' It was found that enough information
appears to be available to carry out a reasonably ac-
curate estimate of 0(~) except for the contribution
coming from the low-energy region. An estimate of
e (~) was made, ' therefore, by treating the low-energy
scattering as unknown but parametrized by the scatter-
ing length appropriate to this channel (isospin 2).

In principle, 0(~) can be calculated for all three
isospin channels by this procedure. However they are
not all independent; in fact, the Pomeranchuk theorem
implies one relation between them so at most two are
independent. These are, for example, 0.(~) for the
channels x+x and m x'. It is generally granted that the
cross section for all three isospin channels, or equiva-
lently for all physical ~m channels, approach the same
limit.

It is the purpose of the present work to determine the
8-wave mm scattering lengths up and u2, in the channels
of total isospin I=O and 2, respectively, by requiring
that the high-energy limit of the ~x total cross section
is the same in all channels. The main reason why such a
determination is possible is that the ratio of the high-
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energy cross sections in the channels ~+mp and m'xp is
determined essentially by these scattering lengths as
long as the low-energy scattering is parametrized by
the conventional 5-wave CGective-range expansion with

the CGective range not exceeding twice the pion
Compton wavelength. (The force range which corre-

sponds to the exchange of two pions is half the pion
Compton wavelength. )

For convenience, we deal in the present work with

the x+xP and mPmP channels, which are crossing-sym-

metric and involve both ap and a2. The requirement that
the cross sections for these two channels approach the
same limit provides a relation between ap and a2.

Another relation is provided by the unsubtracted
dispersion relation for the crossing antisymlnetric
amplitude. This is sufhcient to determine both ap and a2

from the existing experimental information on the mvr

system, namely the mass and width of the p resonance
(I=1) and the f resonance (I=0).

We assume, on the basis o'f recent experiments, ' that
there are no other low-energy resonances which contrib-
ute. However, the eRects of the conjectured 0 and ~

resonances, ' treated as true resonances, are also

considered in Sec. IV. According to a preliminary

analysis, neither of these resonances seems to be
consistent with the requirement that the cross sections

approach the same high-energy limit. The possible
existence of high energy resonances affects the analysis

very little.

'H. O. Cohn et a/. , Phys. Rev. Letters 15, 906 (1965); I.
Corbett et ut. , Nuovo Cimento 39, 979 (1965).

'L. Dnrand and Y. Chin, Phys. Rev. Letters 14, 329 (1965l;
L. Brown and P. Singer, ibid. 8, 460 (1962).
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In Sec. II we review the basic equations for 0(~),
which follow essentially from the phase representation4
and also the dispersion relations available for the
forward m~ scattering amplitudes. The explicit evalua-
tion of the integrals involved and the determination of
the scattering lengths are given in Sec.III.The accuracy
of the method. is discussed in Sec. IV. It is shown in
Sec. V that our results are consistent with Adler's sum
rule' relating mx scattering to axial-vector renormaliza-
tion constant in P decay. In the Appendix, a rigorous
proof is given that the eff ective-range expansion is
valid at least in some vicinity of threshoM in the
partial-wave dispersion theory. Arguments are also
given in the Appendix that the effective range can not be
too large compared with the actual force range.

The results of the present work can be summarized
as follows: For zero scattering lengths, 0+s( ~)))(rss( ~),
while for large scattering lengths, (r+s(ae)«(rss(~).
Thus, the requirement that the total cross sections
approach the same limit determines the scattering
3.engths fairly unambiguously as pap=0. 25&0.08 and
y(rs ——0.00&0.03 (11

' is the pion Cornpton wavelength).
For these values of as and as& o.~( ~)=30~10 mb. The
uncertainties in ap and a~ are based upon the actual
variations in up and u2 when changes are made in the
parametrization of the phase and the cross sections. The
effective range is allowed to vary between zero and 2p '.
Also varied are the energies which de6ne the energy
regions in which 5 wave dominates and the high-energy
region in which scattering is asymptotic. Some modi6ca-
tions of the effective-range expansion is also considered.
It is found that the unknown details of the high-energy
behavior of the scattering are unimportant in this
determination of ap and u~ since, although they can
affect the value of the individual (r( ~) greatly, they
hardly cl ange the ra~io ~~o(~)/~ss(~}. Presumably
the most essential assumption to the present determina-
tion is that the low-energy scattering is well para-
metrized by the eRective-range expansion with an
effective range not greater than 2p ' in the energy region
roughly one pion mass above threshold (in the total
c.m. energy). The details of the 5-wave scattering
above this energy region are quite unimportant in the
present determination as long as the 5 wave does not
resonate.

Our result, 0 ( ~)=30+10 mb, is in general agreement
with the conclusion reached earlier' that (r+s( ~) c»
hardly be made smaller than 20 mb but unknown

details of the high-energy behavior make it dificult to
set a precise upper limit for 0+s( ~).

steps are reviewed here. The once-subtracted dispersion
relation and the phase representation4 are valid for the
forward scattering amplitude A((s). For a crossing
symmetric amplitude, these take the forms

2 ((s'—p') " dq'
A ((s) =A ((a)+ 0 ((s'), (1a)

p GD
—63

2(ss " d(0'8((s') )
A ((s) =E((s')exp

CO M —
CO

where y is the pion mass, ((e,q) is the lab pion energy-
momentum, and the normalization is such that the
total cross section is given by ImA((s)=go((s). The
relation to the c.m. pion energy-momentum (E,p) is
summarized by pq= 2pE. The total phase is defined by
A(~) =a ~A(~) ~s*&(-& on the real axis, where the a
sign is determined to be the sign of A (lr) by the require-
ment that 8(es) be zero on the gap, —p&rs&p, where
A ((0) ls 1'eal. E(co ) ls a poly1101111al 111 (s . Note 'tllat as
long as (r(a&) is non-negative, ImA (a&) = (ta (a&})0 and.
hence 0&5((s)&rr for A((u))0 or —s.&8((0)&0 for
A (1r) &0.

%e assume that the amplitude at high energies is
dominated by inelastic processes and hence becomes
imaginary ((5( ~)= &-',s.) fast enough so that the total
cross section approaches a nonzero constant. It is then
possible to express 0 ( ~) in terms of the phase, 8(es), and.

the over-all constant c which appears in'the polynomial
E((ss). The highest power of (ss in P((ds) is found to be
either one or zero since ImA(a&) ~P((ss)(s ss("&(~ as
(s~+ ~. The over-all constant c of E((ss) can be
expressed in terms of 8((s) and 0(a&) by equating Eqs.
(1a) and (1b) at F0=0 and M=11. The resulting expres-
sions are

2ps " 0 ((s)

Mp

2ps "d(s 8((s)—A (p) 1—exp — —,(2b)
N CO

—P

II. FORMALISM

The derivation of a convenient expression for (r( ~)
has been given jn an earlier paper, ' but the essential

' M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 555 (1962);
Phys. Rev. 130, 2127 (1963).' S. Adler, Phys. Rev. 140, 8756 (1965).

p

There are two independent amplitudes which are
crossing symmetric and, therefore, satisfy all the
above relations. These are, for example, tbgsg for ~+~p
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and, +QmQ given by

A+p((o) =-', Ag(pp)+-', Ap(co),

A pp(ru) = ',Ap-((o)+ pA p(co),
(3)

where A z{a&) are the amplitudes in the channels of total
lsospln J=0 j. Rnd 2. Thc third amplitude cRD bc
made crossing antisymrnetric, which is

f{pp) =6t'A+ (a)) A~—((o)$
= 2Ap(pp)+3A g((u) —5Ap(co) . (4)

As was mentioned earlier, we assume here that all

Az(pp) become pure imaginary at high energies fast
enough so that all pz(~) are Quite, nonzero cross
sections. It then follows that f(co)/p& satisfies an
unsubtracted dispersion relation

2&v
"d(o' Im f(co')

f(~) = —, (5)
Gl CO

The threshold value of f{pp) is related to the S-wave
scattering lengths by f(p) =16m.(2ap —Sap), so that

p dg
2ap —Sap —— —L2«(pp)+3o g(pp) —5op(pp)]. (6)

Q 0}

Equations (2) and. (6) constitute the basic expressions
for determining aQ and a2.

A study of 0+p(~) based, upon the expressions (2)
was made in a previous work. ' It was found, in partlc
ular, that thc S waves play RD csscDtlRl 1olc lD determin-

ing o+p( pp), though the 6nal estimate of p+p( ap) turns

out to be rather insensitive to the S-wave parameters.
This was simply because a cancelation took place among
the 5-wave terms in the expressions (2). However, such

a cancelation does not happen in the case of «p( ~),
but opp( pp) depends sensitively on ap and. ap. One of the
main reasons for this diRerence is that there are two
S-waves contributing to «p( ~) while p+p ( ~) depends

only on one of them.
Because of this remarkable diRerence in the depend-

ence of 0+p(ap) and «p(~) on the S-wave scattering
lengths, it is proposed. in the present work to determine

aQ and e~ by requiring that

~+p(")=«p(") (&)

which, , combined with the Pomeranchuk theorem,
implies that all pz( pp) are the same.

The isospin amplitudes Az(co) can be expressed in

terms of the phase shifts by

j6~E g2$8g, 7

Az(~) = P(2&+ 1) . {g)
Pp l 2i

The p resonance appears in A ~ and, hence ~+~Q scattering,
while the f resonance ape~ra in Ap and. hence ~P~P

scattering.
Several remarks are pertinent here. First, the basic

equations (2) and (6) are all exact, as long as Az(co)

become pure imaginary at high energies suKciently
rapidly. Second, since the expression for n( ~) involves
both the phase and the cross section, it permits one to
make better use of the available knowledge of the xm

system than the usual dispersion relation does. In
particular, the high-energy region can be dealt with
knowing that the over-all phase approaches that of an
imaginary amplitude. Third, the constant c and hence
p(pp) can be expressed in a variety of diferent but
equivalent ways. The expressions (2) are chosen so as to
put emphasis on the low-energy region. Finally,
although essentially the same analysis can be carried,
through for any other amplitude, there is a dehnite
technical advantage to choosing the amplitudes A+Q
and AQQ which possess crossing synlmetry and whose
over-all phase is conveniently bounded.

III. DETERMINATION OF
SCATTERING LENGTHS

The various phase and cross section integrals in Eqs.
(2) and (6) can be broken into three parts according to
the range of integration; the low-energy region,
p&or&ao, where co is some point close to but below the
resonance, the resonance region, &&~&co;,I, where
+inel ls somewhere Rbovc thc rcsonanccq Rnd high cnelgy
region, eu;,I&co. In the high-energy region, we set
8 (&o) =8{pp) and o (~)= p ( pp). In the resonance region,
we assume that the phase and cross section are dom-
inated by the resonant partial wave. In the low-energy
region, we assume that the S waves dominate. More-
over, we assume that an CRective-range expansion is
valid for the S waves,

p cot8p, z= (1/cz)+ pfzp (9)

Since the S waves are always very important in the
integrals in (2) and (6), the assumption that the
expression (9) is valid in the low-energy region is
essential to our determination of uQ and a2. In partial-
wave dispersion theory, one can prove the eRective-
range expansion (9) rigorously at least in some vicinity
of threshold, as is shown in the Append. ix. The eRective
range r~ is treated in the present work as a parameter
in the range between 0 and. 2p ', in spite of the fact
that the force range ls about 0.5p ' for xvr scattering.
Arguments are presented in the Appendix that the
eRective range is not likely to be too large compared
with the force range, so that 0 to 2p, ' should be
sufBcient.

Arguments are presented in I that a meaningful
procedure to de6ne the resonance region, eu&e&~;, I

would be to choose it from one full wid. th below the
resonance to 1.5 full widths above the resonance, in
units of the c.m. energy. This would mean that

~(p) =9.4S zp;.,g(p) =22.1 for ~+@
(10)

(a(f) =31.9 pp;„)(f)=52.1 for

1D units of p.
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8p.
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2

I

I

I

vr ~0

assume 0 ~
——0 ( ~) =25 rnb between &u;,~(p) and ~;,~(f)

to evaluate the integral in (6).
All these parametrizations are based on an intuitively

appealing picture of the xx scattering which certainly
matches the qualitative behavior of the phase and the
total cross section. In the present work, we assume
the values in (10) as a reference, but also vary co and

co;„,i in order to discuss how sensitive our results are
to these quantities.

In order to determine ao and a2, we erst solve
numerically the unsubtracted dispersion relation (6)
for ao as a function of a2, the results are given in Fig. 2.
Using these values, we then calculate a+0(~) and

opp( ~) from (15) and (16). The results are shown in

Fig. 3 for several values of ro= r~. Representative values,
based on an effective range r2=ro ——0.5p ', an S-wave
cutoff at the p resonance, and the choice of parameters
given by (10), are pea=0. 23, pan=0. 0, and 0. ( ~) =35
mb. If the only uncertainties arise from choice of the
parameters such as the effective range, co, and co;„,i
which are discussed in Sec. IV, then the results of the
present work can be summarized as

pa0=0 25+0 08 pa2=0 0~0 03

~, (~)=30&10mb. (17)

IV. DISCUSSION

m(p) ~; i(p) m(f) &u;, (f)
LAB Pion ENERGY td

FIG. 1. The qualitative behavior of the ~7f. cross section and
phase assumed in this analysis. Fig. 1(b) is related to Fig. 1(a)
by usual isospin conservation.

.8.-

r=o
/

r=i
I'= 2 Fxo 2 The rela-

tion between u0 and
a2 provided by the
unsubtracted disper-
sion relation (6) for
various effective
ranges.

S-wave effective-range expansion, and the parameters
Go and Goinei ~

As discussed in the Appendix, use of the effective-
range expansion is justified by partial-wave dispersion
theory in some region above threshold. It is also
discussed in the Appendix that the effective range
should be in the vicinity of, or less than, 0.5p, , which is
the range of the force arising from the exchange of the
lightest system possible, namely, 2x. If, however, the
effective ranges ro and r2 are varied independently in
the interval from 0 to 2p ', taking the S-wave region
for both channels from threshold to the p (ps= 5.46p),
the results vary from pao ——0.20, pa&= —0.01, 0 ( ~) =36
mb to pao ——0.30, pa2 ——&0.02, o(~)=33 mb. Keeping
the effective range 6xed at r2=ro= 1p ' but reducing
the range of integration for the S-wave contributions to
about one pion mass above threshold (gs= 2.9p)
changes the results from pa0=0. 24, pa~ ——0.0, 0 ( ~) =34
mb to pao ——0.22, pa2 ——0.0, ~( ~)=35 mb. The effective-
range expansion was modified to read p cot8= 1/a+-,'rp'
+I'p', but the coeKcient I' restricted so that the
correction does not change p cot8 by more than a
factor of two up to the p resonance. For r=1p ', the
results could be made to vary from pa0=0. 21, pu2
= —0.01, o ( ~) = 36 mb to pao ——0.25, pug = +0.01,
a ( ~) =33 rnb. In short, the results are rather insensitive
to the details of the S-wave scattering other than the
scattering lengths themselves if the effective range is
between 0 and 2p '. For larger values of the effective
range, the results become too sensitive to the details to
be useful.

The point co is a measure of where the phase begins
to rise to the resonance value of -', m. If this point is
varied from as high as the resonance itself to as low as
two full widths below the resonance, the results vary
from pao ——0.28, pa, =+0.01, 0(~)=54 mb to pao
=0.21, pa2 ———0.01, 0( ~)=20 mb. In other words, if
the resonance begins to dominate roughly the same way
in the x+x' and x'm, channels, the actual point where
the resonance begins to dominate can influence the
numerical value of o ( ~) but not the scattering lengths.
In fact this is true of any uncertainties present in this
calculation which affect both channels, in roughly the
same way. For instance, the point or;,i is a measure of
where the scattering becomes asymptotic. Varying co;„,&

%e now discuss the effect of changing our para-
metrization of the m7I- cross section and phase by varying
the effective range, the S-wave cutoff, the form of the

-.O5-.IO
-.2"

- 4. ~

+.05 +.IO +. I 5

jLQ2
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60

50 =2
=2

Fxo. 3. 0.(00) as a function of
the scattering lengths ao or a2.
Either (a) ao or (b) a2 can be
chosen as the independent
variable, for they are related
as shown in Fig. 2.

40

~(c0)
(mb) 30

20

~ ()
(mb)

f =0-2

IO
IO--

I

.3
pro

-.06 -.04 -A)2 0 +.02 +.04 +06 +.08

(b)

changes the high-energy correction 1/(1 —y) in (15)
and (16). Dropping this completely can decrease p ( pp)

by 30% but leaves the scattering lengths essentially
unchanged. Varying &p;„i arbitrarily for the p and f so
that the two channels are treated differently can
produce an uncertainty pd, ao ——0.09, pea& ——0.02, and
Do ( pp) =6 mb. Also, if the phase approaches -,'z. much
more slowly than can be accommodated by the above
parametrization, p ( pp) for both channels can be
significantly increased or decreased, but as long as the
approach is comparable in both channels, as one would

expect, the scattering lengths would not be appreciably
affected.

As a summary, the scattering length changes roughly
from 0.20 p, ' to 0.30 p,

' when one varies the effective
range and the energies ~ and or;„,~. Since these are to be
considered as independent sources of uncertainties, we
conclude that pao ——0.25&0.08 within the range of the
parametrizations considered in the present work. Our
final results (17) are obtained this way.

Two other resonances' have been conjectured in the
I=o channels, the p (J=O, M 760 MeV, I' 100 MeV)
and the p (J=o, M 400 MeV, P 80 MeV). Present
experimental evidence' indicates that neither exists and
we take this point of view, so that only the p and f
contribute to this calculation. Nevertheless, we discuss

briefly what would be the case if either did exist as a
true ~x resonance. Only the x'z' channel would be
affected. Since these resonances are fairly low-energy
resonances with substantial widths, one expects a large
change in our determination of ao and a~. In fact, a
preliminary calculation indicates that the dependence
of opp( pp) on ap and az would. be entirely different from
what is shown in Fig. 3. Moreover, our calculation
indicates, though in a preliminary way, that the two
curves for p+p( pp) and app(pp) do not seem to cross
within the parametrizations considered in the present
work. We found solutions which gave the same limits
for all o ( pp) only when we gave up the relation between
ao and a2 implied by the unsubtracted dispersion
relation (6).

F(0,0,0,0),
gA gr ENNw (0)

(18)

where the notation is that used by Adler. ' The ampli-
tude Ii is defined as

z(qipqpp)' '
F(„ t p

z
p 2)— d4x e"v4(—,+t4')

2p, v

x( '(q, ) I
7'(j-(0) &+( )—j+(0)&-( )) I

+(q,)), (19)

where j(x) = (— +tzz) pp(x), 2tzv= —Pi (qi+qz), t
= —(qi —qz)', qi'= qz' ———tz'. The amplitude F is
normalized so that ImF (v,o,tz', tz') = q(v) (o (v) —o+ (v))/
2v, where q(v)=(v' —t4')'t' and p+(v) are the total

7 M. Gell-Mann, Physics 1, 63 (1964).
8 M. Gell-Mann and M. Levy, Xuovo Cimento 16, 705 (1960);

Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
9 I. J. Muzinich and S. Nussinov, Phys. Letters 19, 248 (1965).

V. PCAC SUM RULE

By assuming the equal-time commutation relations
proposed by Gell-Mann7 for the weak axial-vector
currents and the partially conserved axial-vector
current' (PCAC) hypothesis which states that the
divergence of the axial-vector current is proportional
to the pion fi.eld, Adler' and Muzinich and Nussinov'
have derived a sum rule involved the off-the-mass-shell
pion-pion scattering amplitude. By making a continua-
tion in mass from zero to the physical pion mass, they
attempt to place limits on the physical pion-pion
scattering lengths. Although they use slightly different
mass continuation, both authors conclude that the
lower limit for ao is approximately one pion Compton
wavelength (44 '), which disagrees completely with our
results (17).

We show in this section that the sum rule is actually
consistent with our results (17). We also show that the
different conclusion reached by the other authors' ' is
due to inadequate use of the sum rule.

The exact sum rule is
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cross sections for a physical x+ scattering from a
physical x+. For forward scattering, v reduces to the
laboratory pion energy au used in this paper and
F(40,0,44',zz')= f(40)/124o, where f(4o) is the amplitude
de6ned in Sec. II, and hence satisfies the unsubtracted
dispersion relation (5). The sum rule (18) involves the
amplitude with two pions o6 the mass shell. In order to
use this sum rule to obtain information on the scattering
lengths, one has to know 6rst how to continue in mass
from zero to p. As yet, there is no convincing way to
do this. Hence we replace F(0,0,0,0)/E~~„'(0) by
F(0,0,zz', y'), i.e., we take the pions on the mass shell.
One can then use the dispersion relation for P, which is
(5), to give

2 2M~2 " q2

dv —,(~-(~)—~+(~)) ~

gx g» & 0

This approximate sum rule is used by Muzinich and
Nussinov, 9 while Adler' breaks the cross section into
partial waves and replaces qz/coz by

4f (~+1.~)N 1/~ (-4OZ Z44)
4

If the main contributions to the integral come from the
5 waves and the known resonances, then the two
different forms shouM give electively the same result.
In order to extract information about the scattering
lengths from (20), both authors' ' attempted. to evaluate
the integral directly by parametrizing the cross section.
However, one can use the exact dispersion relation (6)
to relate the integral in (20) to the scattering lengths.

By constructing the difference between (5) evaluated at
&o=O and (6), one can rewrite (20) as

2 M~2 8X—(2ao—5«)
gA g» 3P

MN2 2@2 "dq
—,[~-(~)—~+(~)j (21)

g» 'g 0 M

where o (4o) —o+(o&)=6(2oz+3trz —5oz). Compared, to
the integral in (20), the integral in (21) is much less sen-

sitive to the high-energy behavior and the parametri-
zation of the 5 wave. It is in fact possible to estimate
the integral in (21) in a simple manner in order to show

that the second term is actually small compared with
the Grst term in (21) for scattering lengths which are
not too large. Thus assuming I « I ((«, one obtains from
the sum rule (21) that

g
2 p2

duo~= =0.35. (22)
SX gg23f A(2

We interpret the fact that (22) differs significantly

from the results obtained by Adler' or Muzinich and
Nussinov' to mean that their parametrization of the
xx cross section is not compatible with the unsubtracted
dispersion relation (6). Though we do not know the
uncertainty in the sum rule (20) arising from mass
continuation, we are inclined to conclude that our

scattering lengths (17) are consistent with the Adler
sum rule (18).

Eoto added in proof S.. L. Adler (private communi-
cation) observed that the second term on the right-hand
side of (21) is small compared with the left-hand side
of (21) even when the o and 4 resonances are assumed
and also for the 5-wave scattering lengths which are as
large as one pion Compton wavelength.
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APPENDIX

Let g(s) be the 8-wave amplitude (e"' 1)—/2ip, where
s is the total c.m. energy squared. and p is the c.m.
momentum, 4p'=s —4z4'. Let h(s) be the inverse
amplitude 1/g(s). The physical cut for g(s) extends from
4p' to + ao. Then h(s) has this physical cut, a left-hand
cut, and possible poles arising from the zeros of g(s).
We take the kinematical cut from gs as part of the
left-hand cut. Hence, one has

(s—4'') " ds' Imh(s')
h(s) =h(4p')+

4&2 s —4p s —s

+ (left—hand integral)+ (poles). (A1)

In the elastic region, h(s) =p cot8 —ip. The integral in
(Al) with Imh(s') replaced by its elastic value —p(s')
= ——', (s'—4z4')'" can be evaluated exactly. [The
simplest way is to recognize it as the subtracted disper-
sion relation for —ip(s).$ The result is —i-, (s—4p, ')'~'

with the cut from 4'' to +~. Inserting the above
integral on the left-hand side of (Al), one obtains

z(s—F4') 'i'
h(s)+

(s—4p') " ds' [Imh(s')+ p(s') j
gp s 4p

+ (1eft—hand integral)+ (poles), (A2)

where so is the inelastic threshold. The function on the
left-hand side of (A2) becomes p cot8 in the elastic
region. Hence, p cot5 can be expanded in a power
series in s—F4', or equivalently p', in some vicinity of
s= 4p as

p cot5= 1/a+-', rp'+0(p4) . (A3)

The radius of convergence is the distance to the inelastic
threshoM or to the left-hand cut or to the nearest zero
of the 8-wave amplitude, whichever is the smallest.

The above argument alone hardly indicates any
magnitude for the effective range, nor does it indicate
how far above threshold the 6rst two terms in (A3)
provide a good approximation to the true phase shift.
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In order to get some idea about the magnitude of the
effective range, let us assume that m.x scattering is
described, at least in some region above threshold, in
terms of an effective energy-dependent potential whose
range is that of 2x exchange. The simplest such potential
which permits the effective-range expansion is Vo(r)
+(p'/tt) Vr(r), where Vo(r) and Vr(r) are appreciable
only within a range of order 0.5 p, '. I.et the S-wave
component of the wave function be u(r)/r, normalized
so that u(r) u(r)=—sin(pr+5)/sin6 for large r and let
00 and uo denote the zero-energy limits of these func-
tions. By standard arguments, "one has the identity

00

P cot8=-+Ps drt uott —uou+uoVr(r)u]. (A4)
6

Hence, expanding in powers of p' one obtains the
eRective-range formula with

r=2 drftto' uo'+—Vr(r)uo'j . (As)
0

Assuming that Vo(r) is sufficiently strongly attractive,
it is known that the first two terms in (A5) give a
contribution very close to the force range. "The last

' J. Blatt and V. Weisskopf, Theoretical Nuclear Physics
(John Wiley R Sons, Inc. , New York, 1952), p. 62.

term in (A5) gives a positive contribution to the
effective range when Vr(r) is positive (which makes the
effective potential more attractive below threshold).
However, some upper bound for Vr(r) is provided by
the requirement that the effective potential must not
generate a mx bound state below threshold. One can see
that a suflicient (but not necessary) condition for this
to be satis6ed is that Vr(r) be of the order of one or
smaller within the force range. In this case the last
term in (A5) is of the order of half the force range or
smaller. Though it is not possible to set a precise upper
limit, one can see this way that too large an effective
range would violate the condition that there are no gg
bound states.

Experimental information is available on a process
similar to xx scattering, namely, ES scattering. In
both cases, the longest range force arises from the
exchange of 2~, giving a force range of 0.5 p '. The
effective-range expansion provides in this case an
excellent fit" to the S-wave scattering up to at least
642 MeV incident E kinetic energy, with an effective
range r 0.4 p '. This value is only slightly less than
the force range due to 2m exchange.

» G. Qoldhaber et al. , Phys. Rev. Letters 9, 135 (1962).
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08-the-Mass-Shell Correction in Pion-Pion Scattering*
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A discussion is given of the off-the-mass-shell correction to the PCAC (partially conserved axial-vector
current) relation for pion-pion scattering. In particular, special attention is drawn to the fact that the usual
s and u cuts of the pion-pion amplitude give rise to cuts in the external pion mass extended far below the
cut due to the three-pion intermediate state. An estimate is made of the off-the-mass-shell correction due
to these induced cuts. It is shown that this correction is not likely to be significant as long as the P-wave
pion-pion interaction is relatively weak, implying that the use of the PCAC relation for pion-pion scattering
without the off-the-mass-shell correction is not expected to be any worse than that for any other PCAC
relation.

I. INTRODUCTION AND SUMMARY

'HE algebra of current commutators proposed by
Gell-Mann' and the PCAC hypothesis' have been

used by Adler and Weisberger' to express the axial-
vector coupling constant renormalization in P decay,
g~, in terms of the pion-nucleon scattering amplitude
evaluated at some unphysical point. The success of this

*Work supported by the National Science Foundation.
' M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1964).
s M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);

Y. Namhu, Phys. Rev. Letters 4, 380 (1960).
' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); W. I. Weis-

berger, ibid. 14, 1047 (1965).

calculation' prompted several authors to relate g~ to
other strong-interaction amplitudes to extract informa-
tion about the lesser known strong interaction, such as
xz or zE.~'

In principle, the only obstacle to these PCAC
relations is the external mass continuation. The exact
PCAC relation refers to the scattering amplitude in
which two of the external pion masses are set equal to
zero. In order to relate this to a physical amplitude, a
continuation has to be done in the external pion mass

s S. L. Adler, Phys. Rev. 140, 8736 (1965).' I. J. Muzinich and S. Nussinov, Phys. Letters 19, 248 (1965).
6 F. Meiere and M. Sugawara, preceding paper, Phys. Rev. 153,

1702 (1967).' V. S. Mathur and L. K. Pandit, Phys. Rev. 143, 1216 (1966).


