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Regge-Pole Formulas for Differential Cross Sections of
Quasi-Two-Body ~N and NN Interactions*

LING-LIE WANG

Lawrence Radiation Laboratory, University of California, Berkeley, California

(Received 19 August 1966)

Regge-pole formulas for difterential cross sections of some quasi-two-body ~N and NN interactions,
which can have one or two meson trajectories exchanged, are given in this paper. The reactions treated are:
nN~ nt(112 36), nN~cu tt(1 236), nN ~AeN, srN~rtN, nN ~ va(1236), rrN ~ pN, nN ~ pa(1236),

NN ~ Na(1236), NN ~ NNe(1500/, ), NN ~ NN*(1480, as+).

I. INTRODUCTION

HE Regge-pole model has given quite good 6ts'
and interesting predictions' ' for certain simple

high-energy two-body to two-body interactions which
can have single Regge-pole exchange. There remain
many interesting quasi-two-body interactions, involv-
ing complications of high spins and unequal-mass
kinematics, which have not been treated theoretically.
%ith the fast accumulation of high-energy experimental
data, it is of interest to know the theoretical formulas
which are suitable for phenomenological fits. In this
paper we shall give the Regge-pole formulas for the
differential cross sections of some quasi-two-body

~Pand XS interactions which can have one or two
meson trajectories exchanged.

According to the established method of reggeiza-
tion, 4 including the deduction of residue functions free
from kinematic singularities, ' the following results
will be obtained in a routine fashion.

II. mN INTERACTIONS

A. eeN~ eetk(1236)

Because of the conservation of isotopic spin and G
parity, only p can be+&sexchanged among the experi-
mentally established trajectories. ' The differential cross
section without polarization is

do'

X2Xe( sin8t[1 —exp( —i«)g[(2n+1)/sin«jppp fb(t)Epr '+(cos8t)
dt 4rrsp. mrs (2X-,'+1)

+ (sin8t)s[1 —exp( —irrn) j[(2o.+1)/sin«]pgp f f(t)Ess +(cos8t) '+ [1—exp( —i«)j
X[(2er+1)/»n«jpoo, ',b(t)Zoo"+(cos8t) '+ sin8t[1 —exp( —irrn) j

X[(2rr+1)/sin«]goo;~f(t)Est +(cos8t) s), (1)

where I' & is the c.m. momentum of the re system, s is the total energy squared, 8, is the t reaction angle, r n(t)
is the p trajectory, and the P s are the residue functions of the partial-wave helicity amplitudes which have definite
paritv. The kinematic factors of the residue functions P are' s

Pos;;f(t) "[~(ex+1)]"'[t—4rw 'j"'[~—(nta —tttN) 3 (P P&a) (2a)

*Work done under the auspices of the U. S. Atomic Energy Commission.
A. V. Stirling, P. Sondereger, J. Kirz, P. Falkvairant, O. Guillaud, C. Caverzasio, and B. Amblard, Phys. Rev. Letters 14, 763

(1965);I. Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodickson, ibid. 14, 408 (1965);R. K. Logan, ibid. 14, 414 (1965);R. J. H.
Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965); F. Arbab and C. B. Chiu, ibid 147, 1045 .(1966); G. Hohler, J. Baacke, N.
Schlaile, and P. Sonderegger, Phys. Letters 20, 79 (1966);W. R. Frisken, A. L. Read, H. Ruderman, A. D. Krisch, J. Orear, R. Rubin,
stein, B. D. Scarl, and D. H. White, Phys. Rev. Letters 15, 313 {1965);H. Brody, R. Lanza, R. Marshall, J. Niederer, W. Selove,
M. Shochet, and R. Van Berg, ibid. 18, 828 (1966);C. B. Chiu and J. D. Stack, Phys. Rev. 153, 1575 (1967).

G. F. Chew and J. D. Stack, University of California, Lawrence Radiation Laboratory Report No. UCRL-16293, 1965 (unpub-
lished); J. D. Stack, Phys. Rev. Letters 16, 286 (1966).

3 L.-I., Wang, Phys. Rev. Letters 16, 756 (1966). See also Appendix II.
4 M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F. Zachariasen, Phys. Rev. 133, B145 (1964).

L.-L. C. Wang, Phys. Rev. 142, 1187 (1966);See also Appendix I. The procedure of obtaining the differential cross section is given
very clearly in Ref. 3.

Thews has studied this interaction [R.Thews, Laboratory for Nuclear Science and Physics Department, Massachusetts Institute
of Technology, 1966 (to be published in Phys. Rev. )g. He mainly investigated the energy dependence of do/dt and does not concern
himself with the detailed kinematic structure in do/dt.

Sinttg=2)1@(s&t)j I /g~, gee, where'
j(s,t)—=st(P m —s—t) —s(mf, '—mq')(m '—m ') —t(m '—mf, ')(m '—mq ) —(m mq —m mf, ')(m +my' —m —mf, )1,'—=4tp„, and V fd,'=4tpM, for a+b —+ c+d being the s channel and D+b —+ c+A being the t channel.

g Notice that the residue functions have the usually assumed threshold behavior at t=4m ' and t=(mz+mN)'; i.e., p(t)
~ t't (nte+rnn) gspt —4m ']s—', where L, L' is the lowest orbital angular momentum for a 6xed J& of the Mrs and nn systems, respec-
tively. We Gnd that this is true for all the interactions considered in this paper.

At integral values of Of (and their symmetric points about o. = ——,) nonsense-sense residue functions vanish in a square-root fashion.
For example, if n=0 is such a point, P, cc $a(n+1)g'~, where s stands for sense and n for nonsense. The factorisability of the residue
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Poo;f—-'(t) cc [rr(&+1)(rr—1)(rr+2)) [t—(ma+mar) ) (t 4m ')(P Par)~

poo, H(t) ~ [t (m—a+m~)') ' '[t—(ma —m~)') '(p„pea)

Poo . .(t) ~ [a(n+1))"'[t—(ma m—~)') "'(—t 4m—')'"(P Pga)

(2b)

(2c)

(2d)

Notice that the kinematic factors of poo, f;(t) and poo„*,(t) are the same. For fitting we can put them together in
Kq. (1).Vsing the asymptotic form of the E functions" and after some rearrangements, we obtain. a formula which
is suitable for phenomenological fitting:
Jg' 1 1

~
1—exp( —irrn)

~

' sin8~I'rrs (4m ' t)' '[(ma mN—)s t5—'ts s

I'(n+ 1) sinrrn

X[~yoo, p(t) ~'+ [goo,.~;(t) ('5(s/so)' -'+
~ ( isn8)r'['n'( rr 1)—' (t—4m ')[t—(ma+msr)s)'Is '

Xjyoo, f f(t)('(s/so)' '+ [t (ma —mrs)'—) '[t (ma+—mrs)'5 '" '(goo,.;f(t)['(s/so)' ), (3)

where g ~' ——4sP mrs ——[s—(m~+m )')[s—(m~ —m )'). The y's are defined through Eqs. (1) and (3). Each is a
product of the corresponding p without those kinematic singularities, (2n+1) I'(n+ s)/(rr) 'ts of the E functions and
constants. The poles of (2n+1) I'(cr+-,') at ——,', —-'„etc. are canceled by the zeros of P at these points. 'o "So the
y s are analytic functions of t for t(0. Notice that 1/I"(a+1) sinrrrr is finite at all negative integral values of n.
Therefore the odd signature factor in Eq. (3) gives zeros at negative even integers of a. In the rest of the paper,
the p s will be similarly denned. The so is an arbitrary positive scale constant. Usually $0 is chosen so as to minimize
the rate of variation of the y s as functions of t."The same notation so will be used throughout the paper for all
interactions, even though the values of so need not be the same. Notice that sin8~ ——0 and

~
cos8,

~

= 1 in the forward
direction of the s channel. We assert that the Regge asymptotic behavior holds in the s-channel forward direction
for the amplitudes which are free of kinematic singularities. "That is why we keep the kinematic factors of sino&

as they stand, and approximate the functions Ez„~+(cos8,) in Eq. (1) by their leading asymptotic terms according
to Ref. 10. The same assertion is applied throughout this paper.

B. ooN-+ toX(1236)

Only p can be exchanged in this interaction and the p can couple to m~ only when ~ is in helicity state one. ~

The diGerential cross section is

do' 1 1
X2X-,'(2[1+(cos8,)') [1—exp( —i~rr))[(2rr+1)/sinrrn)pro, ;f(t)Ett +(cos8&) '

dt 4ssP mrs (2X-,'+1)
+2 (

sin8,
(
'[1+(cos8~)'7 [1—exp( —irrrr) 5[(2n+1)/sin7rrr)Pro, a;(t)Est +(cos8r)

~

'+2
(
sin8,

~

'

X [1—exp( —irrn)5[(2n+1)/sinwn)Pro, i„.(t)Eot +(cos8,) '+2[1+(cos8,)')
X [1—exp( —&ra)5[(2n+1)/sinrrrr)Pro, .;;(t)Ett +(cos8&) ') . (4)

function says that j8, =j8,„P .Therefore either P„orp has a factor a (a+1).Which one is chosen is a dynamical question. Throughout
then P,~~ $a(n+1)j'~, p„ac 1, P ac $n(a+1)ji If it couples to nonsense-nonsense channels, then P, cc [a(n+1)g.'ts, P„a:n(a+I),
p «)c1. For example, the p&0. ~~ of Eq. (2c) should than have a factor a(a+1); the p&0,.gg of Eq. (Sa) and p&o, g y of Eq. (Sb) should not
have a factor a (a+1);p&0, g yp of Eq. (9c) and p&0;y ~p of Eq. (9f) should not have the factor a p(up+1) ' p)) )) of Eq. (23c) should have a
factor a(a+1), and Pgg, g y of Eq. (23d) and Pg g;y y of Eq. (22) should not have the factor a(a+1). Also the differential cross sections
should be changed accordingly. Hopefully, by Gtting the experimental data, we can determine which is the correct coupling.

"The asymptotic forms of the E functions used in this paper are:

I'(n+$) s 4a(a —1) F(a+g} s

(.) 'r(+I) P,P, La(a+1) (a—1)(a+2)Q'~' (~)'I'F(&x+1) PtPg'

2a (a+ ~x) s 2a' F(a+-,'} s
t:~(o+1)3'" (v)'"I'(~+I) P~P~' a(a+1) (m)' 'F(a+1) p pt'

4n'(n —1) F( +-', ) s
~(o+I)t.(~—I)(~+2)3'" (~)'"P(~+1) P~P~'

The E functions have poles at all half-integers of n. When a physical trajectory passes a positive half-integer, the pole of the E function
in the amplitude will be either canceled by its compensating trajectory passing —a —1 or its residue function vanishes (Ref. 11}.How-
ever the leading term at high cos8& in the E has poles only at negative half-integers. Thus the vanishing of the residue can give a zero
in the asymptotic form of the amplitude. When the leading trajectory passes a negative half-integer, there obviously can not be any
compensating trajectory. Therefore it is the vanishing of the residue function that cancels the poles at negative half-integers. The
author would like to thank Professor S. Mandelstam for informing her that the compensating trajectory always exists for a trajectory
passing half-integers in the potential theory."S. Mandelstam, Ann. Phys. 19, 254 (1959).

"See F. Arbab and C. Chiu's paper in Ref. 1.
"With the discovery of the daughter trajectories, D. Z. Freedman and J. M. Wang LPhys. Rev. 153, 1596 (1967)g have shown that

this is true. (Related references are given in the paper. )
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The kinematic factors of the residue functions are

P». H(t) and Pts L—f (t) ~ n(n+ 1)[t {rISa 51~) ] 1~e(P~rdPpa)

Pro, —;,(t) n(n+1)[(n —1)(n+2)l'"t-'"[t—(~a+~~)']'"& (P:P~.)-'
pts,', ;(t) [n(n+1)1"'t '"Lt—(~a—~~)'1-'"&..(p..p»)-',

(Sa)

(Sb)

(Sc)

where 9' „'=4tP „'=[t (m —+ws„)'][t—(wt —m„)s]. The factor of n(n+1) in Eqs. (Sa) and (Sb) arises from the
assumption that the p trajectory couples to a sense-sense channel. Notice that by factorizability, these residue
functions are related to those of wX —+ wh{1236), i.e.,

p»;Na(wre &—EA) poo; rra(7rz &—$6)
(6)

p»; @~a~(rrre+—XA) pee @~a.~(re ~XA)

Therdore in addition to the pure-3 kinematic factors of the full helicity amplitude given by Ref. S, the factorizability
relation of Eq. (6) can require additional kirrematic factors of the residue flrtctorrs Thes. e additional factors are
always analytic. All the P kinematic factors of all the interactions considered. in this paper are obtained with con-
sideration of this additional constraint given by the factorizability of the residue functions. The final form of the
differential cross section, suitable for phenomenological 6tting, is

do 2

I1—exp( —i')
I

' ([1+(cos8)']n4 [t—(wsa —msgr)']-'t'K. „'[Iy»,. (t) I

'
Ch F(n+1) sins.n

+ Iv»;:—:(t)I'](s/»)' '+ It '"»n8~I'[1+(cos8~)']n'(n —1)' &-'[t—(~a+~~)']"' 'Iv»; —:—:(t)I'

X(s/so)' '+ It '"»n«I'n' [t—(wsa —wry)'] t"& 'Into;; —;(t)I'(s/s, )'-'), {'I)

where the &'s are defined through Eqs. (4) and (7).Notice that a factor n appears in every term of Eq. (7).Therefore
the differential cross section has a minimum where n(t) =0.

For non-charge-exchange xE—+ A2F, the Pomeranchuk I', I" and the p trajectories can be exchanged. None
can couple to the xA& system with A& in the helicity zero state.

d|7
X2Xst21(sin8&)sI' [1qexp( —i7rnp)][(2n~+1)/sinxn~]pso; —;,~(t)Res ~+(cos8g)

Ct 4zsP srs (2X-',+1)
+[1—exp( —i n,)][(2n,+1)/sinwn, ]pso; —;, (t)Ze "+{cos8 ) I

'+2
I
sin8 '[1+(cos8 )']

X [1+exp( —i7rn, )][(2n,+1)/sinn'n, ]ps o; i-;"(t)Et, s '+(cos8~)+ [1—exp( —Arn, )][(2a,+1)/sins'a, ]
Xps, , ; f&(t)Et s ~+(cos8,) '+2Isin8, I' [1+exp(—i wn)][( 2n+1) s/i n7r,n]pt, sf~i( )tE pe~+(cos8~)+.

+2[1+(cos8g)s] [1+exp(—Ar )]n[(2 p+n1)/si np]wpn, re~~(t)E ~tt( +8c,o)s

+[1—exp( —Arn, )][(2n,+1)/sins n„]Pt... ,~(t)E„+(cos8&) ') . (8)

The contribution from the I" trajectory gives exactly the same form as that from the I' trajectory. The kinematic
factors of the residue functions are'4

P20:-'(t) and Pso;; (t) Ln(n+ 1)(n—1)(n+ 2)]'"&-~(t—4~~') "'(P-~P») (9a)

'4 In this paper all the formulas involving E, I", and Aq are written according to the mechanism proposed by Gell-Mann to cancel
the pole at a =0 in the amplitudes: these trajectories all couple to nonsense-nonsense channels at 0.=0 and the pole in the nonsense-
nonsense channels is canceled by another trajectory passing n = —1, (i e., 8, ~ La (n+1)g'~', P„ao (o+1),8,~ 1).An alternative mech-
anism is to have the pole in the nonsense-nonsense channels annihilated by a zero of the residue functions, 1 i.e., P, ~atm(a+1}11t',

Pss cIca Ia+l}s Pnnocaj. .
G. F. Chew has proposed a different mechanism LG. F. Chew, Phys. Rev. Letters 16, 60 (1966)g, in which the trajectories couple to

the sense-sense channel atn=0, but P„vanishes there, i.e., 8, ~nLn(m+1)g'Is, P„oca, P ~as(n+1). J. Finkelstein and Boris Kayser
pointed out that in potential theory the coupled sense-sense residue function cannot change sign for 5 (threshold, Thus if P„vanishes,
it must have a double zero, Li e., 8, ~ann( +1)Jo», P„~cx', P ~a(n+l)g However, fo.r t (0 nonrelativistic arguments are of dubious
value. In the relativistic case, the kinematic singularity free residue functions are real analytic and have right-hand cuts. This does not
rule out the possibility of their changing sign for t&0. Actually there are experimental indications that the residue functions need to
change sign to explain certain aspects of vie and Eft't scattering LR. J. N. Phillips and W. Rarita, Phys. Rev. 139, 81336 (1965);E.
Leader and R. C. Slansky, ibid. I48, 1491 (1966}j.The author would like to thank Professor Chew and Dr. Finkelstein for discussions.
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where n is nt (or n,) for P (or Pp);

i40;f f (t) cc [(np —1)(np+2)] t t g pA(t 4r—ttNs)tt'(P APNN)~P

Pep, ; .,P(t)nnp(np+1)[(np —1)(n+2)]' t g„„(t—4tttN) (P,APNN)
p-

ptp. ,*(t) and ptp,', ;p(t) n [n(n+1)]"'(P,

APNEA)

P10 f f (t) ~ t (PpAPNg) P

pt;0 1 ~& (t) ~ n(pn+p1)t (P~APNN) p

(9b)

(9c)

(9e)

(9f)

The difference of a factor of n(n+1) between Eqs. (9b) and (9c), and between Eqs. (9e) and (9f), arises from the
assumption that the I' trajectory couples to nonsense-nonsense channels" [the amplitudes do not have a pole at
n&(t) =0], while the p trajectory couples to sense-sense amplitudes' at n=0. After some rearrangement we obtain

do n, (n, —1) s p
—2

1(sin8,)'1'1 K~A(t 4ttzN')'t'—1' [1+exp(—i«p)7 esp., ;. (t)—
F(n,+1)sin«p sp

np(np 1) s )+[1—exp( —ivrnp)] esp. Hp(t) —
1

+1sin8, 1'[1+(cos8t)']1t'"V' A(t —4tttN')"'1'
F(np+1) sin«p spf

n, (n,—1) s ) tip 2 np'(np —1)
X [1+exp( i7rn—„)] esp., f fp(t) —

1
+[1 exp—( i«—p)7

(n, +1)I'(n,+1) sinvrn„spl F(np+ 1) sin«p

s )~p (XP s )Ixp 1

Xv»;:—(t) —
I +1»n8t I

' [I+exp( i«p)7— — »0;;:'(t)
I

+L1—exp( —i«,)]
spi F(np+1) sin«p sp)

X
F(n,+1) sin«p

s AP

ytp;ll'(t) — +[I+(cos8 )']
I
t

I [I+exp(—i n.)]
sp (np+1)F(np+1) sin«p

s
XTtp, ;; (t)—

so

QP (s)~p—1 2

+[1—exp( ion„)—] 710;,—,(t)1
I'(n, +1) sins.y, k sp)

(10)

pAp, .,*;(~As &
—NN) itpp, ;;(tran. ~NN).

pA p , f;(rrAI 0 ~NN) . ppp,.f;(7m. &—NN)
D. ~N —+gN

Of the known trajectories, only that of A2 can be
exchanged here. "The contribution of the I" trajectory is exactly the

same as that from the E. One can see how hopeless it is
to do fitting with non-charge-exchange xE —&A2X
interaction. However there is one interesting point.
Notice that in the first and the second term of Eq. (10)
there is a factor (nt —1). Since nt (0) =1, their contribu-
tion in the s-channel forward direction will be very
small. Also notice that every term in Eq. (10) has
kinematic factors of sines and cosines of 0& which do
not increase with energy s (i.e., sin8, =0 and 1cos8,

1

= 1)
in the forward direction of s channel; therefore the
Regge trajectory, especially the I', cannot contribute
with full strength in the forward direction of s channel
and thus the production of A2 in very high energies
will be more limited than if I' could contribute with full
strength. " For the charge-exchange ~Ã —+ A2A in-

dg
-', X2X-,'( [1+exp(—i«)]

tft 4tl sP~N

X[(2n+I)/sin«]t800, ;;(t)800 +(cos8t) '

+ sin8t[1+exp( —i«)7[(2n+I)/sin«]
xi40;& f(t)Ept '+(cos8,)1') . (11)

The kinematic factors of the residue functions are'

ppp., *;(t) n(n+1) (t—4nzN') '"(P.„PNN), (12a)

Poo; —:=:(t)"L ( +I)]"'~;(P.P- ) ' (12b)

' R. J. N. Phillips and W. Rarita studied this interaction
/Phys. Rev. Letters 15, 807 (1965); 15, 938(E) 1965)j. They
applied the kinematics of ~E~mX to this case; i.e., instead
of ~9'„si &( ne+-prNtN) ~0 in the second term of Eel. (13), they
used

~
1, sine&(s.s. ~ fVfV) ~'. The author found that numerically

the two can differ by a factor of 2 for small (t ).
"See Ref. 11 of Ref. 3."See Appendix III.

where the p's are defined through Eqs. (8) and (10). teraction, only p contributes. Since every term in Eq.
The y's are related to those of ~1V-+ 0rlV scattering by" (10) has a factor n„ the differential cross section has a

minimum at np=0.
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The 6nal form of the di6crcntial cross section is

dr A

I 1+exp(-i a) I'
S~g F(Q+ 1) slum'Q

X((n+1)'I (t—4mir') '~'I 'I goo, ...,(t) I
'(s/so)'"

+ I

'
8 I'I ~., l'leo, , —:t,-(t) I'(/, )" '),

where the y's are defined through Eqs. (11) and (13).
They are smoothly varying functions of t for 1&0.
Since n/I'(n+1) sin« is finite at negative integers of

a, the vanishing of the signature factor
I 1+exp( —oirtx)

I

'
at ncgatlvc odd lntcgcrs of ar glvcs minimums lIl thc
differential cross sections at these points,

E. ooN —&rtcL{1236)

Here only the A2 trajectory can be exchanged.

d0
oX2X~(»n8i[1+exp( —&«)7[(2~+1)/sin«7poo; —,*,(t)Eoi +(cos8~) '+ (sin8i)'[1+exp( —&ra)7

dt 4orsp~ir

X[(2n+1)/sin«7poo, t ~(t)Eoo +{cos8i) '+ [1+exp(—tora)7[(2n+1)/sin«7poo. , p(t)Eood+(cos8i) '

+ sin8i[1+exp( —Arn)7[(2n+1)/sin«7poo. , 1 ~(t)Eoi +(cos8i) o). (14)

The kinematic factors of the residue functions are

p, o.„(t) snd po, , .(t) cc [~(~+1)7'~st—»'[t—(@zan
—AN)'7't'g" (p pivot)N

'

Poo; I;(t) ~ [~(0+1)(oo
—1)(~+2)7"'t-'[t—(~~—~zr)'7[t —(oio~+orsx)'7»'V. „'(P.'„Pro)

(15a)

(15b)

Poo„*;(t)~0.(n. +1)[t—{m&—bio)'7-'t'(P. „P») .
After some rearrangements we obtain

(15c)

do 1 CL

I
1+exp( —iorn)

I

'
~mN F(a+1) sin« ( t-'t'»n8i '[t—(~~—sr &)'7't'& „'[lvoo -"-(t) I'+ lvoo ~-(t) I'7

x(s/so)"-o+ t-i(»n8, ) I (~—1) Lt—(~,—~~) 7[t—(~~+~~)'7'"~.»' 'Igloo;:—:(t)I'(s/so)" '

+(+1)' Lt—( .+ )'7 "' 'Igloo;;:(t)I'(/o)") (16)

The y s are defined through Eqs. (14) and (16).Notice that the differential cross section has minimums at negative

odd integers of 0, .

For charge-exchange mE —+ pE interaction, A2 and m can be exchanged. The A2 can couple to xp only when p is in

helicity state one. Because of conservation of 6 parity, the x can couple to the EN system only when they are in

the same helicity states. It turns out that there is no interference between the contributions from the two

trajectories.

do
oX2Xo( [1+exp{—i7rn )7[(2n +1)/sin«7poo. „, (t)Eoo +(cos8~) '+2lsin8, I' [1+exp(—i«)7

dt 4wsp~pp

X[(2n+1)/sin«7pio. .. (t)Eoi +(cos8&) '+2lsin8il' [1+exp(—km~)7[(2ng+1)/sin«~7

Xpio, ~~~(t)Eoi ~+(cos8i) '+2[1+(cos8,)'7 [1+exp(—tom~)7[(2n~+1)/sin«~7

XPio, t~{t)Eii ~+{cos8g) o) . (17)

The kinematic factors of the residue functions are"

poo, 1o (t) ~ t' 'v'„I '(p, ipirg)—
Pio, ~;~(t) ~ [a (n, +1)7'"tit'(t—4mio')'io(P. ,P~g)"

p»;, (t)" [~~(~~+—1)7"'&:(p») " '

pio;t-; (t) ~ t't'&~p(p~opnrZ')

(18a)

(18b)

(1gc)

(1gd)
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Here we assume that the m trajectory couples to the sense-sense channels at 0. =0.
do' 1 2

— I1+exp(—i«~)l' It't'v' —
'I'Igloo, H~(t)l'(s/so)'"+Isin8, I'n ' t'~'(t —4m~')'t' '

dt S N2 I'(n+1) sin«

X lyso;~1 ()I'(s/so) ~ ' +ll+exp( —i«&)lo
(ng+ 1)I'(n~+ 1) sin«~

I
sin«I '(n&+I)

I
'I ~ ~ I

'

X
I ~~p;;:"(t) I

'(s/sp)"" '+[I+(cos«)']
I
t'"~

I
'I v~p; I-I"(t) I

'(s/so)"" ' (»)

where the p's are smoothly varying functions of t for t&0. Notice that the contribution from m vanishes as the x
trajectory passes —1. For high enough energy, the contribution from ~ trajectory may be neglected. The p~ s
here are related to that of the m-N —+ qN interaction through the following equation:

Pgp, p"(orp ~ 1VN) Ppp,. I1"(org ~ NN)

Pgp,', ;"(mp ~ 1VN) P p,', ;"(orrt ~ lVN)
(20)

For non-charge-exchange xN —+ pN interaction, the co trajectory can also be exchanged. It appears coherently with
the A2.

G. ooN~ pcs(1236)

Again in this case, A2 and x can be exchanged, . Even though the m. trajectory is lower than the A2, there is still a
possibility that the nearness of the m pole to the s-channel physical region makes the contribution from x important
up to moderately high energies. In that case we have to consider both x and A2 exchange. However as energy be-
comes really high, eventually A2 will take over. Here we consider only A& exchange. The kinematics here are
similar to those for prlV ~ ooA (1236).The differential cross section is in a form exactly the same as Eq. (4) except
that the signature factor is [1+exp(—im.n)], and the n and 8 s refer respectively to the trajectory and the residue
functions of A&. The kinematic factors of the P's for Ap are the same as given by Eqs. (Sa), (Sb), and (5c), except
for an additional n(n+1) factor, assuming as usual that Ao couples to nonsense-nonsense amplitudes. The ffnal

form of the differential cross section is

d0 1 Q'

I 1+exp(—i«) I'
dt 8 ~2 (n+1) I"(n+1) sin«

([I+(cos«)'] [t (mo, m&—) o]-inq— o[l vio; —;;(t)I
'

+ lyso;1—I(t) I'](s/sp)'~ '+ lt '~' sin8&l'[I+(cos8~)o](n —1)' 1' '[t (m&+m&)']' ' 'lvlo; —,
'—I(t) I'

X(s/so) '+ It '~' isn8~ 'I( n+I)' I[—t (mq —mN)'] 't'9~ I'lyso»(t) I'(s/sp)' ) (21)

where the &'s are deined through Eqs. (4) and (21) and they are smoothly varying functions of t for t(0. The y's
here are related to those of m.N ~ re in Eq. (16) through the following equation:

Plp;oN(~p ~ A1V) Pop;6p(~ ~ A1V)

Pxo;o iv'(7rp & A1V) Poo;a Is (pr" & A1V)—
Evidently many of the formulas of xN interactions considered here can be used for EN scattering.

III. NN INTERACTIONS

The SN scattering formulas are more complicated than those of xN scattering due to the presence of more
particles with spin and more trajectories which can be exchanged. Even though we can write down formulas for
all quasi-two-body NN interactions, there will in general be so many arbitrary parameters as to make phenomeno-
logical Gtting hopeless. We consider only three especially simple cases and for each keep only the highest trajectory
that can be exchanged: NN -+ NA(1236) with p exchange, and NN ~ NN*(1500, op ) and NN +NN*(1480, —,'+—)
with P exchange. The E' trajectory contributes exactly in the same way as E.

A. NN +NA(1236)—
In addition to p,or can also be exchanged. [For the same reasons as given for the reaction n.N ~ pA(1236), the

or contribution may be very important at intermediate energies. ]Even with p alone there are eight residue func-
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tions. We shall see that we can combine some of the residue functions and reduce the number of arbitrary functions
from eight to 6ve in practical 6tting. The unmodihed differential cross section is

do
X X2X-,'(2lsin8, I' [1—exp( —urn)][(2n+1)/sinmn]pp, ;y(h)Eop+(cos8g) '

dh 47rsp/r/r' (2+-,'+1)(2X-',+1)
+2I(sin8()'I' [1—exp( —i7ru)][(2n+1)/sinvrn]p; ,*, ;;(h)E02 +(cos8() '+2 [1—exp( —inn)7[(2a+1)/sinvrn]

Xpp., p(h)Eop+(cos8~) '+2lsin8, I' [1—exp( —inn)7[(2a+1)/sin~n]p»~, ~~(h)Ear +(cos8~) '

+2[1+(cos8)'] [1—exP(—i )][(2 +1)/sin ]P„.. .(h)Eyr +(cos8,) 2+2
I
sin8,

I
'[1+(cos8 )'7

X
I [1—exp( —Arn)][(2n+1)/simrn]p, * x., ~~(h)Eq2 +(cos8&) '+2lsin8&l' [1—exp( —inn)][(2~+1)/sin~a]

Xpp. x 1(h)Ego '+(cos8g) '+2[1+(cos8~)'7 [1—exp( —i~n)]

X[(2++1)/sinsn]ph ~;~ ~(h)En '+(cos8 ) ) ~ (22)

The kinematic factors of the residue functions are'

p, ;, ,;(h),p~i, ~;(h), and pH, ~ i{h) [n(n+1)]' '[h—(mz m&)']—' '(pp&p/rQ)' ',

p-:=.*;—:—:(h)"L (+1)( —1)(+2)]"'(h—4 ')"'Lh —( + )']"'(p p )

p.;."(h) ~ (h—4m~') —'"[h—(mg+m/r)'] —"'[h—(mg m~—)'] '(pp/t/ppz),

pa~ ~ x and p~ ~. ~ ~(h) ~ u(n+ 1)h"'[h —(mg mr/) '] "'—(p/7~p/7g)

(23a)

{23b)

(23c)

(23cl)

p ~, (h) ~~(~+1)[(~ 1)(~+2)]1/2hl/2(h 4m 2)l/2[h (m +m )2]1/2(pp~p- )a—2 (23e)

The 6nal form of the diGerential cross section is

do 1
I
1—exp( —i~n)

I

'
dh s(s—4m/r') F(a+1) sin~n

(l»n8~I'~'I [h—(m~ —m )'] '"I'[le--'"(h) I'+ le-- -"(h) I'

+ l~--' —{h) I
'7(~/~0)'"-'+ l(»n8)' '~'(~—1)'I (h

—4m~')"'[h —(m~+m )']"' 'I v-:—;—:;:(h)I'(~/~o)' '

+ [h—(m~ m~)']—'[h (my+—m//)'] "'(h 4m~') '/' —'Iy;;., ;;(h) I
(s/so)'~+[1+(cos8~)']n4

X lh'/'[h —(mg —m~)'] —' 'I'[ly" . .(h) I
'+

I y * . .(h) I
'7(s/so)' '+[1+(cos8)']

I
sin8 I'n4(n —1)'

X h"'(h —4m~')'/2[h —(mg+m~)']"' 'I y;. x.);I
'(s/so)'~ '}, (24)

where the y's are defined through Eqs. (22) and (24).
Notice the n factor in all terms of Kq. (24) except the
third term. Thus if y;;., ;,*(h) turns out not too big, we
can observe a minimum in do/dh at u(h) =0. T. he y's
here are related to those of m.lV —+ ~h(1236) and
xS —+ 7t.S by

pg/r, /7g(gN +—gd) poo, /t/g(~n ~ gk).
{25a)

prr/1/;rr~g~(NN +- A 6) poo;N~g~(m n +—gk)
and

Prr/r;/ra(NN + &~) P/r/r; oo(&N &—~~)
(25b)

prr /T'rrr (NN g~) p/r /r'00(&N ~~)

B. NN~ NN*(1500,$ )

Here almost all nonstrange trajectories can be ex-
changed. Due to the availability of very high energy
data for this interaction, hopefully the consideration of

only the I' trajectory will be adequate. The formalism
for this case is quite the same as that of EX—+ XA
(1236), except that due to the difference in parity the
tunematic factors of the residue functions P's are
diQerent. They are"

P;;,i;(t),P;;, g(h) and P;;,.; .*, (h) ~ [n(n+1)]"'
X [h {m~ +m~)'] "'—(P~~PNrr ) ', {2«)

P=:;:—:(h)-[ (+1)( -1)( +2)]"'(h—4 ')"'
X[h—(m *—m )']""(p- p .) ', (26b)-

P»»(h) ~n(a+1)(h —4m~') —'"[h—(m/r* m/r)'] ' '—
X [h (m~ + m)'7 —'(p/re/r/r ), (26c)

P31, 1 t(h) and P1 1, 1 l(h) cc h
/ [h (m/r +m/r) ]
X(p~Np~~ ) ', (26d)

p:-~,~-~(h) - L( -1)(+2)]"'h"'(h-4 ')'"
X [h (mph m~)'—]"'(pN—~pm/r*) ' (26e)



The 6nal form of the differential equation is

da Q

I
1+exp( —is-n)

I

'
d» $($—4mN ) —(n+1)F(n+1) sins'u

sin8il '(n+1)'I L»
—(mN*+mN)'7 '"I '[Iv;;;H(») I

'

The y's are related to P's by Eqs. (22) and (27).

C. NN +NN-*(1480) I2+)

Here we consider only the contribution from the I' trajectory.

1dg
X2Xq(2 [1+exp(—inn)][(2n+1)/singrn]pp, b»(»)EM +(cos8,) 2

d» 47rspNN (2X2+1)(2X2+1)

+2 sin8, [1+exp(—inn)][(2n+1)/sin7rn]Pbb. ~b(»)EIb +(cos8~) [s+2 sin8, [1+exp(—isu)5

X[(2n+1)/sin7ru]P; ~,.p(»)Ebi +(cos8i) '+2[1+(cos8i)'] [1+exp(—isn)]

X[(2u+1)/sinmn]P;;. x .(»)EII~+(cos8g) '}. (28)

The kinematic factors of the p's areib

+ l~:—:;;:(»)I'+ l~-::;:--:(»)I'5(/.)' '+I( ' 8)'I'( —1)'( +1)'I(»—4 ')'"[»—( .— )']'&' '

X l~:—:;;:(»)I'(s/»)' '+(n+1)' (»—4mN') "'[»—(mN" —mN)'7 '"[»—(mN*+mN)'7 ' 'lv y'. b(») [
"s/so)"

+[1+(cos8)']»'"[»—(mN*+mN)'7 "' '[Iv:;;~-)(») I
'+

I ~; *„I g(») ['7(s/s, )2-2+
I
sin8, ['[1+(cos8,)2]

X(n 1)'—»I~'(» —4mN')"'[» (mN* m—N)'7'~' 'IT-' —";(»)I'(s/s )'~ 4}. (2p)

p;*.,', ;(») n(n+1)(»—4mN')-"'[» —(mN +mN)'] '"(PN~PNN)",

p, ,(») and p;;, ;;(»)~ [n(n+1)5"'[» (mN—. mN)—'5"'(PNNPN. N)

p; ~;~ .(»)»"'L»-(* —)']"'(P— P )--
The Gnal form of the differential cross section is

(29a)

(29b)

(29c)

do A

I 1+exp(—im-n)
I

'
d» $($ 4mN )—(n+1) I'(n+1) sins n

((-+1) «-4 )-"«-( + .)7- ~ ~

X Iyr;., ;;(») I'(s/sb)'+ Isin8~['(n+1)2[ [»—(mN —m„)2]I&2['[I&„,,(») [2+ [&

+[1+(cos8) ]I»' '[»—(mN* —mN)']I" ['Iq;., 1;(»)I'(s/so)" '}, (30)

where the y's are defined through Eqs. (28) and (30).
Obviously these formulas for EE interactions can

also be used for EN interactions.

and zeros:

Ue~;ab'+f ~~ sb'][s 4m. ']&~'[—s (m,+mq)—']&»

X[s—(m, —mg) ']&»$&~&',
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APPENDIX I
In Ref. 5, the author did not write down explicitly

the kineInatic singularity and zero-free helicity ampli-

tudes for the case of m, =mq and m, /mq, which turns
out to be the most useful case here. %e write the result
here as a supplement to the paper. In the case of
m, =m~, m, &m~., or m, =mg=m, /m~, the following

helicity amplitudes arefree of kinematic singularities

n2'=max(W)g. b of p'.+Jb] for I,,=sb=0

All the notations here are de6ned the same way as in
Ref. 5.

APPENDIX II
It is an interesting phenomenon that purely because

of the presence of some kinematic factor of 0, in the
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amplitude, "5 the contribution of a Regge pole to
certain amp1itude can vanish and it thus produces a
minimum in the differential cross section. We illustrate
this point by observing the simplest case of no spin. '8

The contribution of a Regge pole to the amplitude is

2n(t)+1
f(s,t) = I1aexpL —km(t) jI

sinn n(t)

XP(t)EM io+(cos8~) (II.1)

2n+1 I'(n+-', )=
t 1aexp( —i~n)] P(t)

sinatra (m)'"I'(n+1)

(11.2)
s

pep~'&

Now let us focus our attention on the factors containing
0. in, say, the case of positive signature:

[1+exp(—inn) j (2n+1) I"(n+-,')
Sln7?'0! r(+1)

(II.3)

'8 J.D. Stack has also observed this phenomenon for the case of
no spin."I owe this nice summarizing statement to Professor G. F.
Chew.

At n= —1, —2, and —3, etc., the 1/I'(n+1) has zeros
that are nonsense (unphysical) values of n. These
zeros are to cancel the pole of 1/sim. n at these nonsense

VR1ucs of 0.. HowcvcI', Rt the wrong slgnRtuI'c va1ucs of

n, i.e., 0.= —I, —3, —5, etc., the signature factor
Pi+exp( —ia.n)) also vanishes. Thus the amplitude
vanishes at these values of 0.. Similar arguments apply
also to the case of negative signature. We see that
the amptitgde always vanishes at eonselse used wroeg-

sigeatlre ealles of n "For ca.ses with spins, the de-

tails of deriving this conclusion are more complicated;
however, thc pllnclp1c ls thc same. Thc lntcrRctions
considered in this paper provide an illustration. The-

poles of (2n+1)l"(n+-,') at n= —-'„——',, in Eq.
(II.3) are annihilated by zeros in the residue function. m

So when the spins of external particles are high, for
some amplitudes even n(t)=0 1 2 can become
nonsense values and the amplitudes can vanish at those

value of a(t) with the wrong signature. Of course only

those t-channel zeros at n(t)(1 of the amplitudes will

have an CGect on the s-channel diGerentia1 cross

scctlon.

APPENDIX III

The kinematic factors Lain(~~8, )j~" & ~Leos(-,'8,)1~"'+I 'i

of f,~, nq. ,
' with X'=—D—b, ts' =c —A—, are 1 or 0 in the

forward direction of the s channel for production in-
teractions {1.e. f5 Wf5a or Bt reBte', or both) since at
this point sin8g ——0 and

~
cos8,

~

=1.We use c:+b—+ c+d
to denote an s-channel interaction and D+b wc+-A to
denote t-channel interaction. Thus the contribution of
a Regge po1e is diminished for those amplitudes with
X'&0 or p, '&0, or X'&0 and p, '&0 compared with those
having both X'=0, p'=0. For example, if particles c
and c' can be produced through the interactions
o+b ~ c+d and a+9 -+ c'+d, respectively, with the
same highest trajectory exchange, while at the same
time c can couple to the t-channel helicity amplitude
with )'=0 and p, '=0 but c' cannot, then the relative
production rate of c wi11 be greater than that of c'.
Whether the particle can couple to the t-channe1
helicity amplitude with X'=0 and p,'=0 depends on
its spin and parity relative to that of the particle u;
therefore this may constitute a way of determining the
spin and parity of the produced particle, in case the
spin and parity of the particle u are known. '

SuKcient conditions that would prevent a Regge
pole with (J parity)X(parity)=+ from coupling to
the t-channel helicity amplitude with p, '=0 arc

(a) One of the particles A or c has spin zero. Let
us choose this to be the partjc1C g.

(b) The spins and intrinsic parities of A and c are
such th«rt ~ri, (—)'"+"=—1. The g is the intrinsic
parity.

(a) and (b) a«satisfied, the
(J-pa»ty)XpaHty=+helicity state of g and c with
p, '=0 does not exist. A similar argument applies for
the amp1itudes with X'=0. Wc see that there is no
selection rule at any fermion-ferInion vertex. An ex-
ample of the above is that the re1ative production rate
of Ag(2+) in the interaction ~cV ~ Ascii' will be more
diminished than that of Aq{1+) in the interaction
x'E~ AyX. The I tra)cctory CRnllot contllbutc with
full strength in the interaction xX~A2X.

If the highest trajectory exchanged has {Jparity)
X(parity)= —,the particle c with g~q, (—)'&+"=1
wi11 have a smaller relative prouction rate at high
energies.

20 ' would like to thank Dr. A. Goldhaber for bringing my
attention to this selection rule. The same conclusion is obtained
in coherent productions in heavy nuclei by A. Goldhaber and
M. Goldhaber, in Preludes ie Theoretical Physics, edited by A.
de-Shaiit, H. Feahhach, and L. Van Hove Qohn Wiley ih Sons,
Inc., New York, 1966).


