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Regge-pole formulas for differential cross sections of some quasi-two-body =N and NN interactions,
which can have one or two meson trajectories exchanged, are given in this paper. The reactions treated are:
wN — 7A(1236), 7N — wA(1236), wN — A3N, =N — 9N, =N — A (1236), =N — pN, =N — pA(1236),
NN — NA(1236), NN — NN*(1500,37), NN — NN*(1480,3%).

I. INTRODUCTION

HE Regge-pole model has given quite good fits!

and interesting predictions®3? for certain simple
high-energy two-body to two-body interactions which
can have single Regge-pole exchange. There remain
many interesting quasi-two-body interactions, involv-
ing complications of high spins and unequal-mass
kinematics, which have not been treated theoretically.
With the fast accumulation of high-energy experimental
data, it is of interest to know the theoretical formulas
which are suitable for phenomenological fits. In this
paper we shall give the Regge-pole formulas for the
differential cross sections of some quasi-two-body

wN and NN interactions which can have one or two
meson trajectories exchanged.

According to the established method of reggeiza-
tion,* including the deduction of residue functions free
from kinematic singularities,® the following results
will be obtained in a routine fashion.

II. =N INTERACTIONS

A. =N— =A(1236)

Because of the conservation of isotopic spin and G
parity, only p can befexchanged among the experi-
mentally established trajectories.® The differential cross
section without polarization is

do 1

@ dmwspay® 2X3+1)
+ | (sin8,)?[1— exp(—ima) J[(2a+1)/sinra]Boo; 3—3(t) Eee®*(cosy) | 24 | [1—exp(—ima) ]
X [(2a+1)/sinwa]Boo; 33 (&) Eoo**(coshy) | 2+ | sinf 1—exp(—imra)]
X [Qa+1)/sinre]Bo0;1-3(E) Eoar®+(cosby) | 2, )

where P,y is the c.m. momentum of the 7V system, s is the total energy squared, 6, is the ¢ reaction angle,” a()
is the p trajectory, and the 8’s are the residue functions of the partial-wave helicity amplitudes which have definite
parity. The kinematic factors of the residue functions 3 are®®

Boo; 13 (1) = [arloet1) /2Lt —dm o> 12 1— (ma—mn) T2 (prapma) =,

X 2X 3{ |sind[1— exp(—sra) J[(2a+1)/sinra]Boo;33(t) En®*(cosbs) | 2

(2a)

* Work done under the auspices of the U. S. Atomic Energy Commission.

LA. V. Stirling, P. Sondereger, J. Kirz, P. Falkvairant, O. Guillaud, C. Caverzasio, and B. Amblard, Phys. Rev. Letters 14, 763
(1965) ; I. Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodickson, ibid. 14, 408 (1965) ; R. K. Logan, #bid. 14, 414 (1965); R. J. H.
Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965); F. Arbab and C. B. Chiu, ¢bid. 147, 1045 (1966); G. Hohler, J. Baacke, N.
Schlaile, and P. Sonderegger, Phys. Letters 20, 79 (1966) ; W. R. Frisken, A. L. Read, H. Ruderman, A. D. Krisch, J. Orear, R. Rubin,
stein, B. D. Scarl, and D. H. White, Phys. Rev. Letters 15, 313 (1965); H. Brody, R. Lanza, R. Marshall, J. Niederer, W. Selove,
M. Shochet, and R. Van Berg, ¢bid. 18, 828 (1966) ; C. B. Chiu and J. D. Stack, Phys. Rev. 153, 1575 (1967).

2 G. F. Chew and J. D. Stack, University of California, Lawrence Radiation Laboratory Report No. UCRL-16293, 1965 (unpub-
lished) ; J. D. Stack, Phys. Rev. Letters 16, 286 (1966).

3L.-I., Wang, Phys. Rev. Letters 16, 756 (1966). See also Appendix II.

4 M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F. Zachariasen, Phys. Rev. 133, B145 (1964).

5 L.-L. C. Wang, Phys. Rev. 142, 1187 (1966) ; See also Appendix I. The procedure of obtaining the differential cross section is given
very clearly in Ref. 3.

8 Thews has studied this interaction [R. Thews, Laboratory for Nuclear Science and Physics Department, Massachusetts Institute
of Technology, 1966 (to be published in Phys. Rev.)]. He mainly investigated the energy dependence of do/df and does not concern
himself with the detailed kinematic structure in do/dt.

7 Sin@, = 2[t¢ (5,8) 112/ T2 T va, Where

@ (s,8) =st(X m2—s—1) —s(mpt—ma?) (ma—m2) —t(ma2—m?) (M2 —ma2) — (mama® —me*mp?) (ma—+ma —me2—mp?),
a?=41pe2, and Tp=4ipra, for a+b— c+d being the s channel and D+b— ¢+4 being the ¢ channel.

8 Notice that the residue functions have the usually assumed threshold behavior at (=4m.? and i= (ma+mn)?; ie., B(Z)
o« [1— (ma+my) JL[t—4m.>]%', where L, L' is the lowest orbital angular momentum for a fixed J; of the NA and 7= systems, respec-
tively. We find that this is true for all the interactions considered in this paper.

9 At integral values of « (and their symmetric points about @ = —%) nonsense-sense residue functions vanish in a square-root fashion.
For example, if =0 is such a point, Bsn x [a(a+1)]"/2, where s stands for sense and n for nonsense. The factorizability of the residue
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Boo;3-3 (1) = [ala+1) (e— 1) (e+2) JV2[1— (mat-my) 12— 4ms®) (prrpam) 2, (2b)
Boo;33(2) & [t— (mat-mn) T2 [t— (ma—mu)* T (prxpna)®, (20)
Boo:3—1(t)  [ala+1) 112 1— (ma—mu) TV 2(t—4m o) V2(prrpima) . (2d)

Notice that the kinematic factors of Boo;33() and Boo,3—3(¢) are the same. For fitting we can put them together in
Eq. (1). Using the asymptotic form of the E functions!® and after some rearrangements, we obtain a formula which
is suitable for phenomenological fitting :

do ?
e () (s | = =
XL voo 1501 %+ 00,550 | 21(5/50)22=24 | (sind)?| Pt~ 1)2 | (6= doms?) o= (ma-tmen)?12] 2
X |vo0;3-4(0) | 2(s/s0)* - | (1= (ma—mw) T [t— (mat-ma) 2] 2| voo,13(0) | 2(s/50)%2}, (3)

where $;x?=4sp,n?=[s— (my+m,)*|[s— (my—m,)%]. The v’s are defined through Egs. (1) and (3). Each is a
product of the corresponding 8 without those kinematic singularities, (2a+1)T'(a+%)/ ()2 of the E functions and
constants. The poles of (2a+1)T'(a+3) at —2, —3, etc. are canceled by the zeros of 8 at these points.!%!! So the
v’s are analytic functions of ¢ for {<0. Notice that 1/T'(a+1) sinwe is finite at all negative integral values of .
Therefore the odd signature factor in Eq. (3) gives zeros at negative even integers of a. In the rest of the paper,
the v’s will be similarly defined. The s, is an arbitrary positive scale constant. Usually s, is chosen so as to minimize
the rate of variation of the ¥’s as functions of .12 The same notation s, will be used throughout the paper for all
interactions, even though the values of so need not be the same. Notice that sinf,=0 and |cosf,| =1 in the forward
direction of the s channel. We assert that the Regge asymptotic behavior holds in the s-channel forward direction
for the amplitudes which are free of kinematic singularities.!® That is why we keep the kinematic factors of sind,
as they stand, and approximate the functions Ey,**(cosf,) in Eq. (1) by their leading asymptotic terms according
to Ref. 10. The same assertion is applied throughout this paper.

B. #N— 0A(1236)

Only p can be exchanged in this interaction and the p can couple to 7w only when w is in helicity state one.?
The differential cross section is

do 1

1
E:— trorr XD X ZXi{ 2[1+4(cos,)?] [ [1—exp(—ima) J[(2a+1)/sinwa |B10; 33 () E11®+(cosby) | 2

+2|siné;| 2 14 (cosbs)?] | [1—exp(—ima) JL(2a+1)/sinraB10;33() E2r®+(cosby) |24-2|sing, |2
X | [1—exp(—ima) ][ (2a+1)/sinma]B10;33(t) Eor+(cosy) | 2+2[ 14 (cos:)?]
X | [1—exp(—ire) ][ (2a+1)/sinmra 810, 3-1(£) E1r®H(cosb;) l 2} . (@)

function says that Bsp? =pssBnn. Therefore either Bss or Bnn has a factora («+1). Which one is chosen is a dynamical question. Throughout
then Bsnx [a(a+1)J2 Bssoc 1, Banx [a(e+1)] If it couples to nonsense-nonsense channels, then Benoc[a(a+1)J12, Bssxa (1),
Ban < 1. For example, the Boo;33 of Eq. (2c) should than have a factor a(a+1); the 810,43 of Eq. (52) and Bi¢;3-3 of Eq. (5b) should not
have a factor a.(a+1) ; B20;3-3* of Eq. (9¢) and B10;3-3* of Eq. (9f) should not have the factor e, (e, +1) ; B33:33 of Eq. (23c) should have a
factor a(a+1), and B3;3-3 of Eq. (23d) and B4-3;3-3 of Eq. (22) should not have the factor a(ee+1). Also the differential cross sections
should be changed accordingly. Hopefully, by fitting the experimental data, we can determine which is the correct coupling.

10 The asymptotic forms of the E functions used in this paper are:

. __ T(atd) s\« - N da(a—1) T'(a+3) s \?

Eqo +(cosot)~——————(1r)1,2r(a"'_l_l) __?tﬁt') s Eo2 +(°059‘)”[a(a+1)(a~1)(a+2)]”2 (T (et 1) P:P/) s
. 2 T'(a+3) s \«1! . 22 T'(a+3) s \«!

B o)~ G ) B o)~ e (797)

4a?(a—1) T'(a+3) s )"—2
a,+ —_—
Bt st~ e DD+ DT M Tt D \5p?)
The E functions have poles at all half-integers of «. When a physical trajectory passes a positive half-integer, the pole of the E function
in the amplitude will be either canceled by its compensating trajectory passing —a—1 or its residue function vanishes (Ref. 11). How-
ever the leading term at high cosf; in the E has poles only at negative half-integers. Thus the vanishing of the residue can give a zero
in the asymptotic form of the amplitude. When the leading trajectory passes a negative half-integer, there obviously can not be any
compensating trajectory. Therefore it is the vanishing of the residue function that cancels the poles at negative half-integers. The
author would like to thank Professor S. Mandelstam for informing her that the compensating trajectory always exists for a trajectory
passing half-integers in the potential theory.

11 S, Mandelstam, Ann. Phys. 19, 254 (1959).

12 See F. Arbab and C. Chiu’s paper in Ref. 1.

13 With the discovery of the daughter trajectories, D. Z. Freedman and J. M. Wang [Phys. Rev. 153, 1596 (1967)] have shown that
this is true. (Related references are given in the paper.)
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The kinematic factors of the residue functions are

Bio:z3(t) and  Bro.33(t) calat1)[i— (ma—my) 2T V2T ro(Prupma) L, (5a)
Bio;3-1() < alat1)[(e—1) (a42) 122t~ (mat-mu) 1T 12 (Prapa) 2, (5b)
B1o;33(8) < [alod-1) T2V 21— (mma—mn) T°T ro(propma) ™, (5¢)

where Tr,2=4tp 2= [t— (My+my,) | t— (m.—m,)?]. The factor of ala+1) in Egs. (5a) and (5b) arises from the
assumption that the p trajectory couples to a sense-sense channel.? Notice that by factorizability, these residue
functions are related to those of 7V — 7A(1236), i.e.,

Bro;na(rw < NA)  Boo, ma(wr < NA)
Bro;war(mw < NA)  Boo;a(wm «— NA) .

Therefore in addition to the pure- kinematic factors of the full helicity amplitude given by Ref. 5, the factorizability
relation of Eq. (6) can require additional kinematic factors of the residue functons. These additional factors are
always analytic. All the 8 kinematic factors of all the interactions considered in this paper are obtained with con-
sideration of this additional constraint given by the factorizability of the residue functions. The final form of the
differential cross section, suitable for phenomenological fitting, is

do 1 2
;;=;:N*2l 1=exp(~ina)| 2(I‘(a+1) sinvra) {
+ | v10:5-3(0) | 21(s/50) 22| £7172 sinfe | [ 14 (cos8e) o (a—1)?| T[4~ (mat-mar) 12| 2 y10,3-5(0) | 2
X (s/s0)24 | 712 sinb;| 2| [1— (ma—mw) T2 T | 2| y20,4(0) | 2(/50)2272}, - (7)

where the 4’s are defined through Egs. (4) and (7). Notice that a factor « appears in every term of Eq. (7). Therefore
the differential cross section has a minimum where a(f)=0.

(6)

(14 (cos6y) e | [1— (ma—mx) 2T 2T wa | 2[ | v10;13(0) | 2

C. =N— AzN

For non-charge-exchange mN — A,N, the Pomeranchuk P, P’ and the p trajectories can be exchanged. None
can couple to the 74, system with A, in the helicity zero state.

do 1
A dwspey® (2XAH1)
+[1—exp(—ira,) [ (2, +1)/sinma, Bzo;33°(t) Eoz*+(cosby) | 242 | sind, | 2 14 (cosb,)?]
X |[14-exp(—ima,) [ (2a,+1)/sinma, 1820;3-37 (1) Ex,2%*+(cos8,)+[1—exp(—ima,) ][ (20,+1)/sinma, ]
X B20,3-1#(t) E1,2%*(cos0y) | 2+2 | sing,| 2| [1+ exp(—ime,) J[(2ep+1)/sinma, B10; 337 (1) Eore*(cosf) 4+ - - |2
+2[14(cosb;)?] { [1+exp(—ima,) [ (2a,+1)/sinme, |B10;3-37 ¢) E11%+(cosy)
+[1— exp(—iray) TL2ap-1)/sinma, Juo () EuaonH(cosdy) 2} . (8)

The contribution from the P’ trajectory gives exactly the same form as that from the P trajectory. The kinematic
factors of the residue functions are!

Baop(f) and  Bao3s(t) « [alat-1) (@— 1) (@+2) ]2 T ra (b= 4dmn®) 2 (prapwm) =2, (9a)

X 2X 12| (sin6y)?| 2| [14exp(—imap) ][ (2ap+1)/sinmap 182,337 (1) Eorr*(costy)

4 Tn this paper all the formulas involving P, P’, and A are written according to the mechanism proposed by Gell-Mann to cancel
the pole at =0 in the amplitudes: these trajectories all couple to nonsense-nonsense channels at =0 and the pole in the nonsense-
nonsense channels is canceled by another trajectory passinga = —1, {i.e., Bsnx [@(e+1) ]2, Bss xa(@+1), Ban = 1}. An alternative mech-
anism i(s to })1ave the ﬁ)ole in the nonsense-nonsense channels annihilated by a zero of the residue functions, [i.e., Bsa o[ (a+41)]!12,
65501012 a+1 3 Bnnxa . i

G. F. Chew has proposed a different mechanism [G. F. Chew, Phys. Rev. Letters 16, 60 (1966)], in which the trajectories couple to
the sense-sense channel at o =0, but Bss vanishes there, i.e., Bsncala(a+1)]12, Bes xa, Bunxa?(a+-1). J. Finkelstein and Boris Kayser
pointed out that in potential theory the coupled sense-sense residue function cannot change sign for ¢ <threshold. Thus if s vanishes,
it must have a double zero, [i.e., Bsn xa[a(a+1)T2, B o, Bun < (e+1)]. However, for # <0 nonrelativistic arguments are of dubious
value. In the relativistic case, the kinematic singularity free residue functions are real analytic and have right-hand cuts. This does not
rule out the possibility of their changing sign for £<0. Actually there are experimental indications that the residue functions need to
change sign to explain certain aspects of 7V and NN scattering [R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965); E.
Leader and R. C. Slansky, ibid. 148, 1491 (1966)]. The author would like to thank Professor Chew and Dr. Finkelstein for discussions.
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where « is ap(or a,) for 87 (or 8°);

Ba0:347 (1) < [y — 1) (otp+2) JV2 2Ty 4 (4—4mn D) V¥ (prapim)* 2, (9b)

Bao;3—37(8) = ey (ot 1) [, — 1) (o5 2) 22T 4 (b— d1mn®) 2 (prapum) 2, (%)

BroyP(t) and  Buosy(t) = [ala+1)]V2(prapnm) =, (9d)

Broia T (t) = 12 (prapnm)e?, (%)

Bio;3-1°(t) = ety t+ 1)1 (prapaw) . (%)

The difference of a factor of a(a+1) between Egs. (9b) and (9c), and between Eqs. (9¢) and (9f), arises from the
assumption that the P trajectory couples to nonsense-nonsense channels! [the amplitudes do not have a pole at
ap(f)=0], while the p trajectory couples to sense-sense amplitudes® at a=0. After some rearrangement we obtain

do 1
~=—{ | (5in0)?|2| Tra(t—dmy?)2] 2
dt 1rN2

O‘p(ap_ 1)
+[1—exp(—ira,)]
a,,(ap— 1)
(e,+1)T(a,+1) sinza,

2

+ [sinBtl 2

x([1+exp(_m,,>3

s ap—2
Xv20,3-3°(1) (—>

So.

2

a, ap—1
X—————710.3°() (—>
T(a,+1) sinma, So

s ap—1 (¥p2 s ap—1
Xv10;3-37(2) (“) +[1—exp(—ira,) F————v10,34°(¢) (‘-0)
So.

where the v’s are defined through Egs. (8) and (10).
The «’s are related to those of 7NV — N scattering by'®

Baoi(wAs—NN)  Booz3(wr — NN)
Baoi-i(rds—NN)  Boo,3—y(rr —NN)

The contribution of the P’ trajectory is exactly the
same as that from the P. One can see how hopeless it is
to do fitting with non-charge-exchange 7N — AN
interaction. However there is one interesting point.
Notice that in the first and the second term of Eq. (10)
there is a factor (@p—1). Since ap(0) =1, their contribu-
tion in the s-channel forward direction will be very
small. Also notice that every term in Eq. (10) has
kinematic factors of sines and cosines of 6; which do
not increase with energy s (i.e., sinf,=0 and |cosf,| =1)
in the forward direction of s channel; therefore the
Regge trajectory, especially the P, cannot contribute
with full strength in the forward direction of s channel
and thus the production of 4, in very high energies
will be more limited than if P could contribute with full
strength.'® For tbe charge-exchange =V — 4.N in-

15 See Ref. 11 of Ref. 3.
16 See Appendix IIL.

s ap—2
- v20;33°() <_>
T(c,+1) sinma, So

Y20:3-30(0) <i> ap—2+[1~exp(—i7rap)]

+[1+(cosf:)?]| ¢

a, (ap - 1) “r?
[1+exp(—ima,) F——————v20,137(t) (-S‘>

T'(a,+1) sinma,
2

+ | sinf;| 2[ 14 (cos0:) 2] | /2T r a (t— 4mn?) /2| 2

So.

ap2(ap_ 1)

So (e, +1) sinma,

ap—l1
Ci+esp(—ira) }——— o O(>)  +L1—exp(ira,)]
T'(a,+1) sinra,

So
a,

(ep+1)T(a,+1) sinme,

[1+exp(—ima,) ]

} , (10)

T(a,+1) sinmy, s

teraction, only p contributes. Since every term in Eq.
(10) has a factor «a,, the differential cross section has a
minimum at «,=0.

D. sN—qyN

Of the known trajectories, only that of A, can be
exchanged here.

do

dt  4dwspan?
X[ (2a+1)/sinmwa]Boo; 31(£) Eoo® +(cosby) ] 2
+ I sin, [ 14exp(—imra) J[(2a+1)/sinma]
XBo0;3-3(t) Eor*+(cosy) |2} . (11)
The kinematic factors of the residue functions are!4

Boo; 13 (t) < alat1) (t—4my )V (prypiw)®, (122)
Boo;3-3(8) [a(a+1)]1/2Trn(P7rnP1V_N)a-1- (12b)

17R. J. N. Phillips and W. Rarita studied this interaction
[Phys. Rev. Letters 15, 807 (1965); 15, 938(E) 1965)7]. They
applied the kinematics of #N — xN to this case; i.e., instead
of |T'rysing;(mn < NN)|2 in the second term of Eq. (13), they
used |7Z'rr sindi(rm < NN) |2 The author found that numerically
the two can differ by a factor of 2 for small |¢].

%XZX%{ { [14exp(—ima)]
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The final form of the differential cross section is where the v’s are defined through Egs. (11) and (13).

1 2 They are smoothly varying functions of ¢ for ¢<O0.

|1+exp(—i7ra)]2[——————.—] Since a/T'(a+1) sinma is finite at negative integers of

i $.n° I(at+1) sinma a, the vanishing of the signature factor | 1+exp(—ima)|?

X{ (1) (¢—4ma®) 22| 2| yoo,13(8) | 25/ 50) 2 at negative odd integers of a gives minimums in the
+ | singe| 2| Toy| 2| voo;13-(t) | 2(s/50)2 2}, (13) differential cross sections at these points.

E. =N—nA (1236)

Here only the 4, trajectory can be exchanged.
do

;t-=41rsp,,1v2
X[ (2a+1)/sinwe]Boo; 3-3(t) Eex®+(costy) | 24 | [14exp(—ima) ][ (2a+1)/sinmra]Boo;33(¢) Eoo*F(cosbs) |2
+ | sind [ 14exp(—ire) [ (2a+1)/sinmaBon;3-3(H) Ea+(cosf) |2} . (14)
The kinematic factors of the residue functions are
Boo:sa(f) and  Boo;33() = [alat1) ]2 21— (ma—mx) 1P T ay(prapma) (15a)
Bovs1-3(t) = [alat-1) (e — 1) (a+-2) ]2 [t (ma—m)Jt— (ma+mu) 1T ey (prnpa) 2, (15b)

£ X 2X3{|sing [ 14 exp(—ime) [ (2a+1)/sinra]Boo; 33(£) Eor*+(cosfy) |24 | (sin6,)*[1+exp(—ima)]

and
Boo;33() = alat+1)[t— (ma—mu) 2T V2 (panpra)®. (15¢)

After some rearrangements we obtain

do

1 a 2
E;:g;zl 1+exp(—z1ra) ] 2[m:| { It_”z Slnezl 2D‘— (mA_mN)zjllzg’”| 2[1’)’003%%(0 l 2+ |700;%—%(¢) l 2]

X (s/50)22 24 | X(sinby)?| 2(a—1)?| [t— (ma—mu) It~ (mat+my) 2] 2702 | 2] voo;1-3(8) | 2(s/50) 2
+(a+1)2| [t— (matmu) T2 2| voo,13(0) | ¥(s/s0)%} . (16)

The v’s are defined through Egs. (14) and (16). Notice that the differential cross section has minimums at negative
odd integers of .

F. stN—oN

For charge-exchange =V — pN interaction, 4, and = can be exchanged. The 42 can couple to 7p only when pis in
helicity state one. Because of conservation of G parity, the = can couple to the NN system only when they are in
the same helicity states. It turns out that there is no interference between the contributions from the two
trajectories.

do

& dmp Z%XZX%{[[1+exp(—i7ra,,)][(2a,,+1)/sin7ra,,:|ﬂoo;H"(t)Eooame(cosO,)|2+2[sin0,|2[[1+exp(—i1ra,,)]
TSPxN

X [(2a+1)/sinme, |Bi0;337 () Eor®mH(cosby) ] 242 |sing, | 2 ] [1+exp(—imaa) [ (2aa+1)/sinras]
X B10; 334 () En24++(costy) | 2+ 2[ 1+ (cos8,) %] | [1+exp(—imaa) J[(2aa+1)/sinraa]
X B10;3-44() Enat(costy) |2} . (17)

The kinematic factors of the residue functions are!

Boo; 3™ () BT Y prppwm) ", (18a)
610;%%1(0 « [ar(aw+1)]1/2t1/2(t—4mN2)1/2(P1rppNﬁ)arl ’ (18b)
Bro;334(0) = [aaloa+1) V2T 2o (pum)*4?, (18¢)

Bio;3—44 (1) < /2T 1y (Prppm) . (18d)
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Here we assume that the 7 trajectory couples to the sense-sense channels at a,=0.

doe 1 2
— ; 11+eXp(-—i7ra,,)|2( ) [It””T”_IPIToO;H"(l)Iz(S/So)2“”+|Sin0tl2a,r2]l”2(l—4mzv2)”2]2

dt  S;n I'(a+1) sinwe,
7]

(ea+1)T(as+1) sinraa

X 105570 2<s/so>2a-2]+ |14 exp(—ina)| [ ][ |sinds| 2(cat-1)]?] T

X |v10;334(8) | 2(s/50)2@47 2+ [1+4(c0s0) 2] £1/2T sy | 2] 10,444 (1) | *(s/ 50)2““‘2]} , (19)

where the v’s are smoothly varying functions of ¢ for £<0. Notice that the contribution from = vanishes as the =
trajectory passes —1. For high enough energy, the contribution from 7 trajectory may be neglected. The vy4’s
here are related to that of the #V— 4V interaction through the following equation:

Bio;334(mp = NN)  Boo,334(mn — NN)

—= —. (20)
B1io;3-34(mp <~ NN)  Boo;3-34(rn < NN)

For non-charge-exchange 7V — pN interaction, the w trajectory can also be exchanged. It appears coherently with
the Ag.

G. =N— pA(1236)

Again in this case, 42 and 7 can be exchanged. Even though the = trajectory is lower than the 4, there is still a
possibility that the nearness of the 7 pole to the s-channel physical region makes the contribution from = important
up to moderately high energies. In that case we have to consider both 7 and 4, exchange. However as energy be-
comes really high, eventually 4. will take over. Here we consider only A4, exchange. The kinematics here are
similar to those for 7V — wA (1236). The differential cross section is in a form exactly the same as Eq. (4) except
that the signature factor is [14exp(—ime) ], and the a and 8’s refer respectively to the trajectory and the residue
functions of 4. The kinematic factors of the 8’s for 4, are the same as given by Egs. (5a), (5b), and (5c), except
for an additional a(a+1) factor, assuming as usual that 4, couples to nonsense-nonsense amplitudes. The final
form of the differential cross section is

doe 1

[1+4(cos8,)2] | [t— (ma—mn) 21T, | °L | v10:34(0) | 2

o 2
+exp(—i 2[ ]
dt  8:n* | 1-+exp(~ina)] (a+1)T(a+1) sinra {

+ [ v10,3-3(0) | 21(s/50)2e 24 | 7112 sind, | 2[14-(cosBe) *J(a—1)?| T2 [t~ (mat-mu) 142 [ 2 y10,3-3(0) |2
X (/5024|712 sinfy | Aat+1)2| [i— (ma—mn) T 2T 5y |2 via ()| 2(s/50)2*72}, (21)

where the v’s are defined through Egs. (4) and (21) and they are smoothly varying functions of ¢ for ¢<0. The ¥’s
here are related to those of 7IV.— 5A in Eq. (16) through the following equation:

Bioaw(mp — AN)  Booan(a" < AN)
Bro,awo(mp — AN)  Boo,ar (w7~ AN) .

Evidently many of the formulas of 7V interactions considered here can be used for KN scattering.

III. NN INTERACTIONS

The NN scattering formulas are more complicated than those of IV scattering due to the presence of more
particles with spin and more trajectories which can be exchanged. Even though we can write down formulas for
all quasi-two-body NN interactions, there will in general be so many arbitrary parameters as to make phenomeno-
logical fitting hopeless. We consider only three especially simple cases and for each keep only the highest trajectory
that can be exchanged: NN — NA(1236) with p exchange, and NN — NN*(1500,3~) and NN — NN*(1480,3™)
with P exchange. The P’ trajectory contributes exactly in the same way as P.

A. NN— NA(1236)

In addition to p,r can also be exchanged. [For the same reasons as given for the reaction =V — pA(1236), the
7 contribution may be very important at intermediate energies.] Even with p alone there are eight residue func-
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tions. We shall see that we can combine some of the residue functions and reduce the number of arbitrary functions
from eight to five in practical fitting. The unmodified differential cross section is

Z—:= 4”;NN2X Y 1)1(2X ™y 1) 2X1{2|sing,| ?|[1—exp(—ima) J[(2a+1)/sinra]Bys; 33(0) En+(costy) | 2
—+2] (sin,)?| 2] [1—exp(—ima) ][ (2a+1)/sinraBs—3. 11(2) Eoe®H(cosb;) ‘ 242 I [1—exp(—ira) ][ (2a+1)/sinmo]
X B33:33(1) Eoo™*(cosfy) | 42| sinb; | 2| [1—exp(—ima) J[(2a4-1)/sinma]8; 4;33() En*+(cosbs) | *
+2[1+4(cos8,)?]| [1— exp(—ime) ][ (2a+1)/sinma]Bys; 3-3(£) Eus®H(cosby) | 22| sindy| 2[ 1+ (cos6:)%]

X | [1—exp(—ima) ][ (2a+1)/sinra |8s—_3, 11 (£) E12H(cosb;) ] 24 2| sing, | 2 ] [1—exp(—ira) ][ (2a+1)/sinma]

X By 1-3(t) Exo®(cosfy) | 242[ 1+ (cosb) 2] | [1—exp(—ima) ]

The kinematic factors of the residue functions are®

Bsx:31(D) ,B3—3,1:(H) , and By

ﬁgé;%%(t) o« (t—-4m1v2)‘1/2[t-— (mA—I—mN)ﬂ‘l/Z[t— (mA_mN)2]_1(PIVNPIVA)a ’

Bll.; 1
22,272

X [2a+1)/sinme)8;5;3-3(0) En+(coshy) | 2} . (22)

1(0) < Lala+1) ]Vt~ (ma—my) T2 (prvpra) ", (23a)

Bi1:11(0) = [alat1) (@—1) (@+2) JV2(t—4mu®) V[t~ (ma+mn) 1 *(punpra) 2, (23b)
(23¢c)

and  Bi_3.1-1(0) < alat+- 1)1 [t— (ma—my) 2 TV (prnpya)* ™, (23d)
-1:1-3(0) < alat+1)[(@—1) (@+2) 120 2(t— dmy®) 21— (mat-mn) ]2 (prwpma) 2. (23¢)

The final form of the differential cross section is

do

————|1—exp(—ina)|?
dt s(s~—4mN2)! P

[WT{

+ yana-40) [ 215/ 50) %72+ | (5in,)? | 2a2(a— 1)?] (¢—4ma D) V24— (mat-ma)*]V2| 2| yyy

| sind,| 22| [t— (ma—mu)* T2 2L | vas13() | 2+ [ 733 5 ]2

530 2(s/s0)>

+ | [t— (ma—mx) 2T [t— (matmn) T2~ 4ma®) =12 2| 3, 13(0) | 2(s/50) 224 [ 1+ (cos6,) *Jo?

X |2 — (ma—mu) T2 [ van -3 |2+ | vi-33-3

where the 4’s are defined through Egs. (22) and (24).
Notice the « factor in all terms of Eq. (24) except the
third term. Thus if vi3, u(t) turns out not too big, we

325232

can observe a minimum in do/df at a(f)=0. The v’s
here are related to those of wN — wA(1236) and
N — 7N by

Buwn:ma(NN < NA)  Boo,malrm < NA)
By 5o (NN < NA)  Boo, woar(wm — NA)
and

BﬁN;ﬁA(NN «— NA) BIVN;OO(NZV — 1l'7l')
By 5. 7a(NN — NA) B0 NN —7m)

, (25a)

(25b)

B. NN— NN*(1500,3")

Here almost all nonstrange trajectories can be ex-
changed. Due to the availability of very high energy
data for this interaction, hopefully the consideration of

()] #](s/50)2*2+[1+(cos8:)*] | sinf, | 2a*(@—1)*
X ltllz(i*4mN2)1/2[t~ (mA—l—mN)

ni-t| 2(s/s0)274}, (24)

only the P trajectory will be adequate. The formalism
for this case is quite the same as that of NN — NA
(1236), except that due to the difference in parity the
kinematic factors of the residue functions B’s are
different. They are'

Bunn()B-1u() and Bu(0) < [ale+1)]2

X [t— (myst-mu) T2 (punpwns)*, (26a)
Bis;13(0) = [alat-1) (@—1) (at+-2) JV2(t—dmy?) 2
X [t— (mys—my) "] *(pynpmn=)*?, (26b)

Bz 11 (D) walat-1) (t—4my?) V2 t— (mys—my) 2] 12
X[~ (my=+my)* T (pwpwn+)*, (26¢)

Biii—i() and  By_y;3y(8) < 1 d— (myst-my)2]V?

X (prnprn=)"t, (26d)
1330 < [la—1) (a+2) V21 2(t— dmy?) V2
X [t— (myx—my)* 12 (punprn+)*"2. (26€)
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The final form of the differential equation is
do
i s(o—dmx?) (a+ )T (a-+1) sin
F 50O P [v330) | 21(5/50) %72+ | (51n80)? | 2(a— 1) 2(at1)2] (t—4mn ) V2[1— (mays—my) *]V2| 2
X |vi-1:33(0) | 2(s/50) 2 (e 1)*] (¢— dmn®) 2L 1— (may—my) T2t — (mayst-ma) T 2 vags(0) | 2 5/ s0)2%
L1+ (cos80)2]| /21— (mayetma) T2 °[ vay3-30) | 24 | vi-s:3-5() | Z1(5/50) %2+ | sinb,| 214 (cosBs)?]
X (@—1)2| 12— 4mu D) V2t~ (mavs—mu) 2| 2| y3-g35(0) | 2(s/s0) 2} . (27)

| 1+-exp(—ima)| [ a] {I5ind] *at-1)2| (1= Omavactma) 2| o |y 0| 2

The v’s are related to 8’s by Egs. (22) and (27).
C. NN— NN*(1480,1+)

Here we consider only the contribution from the P trajectory.

do 1

= X
dt  dmspyn® (2X3+1)(2X3+1)

2XH{2|[1+exp(—imra) J[(20+1)/sinmaBys,33(t) Eoo>+(costy) | 2

+2 | sinf,[ 1+ exp(—ire) [ (2a+1)/sinra B, -3 (&) E10*+(cosby) , 242 [ sing,[ 14exp(—ima)]
X [(2a+1)/sinwa]Bs—1;33(0) Ean®t(cosb;) } 24+-2[ 14 (cos8,)?] ] [1+exp(—ire)]

The kinematic factors of the 8’s arel4

Bis:11(1) = alat-1) t—dmy) V21— (muys+my) TV (pywprn)®,

Bi—t;3-1 (1) &< 12— (myx—my) ] 2(pwnpwn)=.

The final form of the differential cross section is

i ttexp(—ine)]?
dt_s(s——4mN2) P

(e+1)T(oA+1) sinra

X [(2a+1)/sinra]By—3,3-3(t) E11®+(cosby) ] 2} . (28)
(29a)
(29b)
(29¢)

{(at 11| Gty 21— e ) 117

X |va1:33(0) | 2(s/s0)%a+ | sind, | 2(a+1)2| [i— (mewe—mn) 2TV2] 2L | y3353-3(0) | 24 | vt 13(0) | 21 (s/50) 222
+ [ 14 (cost) ][ £2[t— (mws—mu) 12| 2| vi-g;3-3(0) | 2(s/50) 222}, (30)

where the 4’s are defined through Egs. (28) and (30).
Obviously these formulas for NV interactions can
also be used for NN interactions.
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APPENDIX I

In Ref. 5, the author did not write down explicitly
the kinematic singularity and zero-free helicity ampli-
tudes for the case of mo=my and m.£mq, which turns
out to be the most useful case here. We write the result
here as a supplement to the paper. In the case of
Ma=Mp, MFEMa; OF Ma=myp=m.7Zmq, the following
helicity amplitudes arefree of kinematic singularities

and zeros:
[fcd; a bsi f—c—d; abs:":S_‘ 4ma2]%a 1[5_ (mc+ md) 2]%’3 t

X [s— (mc-—- md)z:liﬁzsiaz’ s
where

o' =max(F)nay of [JotJo—3(wat0vs)]
+%(71a+bb) )

for v,=v,=1;
o’ =max(£)na of [J+T5],

All the notations here are defined the same way as in
Ref. 5.

for v,=v,=0.

APPENDIX II

It is an interesting phenomenon that purely because
of the presence of some kinematic factor of « in the
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amplitude,»>® the contribution of a Regge pole to
certain amplitude can vanish and it thus produces a
minimum in the differential cross section. We illustrate
this point by observing the simplest case of no spin.!®
The contribution of a Regge pole to the amplitude is

2a(t)+1

fls,)= {1zzexp[—ima(t) }——

sinra(t)

X,B(t)Eooa“) ’+(C0505) y
+1 I(at3)

20
=[1=exp(—ira)] 1)
e e

X (;i;)a . (IL2)

Now let us focus our attention on the factors containing
a in, say, the case of positive signature:

[1+4-exp(—ira)] (2a+1)T(a+3)
Tlet+1)

(IL1)

(I1.3)

sinwra

At a=—1, —2, and —3, etc., the 1/T'(a+1) has zeros
that are nonsense (unphysical) values of a. These
zeros are to cancel the pole of 1/sinma at these nonsense
values of . However, at the wrong signature values of
a, ie, a=—1, —3, —5, etc.,, the signature factor
[14exp(—ira)] also vanishes. Thus the amplitude
vanishes at these values of . Similar arguments apply
also to the case of negative signature. We see that
the amplitude always vanishes at nonsense and wrong-
signature values of a.® For cases with spins, the de-
tails of deriving this conclusion are more complicated;
however, the principle is the same. The interactions
considered in this paper provide an illustration. The
poles of 2a+1)T(a+3) at a=—3, in Eq.
(I1.3) are annihilated by zeros in the residue function.

So when the spins of external particles are high, for
some amplitudes even «(f)=0, 1, 2, --- can become
nonsense values and the amplitudes can vanish at those
value of a(f) with the wrong signature. Of course only
those #-channel zeros at a(f)<1 of the amplitudes will
have an effect on the s-channel differential cross
section.

-5 ...
2y

18 J, D. Stack has also observed this phenomenon for the case of
no spin.

197 owe this nice summarizing statement to Professor G. F.
Chew.
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APPENDIX III

The kinematic factors [sin(36;) ] —#'I[cos(38,) ' +#'l
of fea:pn,® with N=D—b, y'=c—A4, are 1 or 0 in the
forward direction of the s channel for production in-
teractions (i.e., m,#mp or m.~mga; or both), since at
this point sinf,=0 and |cosf;| =1. We use a+b— c+d
to denote an s-channel interaction and D+b— ¢+ 4 to
denote -channel interaction. Thus the contribution of
a Regge pole is diminished for those amplitudes with
N5£0 or u'#0, or M50 and u’'5%0 compared with those
having both N'=0, u’=0. For example, if particles ¢
and ¢’ can be produced through the interactions
a+b— c+d and a+b— ’+d, respectively, with the
same highest trajectory exchange, while at the same
time ¢ can couple to the #-channel helicity amplitude
with M’=0 and u'=0 but ¢’ cannot, then the relative
production rate of ¢ will be greater than that of ¢’.
Whether the particle can couple to the #-channel
helicity amplitude with A’=0 and p’=0 depends on
its spin and parity relative to that of the particle g;
therefore this may constitute a way of determining the
spin and parity of the produced particle, in case the
spin and parity of the particle ¢ are known.?

Sufficient conditions that would prevent a Regge
pole with (J parity)X (parity)=+ from coupling to
the t-channel helicity amplitude with p’=0 are

(a) One of the particles 4 or ¢ has spin zero. Let
us choose this to be the particle a.

(b) The spins and intrinsic parities of 4 and ¢ are
such that n gn.(—)*4*t*s=—1. The % is the intrinsic
parity.

When conditions (a) and (b) are satisfied, the
(J-parity) X parity=-+helicity state of 4 and ¢ with
p'=0 does not exist. A similar argument applies for
the amplitudes with M’=0. We see that there is no
selection rule at any fermion-fermion vertex. An ex-
ample of the above is that the relative production rate
of A5(2%) in the interaction #N — A,N will be more
diminished than that of A4;(1*) in the interaction
7N — AiN. The P trajectory cannot contribute with
full strength in the interaction 7V — A,N.

If the highest trajectory exchanged has (J parity)
X (parity)=—, the particle ¢ with nan,(—)*4tee=1
will have a smaller relative prouction rate at high
energies.
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attention to this selection rule. The same conclusion is obtained
in coherent productions in heavy nuclei by A. Goldhaber and
M. Goldhaber, in Preludes in Theoretical Physics, edited by A.
de-Shalit, H. Feshbach, and L. Van Hove (John Wiley & Sons,
Inc., New York, 1966).



